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1 Introduction

Heun’s equation is a standard form of a second-order Fuchsian differential equation with four
singularities, and it is given by
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with the condition

γ + δ + ε = α + β + 1.

The parameter q is called an accessory parameter. Although the local monodromy (local expo-
nent) is independent of q, the global monodromy (e.g. the monodromy on the cycle enclosing two
singularities) depends on q. Some properties of Heun’s equation are written in the books [21, 23],
but an important feature related with the theory of finite-gap potential for the case γ, δ, ε, α−β ∈
Z+ 1

2 (see [6, 24, 25, 26, 27, 28, 29, 31] etc.), which leads to an algorithm to calculate the global
monodromy explicitly for all q, is not written in these books.

The sixth Painlevé equation is a non-linear ordinary differential equation written as
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A remarkable property of this differential equation is that the solutions do not have movable
singularities other than poles. It is known that the sixth Painlevé equation is obtained by
monodromy preserving deformation of Fuchsian system of differential equations,
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, A0, A1, At ∈ C2×2.
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See Section 2 for expressions of the elements of the matrices A0, A1, At. By eliminating y2 we
have second-order differential equation for y1, which have an additional apparent singularity
z = λ other than {0, 1, t,∞} for generic cases, and the point λ corresponds to the variable of
the sixth Painlevé equation. For details of monodromy preserving deformation, see [10]. In this
paper we investigate the condition that the second-order differential equation for y1 is written
as Heun’s equation. To get a preferable answer, we introduce the space of initial conditions
for the sixth Painlevé equation which was discovered by Okamoto [18] to construct a suitable
defining variety for the set of solutions to the (sixth) Painlevé equation.

For Fuchsian systems of differential equations and local systems on a punctured Riemann
sphere, Dettweiler and Reiter [2, 3] gave an algebraic analogue of Katz’ middle convolution
functor [12]. Filipuk [5] applied them for the Fuchsian systems with four singularities, obtained
an explicit relationship with the symmetry of the sixth Painlevé equation, and the author [30]
calculated the corresponding integral transformation for the Fuchsian systems with four singu-
larities. The middle convolution is labeled by a parameter ν, and we have two values which leads
to non-trivial transformation on 2×2 Fuchsian system with four singularities (see Section 4). In
this paper we consider the middle convolution which is a different value of the parameter ν from
the one discussed in [5, 30]. We will also study the relationship between middle convolution and
Heun’s equation. For special cases, the integral transformation raised by the middle convolution
turns out to be a transformation on Heun’s equation, and we investigate these cases. Note that
the description by the space of initial conditions for the sixth Painlevé equation is favorable. The
integral transformation of Heun’s equation is applied for the study of novel solutions, which we
will discuss in a separated publication. If the parameter of the middle convolution is a negative
integer, then the integral transformation changes to a successive differential, and a transforma-
tion defined by a differential operator on Heun’s equation was found in [29] as a generalized
Darboux transformation (Crum–Darboux transformation). Hence the integral transformation on
Heun’s equation can be regarded as a generalization of the generalized Darboux transformation,
which is related with the conjectual duality by Khare and Sukhatme [15].

Special functions of the isomonodromy type including special solutions to the sixth Painlevé
equation have been studied actively and they are related with various objects in mathematics
and physics [16, 32]. On the other hand, special functions of Fuchsian type including special
solutions to Heun’s equation are also interesting objects which are related with general relativity
and so on. This paper is devoted to an attempt to clarify both sides of viewpoints.

This paper is organized as follows: In Section 2, we fix notations for the Fuchsian system
with four singularities. In Section 3, we define the space of initial conditions for the sixth
Painlevé equation and observe that Heun’s equation is obtained from the Fuchsian equation by
restricting to certain lines in the space of initial conditions. In Section 4, we review results on
the middle convolution and construct integral transformations. In Section 5, we investigating
relationship among the middle convolution, integral transformations of Heun’s equation and the
space of initial conditions. In Section 6, we consider the case that the parameter on the middle
convolution is integer. In the appendix, we describe topics which was put off in the text.

2 Fuchsian system of rank two with four singularities

We consider a system of ordinary differential equations,

dY

dz
= A(z)Y, A(z) =
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+
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a21(z) a22(z)
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)
, (2.1)

where t 6= 0, 1, A0, A1, At are 2 × 2 matrix with constant elements. Then equation (2.1)
is Fuchsian, i.e., any singularities on the Riemann sphere C ∪ {∞} are regular, and it may
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have regular singularities at z = 0, 1, t,∞ on the Riemann sphere C ∪ {∞}. Exponents of
equation (2.1) at z = 0 (resp. z = 1, z = t, z = ∞) are described by eigenvalues of the matrix A0

(resp. A1, At, −(A0 +A1 +At)). By the transformation Y → zn0(z− 1)n1(z− t)ntY , the system
of differential equations (2.1) is replaced as A(z) → A(z) + (n0/z + n1/(z − 1) + n2/(z − t))I
(I: unit matrix), and we can transform equation (2.1) to the one where one of the eigenvalues
of Ai is zero for i ∈ {0, 1, t} by putting −ni to be one of the eigenvalues of the original Ai. If
the exponents at z = ∞ are distinct, then we can normalize the matrix −(A0 + A1 + At) to be
diagonal by a suitable gauge transformation Y → GY , A(z) → GA(z)G−1. In this paper we
assume that one of the eigenvalues of Ai is zero for i = 0, 1, t and the matrix −(A0 + A1 + At)
is diagonal, and we set

A∞ = −(A0 + A1 + At) =
(

κ1 0
0 κ2

)
. (2.2)

By eliminating y2 in equation (2.1), we have a second-order linear differential equation,
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+ p2(z)y1 = 0, p1(z) = −a11(z)− a22(z)−

d
dza12(z)
a12(z)

,

p2(z) = a11(z)a22(z)− a12(z)a21(z)− d

dz
a11(z) +

a11(z) d
dza12(z)

a12(z)
. (2.3)
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If k1 = k2 = 0, then y1 satisfies a first-order linear differential equation, and it is integrated
easily. Hence we assume that (k1, k2) 6= (0, 0). Then it is shown that two of a

(0)
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12 , a
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12 ,

(t + 1)a(0)
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(1)
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(t)
12 cannot be zero. We set λ = −k2/k1 (k1 6= 0) and λ = ∞ (k1 = 0). The
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is equivalent to λ = 0 (resp. λ = 1, λ = t, λ = ∞).
We consider the case λ 6= 0, 1, t,∞, i.e., the case a
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(t)
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, (2.5)
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by introducing variables u0, w0, u1, w1, ut, wt. By taking trace of equation (2.2), we have the
relation θ0 +θ1 +θt +κ1 +κ2 = 0. We set θ∞ = κ1−κ2, then we have κ1 = (θ∞−θ0−θ1−θt)/2,
κ2 = −(θ∞ + θ0 + θ1 + θt)/2.

We determine u0, u1, ut, w0, w1, wt so as to satisfy equation (2.2) and the following relations:

a12(z) = −w0

z
− w1

z − 1
− wt

z − t
=

k(z − λ)
z(z − 1)(z − t)

,

a11(λ) =
u0 + θ0

λ
+

u1 + θ1

λ− 1
+

ut + θt

λ− t
= µ,

(see [11]). Namely, we solve the following equations for u0, u1, ut, w0, w1, wt:

−w0 − w1 − wt = 0, w0(t + 1) + w1t + wt = k, −w0t = −kλ,

u0(u0 + θ0)/w0 + u1(u1 + θ1)/w1 + ut(ut + θt)/wt = 0,

u0 + θ0 + u1 + θ1 + ut + θt = −κ1, −u0 − u1 − ut = −κ2,

(u0 + θ0)/λ + (u1 + θ1)/(λ− 1) + (ut + θt)/(λ− t) = µ. (2.6)

The linear equations for w0, w1, wt are solved as

w0 =
kλ

t
, w1 = −k(λ− 1)

t− 1
, wt =

k(λ− t)
t(t− 1)

. (2.7)

By the equations which are linear in u0, u1 and ut, we can express u1 + θ1 and ut + θt as linear
functions in u0. We substitute u1 + θ1 and ut + θt into a quadratic equation in u0, u1 and ut.
Then the coefficient of u2

0 disappears, and u0, u1, ut are solved as

u0 = −θ0 +
λ

tθ∞
[λ(λ− 1)(λ− t)µ2 + {2κ1(λ− 1)(λ− t)− θ1(λ− t)

− tθt(λ− 1)}µ + κ1{κ1(λ− t− 1)− θ1 − tθt}],

u1 = −θ1 −
λ− 1

(t− 1)θ∞
[λ(λ− 1)(λ− t)µ2 + {2κ1(λ− 1)(λ− t) + (θ∞ − θ1)(λ− t)

− tθt(λ− 1)}µ + κ1{κ1(λ− t + 1) + θ0 − (t− 1)θt}],

ut = −θt +
λ− t

t(t− 1)θ∞
[λ(λ− 1)(λ− t)µ2 + {2κ1(λ− 1)(λ− t)− θ1(λ− t)

+ t(θ∞ − θt)(λ− 1)}µ + κ1{κ1(λ− t + 1) + θ0 + (t− 1)(θ∞ − θt)}]. (2.8)

We denote the Fuchsian system of differential equations

dY
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=
(
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z
+

A1

z − 1
+

At

z − t

)
Y, Y =

(
y1

y2

)
, (2.9)

with equations (2.5), (2.7), (2.8) by DY (θ0, θ1, θt, θ∞;λ, µ; k). Then the second-order differential
equation (2.3) is written as
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+
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1− θ0

z
+
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z − 1
+
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)
dy1
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+
(

κ1(κ2 + 1)
z(z − 1)

+
λ(λ− 1)µ

z(z − 1)(z − λ)
− t(t− 1)H

z(z − 1)(z − t)

)
y1 = 0,

H =
1

t(t− 1)
[λ(λ− 1)(λ− t)µ2 − {θ0(λ− 1)(λ− t) + θ1λ(λ− t)

+ (θt − 1)λ(λ− 1)}µ + κ1(κ2 + 1)(λ− t)], (2.10)
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which we denote by Dy1(θ0, θ1, θt, θ∞;λ, µ). This equation has regular singularities at z =
0, 1, t, λ,∞. Exponents of the singularity z = λ are 0, 2, and it is apparent (non-logarithmic)
singularity. Note that the differential equations

dλ

dt
=

∂H

∂µ
,

dµ

dt
= −∂H

∂λ
(2.11)

describe the condition for monodromy preserving deformation of equation (2.3) with respect to
the variable t. By eliminating the variable µ in equation (2.11), we have the sixth Painlevé
equation on the variable λ (see equation (1.2)). See [20] on equations (2.3), (2.10) and (2.11).

We consider realization of the Fuchsian system (equation (2.1)) for the case λ = 0, 1, t,∞ in
the appendix.

3 The space of initial conditions for the sixth Painlevé equation
and Heun’s equation

In this section, we introduce the space of initial conditions for the sixth Painlevé equation,
restrict the variables of the space of initial conditions E(t) to certain lines, and we obtain
Heun’s equation.

The space of initial conditions was introduced by Okamoto [18], which is a suitable defining
variety for the set of solutions to the Painlevé system. In [22], Shioda and Takano studied
the space of initial conditions further for the sixth Painlevé system (equation (2.11)) to study
roles of holomorphy on the Hamiltonian. It was also constructed as a moduli space of parabolic
connections by Inaba, Iwasaki and Saito [8, 9]. Here we adopt the coordinate of initial coordinate
by Shioda and Takano [22] (see also [33]). The space of initial condition E(t) is defined by
patching six copies

U0 = {(q0, p0)}, U1 = {(q1, p1)}, U2 = {(q2, p2)},
U3 = {(q3, p3)}, U4 = {(q4, p4)}, U∞ = {(q∞, p∞)}, (3.1)

of C2 for fixed (t; θ0, θ1, θt, θ∞), and the rule of patching is defined by

q0q∞ = 1, q0p0 + q∞p∞ = −κ1, (U0 ∩ U∞),
q0p0 + q1p1 = θ0, p0p1 = 1, (U0 ∩ U1),
(q0 − 1)p0 + q2p2 = θ1, p0p2 = 1, (U0 ∩ U2),
(q0 − t)p0 + q3p3 = θt, p0p3 = 1, (U0 ∩ U3),
q∞p∞ + q4p4 = 1− θ∞, p∞p4 = 1, (U∞ ∩ U4). (3.2)

The variables (λ, µ) of the sixth Painlevé system (see equation (2.11)) are realized as q0 = λ,
p0 = µ in U0.

We define complex lines in the space of initial conditions as follows:

L0 = {(0, p0)} ⊂ U0, L1 = {(1, p0)} ⊂ U0,

Lt = {(t, p0)} ⊂ U0, L∞ = {(0, p∞)} ⊂ U∞,

L∗0 = {(q1, 0)} ⊂ U1, L∗1 = {(q2, 0)} ⊂ U2,

L∗t = {(q3, 0)} ⊂ U3, L∗∞ = {(q4, 0)} ⊂ U4. (3.3)

Set

U q0 6=0,1,t
0 = U0 \ (L0 ∪ L1 ∪ Lt).
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Then the space of initial conditions E(t) is a direct sum of the sets U q0 6=0,1,t
0 , L0, L1, Lt, L∞,

L∗0, L∗1, L∗t , L∗∞. If (λ, µ) ∈ U q0 6=0,1,t
0 , then λ 6= 0, 1, t,∞ and equation (2.10) has five regular

singularities {0, 1, t, λ,∞}.
Although equation (2.6) was considered on the set U q0 6=0,1,t

0 , we may consider realization of
a second-order differential equation as equation (2.10) on the space of initial conditions E(t).
On the lines L0, L1, Lt, equation (2.10) is realized by setting λ = 0, 1, t, and the equation is
written in the form of Heun’s equation

d2y1

dz2
+
(
−θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy1

dz
+

κ1(κ2 + 1)z + tθ0µ

z(z − 1)(z − t)
y1 = 0, (3.4)

d2y1

dz2
+
(

1− θ0

z
+
−θ1

z − 1
+

1− θt

z − t

)
dy1

dz
+

κ1(κ2 + 1)(z − 1) + (1− t)θ1µ

z(z − 1)(z − t)
y1 = 0, (3.5)

d2y1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+
−θt

z − t

)
dy1

dz
+

κ1(κ2 + 1)(z − t) + t(t− 1)θtµ

z(z − 1)(z − t)
y1 = 0, (3.6)

respectively. Note that if θ0θ1θt 6= 0 then we can realize all values of accessory parameter as
varying µ. For the case θ0θ1θt = 0, we should consider other realizations.

To realize equation (2.10) on the line L∗0, we change the variables (λ, µ) into the ones (q1, p1)
on equation (2.10) by applying relations λµ + q1p1 = θ0, µp1 = 1. Then we have

d2y1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+

1− θt

z − t
− 1

z + p1(p1q1 − θ0)

)
dy1

dz

+
κ1(κ2 + 1)z2 + (tq1 − θ0(θt + tθ1 + p1 pol1)z + (p1q1 − θ0)(−t− p1 pol2)

z(z − 1)(z − t)(z + p1(p1q1 − θ0))
y1 = 0,

where pol1 and pol2 are polynomials in p1, q1, t, θ0, θ1, θt, θ∞. By setting p1 = 0, we obtain

d2y1

dz2
+
(
−θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy1

dz

+
κ1(κ2 + 1)z2 + (tq1 − θ0(θt + tθ1))z + tθ0

z2(z − 1)(z − t)
y1 = 0. (3.7)

Since the exponents of equation (3.7) at z = 0 are 1 and θ0, we consider gauge-transformation
v1 = z−1y1 to obtain Heun’s equation, and we have

d2v1

dz2
+
(

2− θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dv1

dz
+

(κ1 + 1)(κ2 + 2)z − q

z(z − 1)(z − t)
v1 = 0,

q = −tq1 + (θ0 − 1){t(θ1 − 1) + θt − 1}. (3.8)

To realize the second-order Fuchsian equation on the line L∗1, we change the variables (λ, µ)
into the ones (q2, p2), substitute p2 = 0 into equation (2.10) and set v1 = (z − 1)−1y1. Then v1

satisfies the following equation;

d2v1

dz2
+
(

1− θ0

z
+

2− θ1

z − 1
+

1− θt

z − t

)
dv1

dz
+

(κ1 + 1)(κ2 + 2)(z − 1)− q

z(z − 1)(z − t)
v1 = 0,

q = (t− 1)q2 − (θ1 − 1){(1− t)(θ0 − 1) + θt − 1}. (3.9)

The second-order Fuchsian equation on the line L∗t is realized as

d2v1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+

2− θt

z − t

)
dv1

dz
+

(κ1 + 1)(κ2 + 2)(z − t)− q

z(z − 1)(z − t)
v1 = 0,
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q = t(1− t)q3 − (θt − 1)((t− 1)(θ0 − 1) + t(θ1 − 1)), (3.10)

by setting p3 = 0 and v1 = (z − t)−1y1.
We investigate equation (2.10) on the line L∞. We change the variables (λ, µ) into the ones

(q∞, p∞) on equation (2.10) by applying relations λq∞ = 1, λµ + q∞p∞ = −κ1, and substitute
q∞ = 0. Then we have

d2y1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy1

dz
+

κ1(κ2 + 2)z − q

z(z − 1)(z − t)
y1 = 0,

q = (θ∞ − 1)p∞ + κ1(t(κ2 + θt + 1) + κ2 + θ1 + 1).

Note that the exponents at z = ∞ are κ1 and κ2 + 2.
To realize equation (2.10) on the line L∗∞, we change the variables (λ, µ) into the ones (q4, p4)

on equation (2.10) by applying relations λq∞ = 1, λµ + q∞p∞ = −κ1, q∞p∞ + q4p4 = 1 − θ∞,
p∞p4 = 1, substitute p4 = 0. We obtain

d2y1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy1

dz
+

(κ1 + 1)(κ2 + 1)z − q

z(z − 1)(z − t)
y1 = 0,

q = −q4 + (κ2 + 1)(t(κ1 + θt) + κ1 + θ1). (3.11)

The exponents at z = ∞ are κ1 +1 and κ2 +1, which are different from the case of the line L∞.
The Fuchsian system DY (θ0, θ1, θt, θ∞;λ, µ; k) is originally defined on the set U q0 6=0,1,t

0 . We
try to consider realization of Fuchsian system (equation (2.1)) on the lines L0, L∗0, L1, L∗1, Lt,
L∗t , L∞, L∗∞ in the appendix.

4 Middle convolution

First, we review an algebraic analogue of Katz’ middle convolution functor developed by Det-
tweiler and Reiter [2, 3], which we restrict to the present setting. Let A0, A1, At be matrices
in C2×2. For ν ∈ C, we define the convolution matrices B0, B1, Bt ∈ C6×6 as follows:

B0 =

 A0 + ν A1 At

0 0 0
0 0 0

 , B1 =

 0 0 0
A0 A1 + ν At

0 0 0

 ,

Bt =

 0 0 0
0 0 0

A0 A1 At + ν

 . (4.1)

Let z ∈ C\{0, 1, t}, γp (p ∈ C) be a cycle in C\{0, 1, t, z} turning the point w = p anti-clockwise
whose fixed base point is o ∈ C \ {0, 1, t, z}, and [γp, γp′ ] = γpγp′γ

−1
p γ−1

p′ be the Pochhammer
contour.

Proposition 1 ([3]). Assume that Y = t(y1(z), y2(z)) is a solution to the system of differential
equations

dY

dz
=
(

A0

z
+

A1

z − 1
+

At

z − t

)
Y.
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For p ∈ {0, 1, t,∞}, the function

U =



∫
[γz ,γp]

w−1y1(w)(z − w)νdw∫
[γz ,γp]

w−1y2(w)(z − w)νdw∫
[γz ,γp]

(w − 1)−1y1(w)(z − w)νdw∫
[γz ,γp]

(w − 1)−1y2(w)(z − w)νdw∫
[γz ,γp]

(w − t)−1y1(w)(z − w)νdw∫
[γz ,γp]

(w − t)−1y2(w)(z − w)νdw



,

satisfies the system of differential equations

dU

dz
=
(

B0

z
+

B1

z − 1
+

Bt

z − t

)
U. (4.2)

We set

L0 =

 Ker(A0)
0
0

 , L1 =

 0
Ker(A1)

0

 , Lt =

 0
0

Ker(At)

 ,

L = L0 ⊕ L1 ⊕ Lt, K = Ker(B0) ∩Ker(B1) ∩Ker(Bt), (4.3)

where L0, L1, Lt, K ⊂ C6 and 0 in equation (4.3) means the zero vector in C2. We fix
an isomorphism between C6/(K + L) and Cm for some m. A tuple of matrices mcν(A) =
(B̃0, B̃1, B̃t), where B̃p (p = 0, 1, t) is induced by the action of Bp on Cm ' C6/(K + L),
is called an additive version of the middle convolution of (A0, A1, At) with the parameter ν.
Let A0, A1, At be the matrices defined by equation (2.5). Then it is shown that if ν = 0, κ1, κ2

(resp. ν 6= 0, κ1, κ2) then dim C6/(K + L) = 2 (resp. dim C6/(K + L) = 3). If ν = 0, then the
middle convolution is identity (see [3]). Hence the middle convolutions for two cases ν = κ1, κ2

may lead to non-trivial transformations on the 2 × 2 Fuchsian system with four singularities
{0, 1, t,∞}. Filipuk [5] obtained that the middle convolution for the case ν = κ1 induce an
Okamoto’s transformation of the sixth Painlevé system.

We now calculate explicitly the Fuchsian system of differential equations determined by the
middle convolution for the case ν = κ2. Note that the following calculation is analogous to the
one in [30] for the case ν = κ1. If ν = κ2, then the spaces L0, L1, Lt, K are written as

L0 = C



w0

u0 + θ0

0
0
0
0

 , L1 = C



0
0
w1

u1 + θ1

0
0

 , Lt = C



0
0
0
0
wt

ut + θt

 , K = C



0
1
0
1
0
1

 .
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Set

S =



0 0 0 w0 0 0
0 0 1 u0 + θ0 0 0
0 0 0 0 w1 0

s41 s42 1 0 u1 + θ1 0
0 0 0 0 0 wt

s61 s62 1 0 0 ut + θt

 ,

s41 =
µ(λ− t) + κ1

kκ1
, s61 =

t(µ(λ− 1) + κ1)
kκ1

, s42 =
λ̃− λ

λ(λ− 1)κ2
,

s62 =
t(λ̃− λ)

λ(λ− t)κ2
, λ̃ = λ− κ2

µ− θ0
λ −

θ1
(λ−1) −

θt
(λ−t)

, (4.4)

and Ũ = S−1U , where U is a solution to equation (4.2). Then det U = k2(λ̃ − λ)/(t(1 − t)κ2)
and Ũ satisfies

dŨ

dz
=



b11(z) b12(z) 0 0 0 0
b21(z) b22(z) 0 0 0 0

−(u0+θ0)θ∞t
kκ1λz

λ̃
λz 0 0 0 0

t
kλz 0 0 κ2

z 0 0
1−t

k(λ−1)(z−1) 0 0 0 κ2
z−1 0

t(1−t)
k(λ−t)(z−t) 0 0 0 0 κ2

z−t


Ũ ,

where b11(z), . . . , b22(z) are calculated such that the system of differential equation

dỸ

dz
=
(

b11(z) b12(z)
b21(z) b22(z)

)
Ỹ , Ỹ =

(
ũ1(z)
ũ2(z)

)
,

coincides with the Fuchsian system DY (θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃; k̃) (see equation (2.9)), where

θ̃0 =
θ0 − θ1 − θt − θ∞

2
, θ̃1 =

−θ0 + θ1 − θt − θ∞
2

, θ̃t =
−θ0 − θ1 + θt − θ∞

2
,

θ̃∞ =
−θ0 − θ1 − θt + θ∞

2
, λ̃ = λ− κ2

µ− θ0
λ −

θ1
λ−1 −

θt
λ−t

,

µ̃ =
κ2 + θ0

λ̃
+

κ2 + θ1

λ̃− 1
+

κ2 + θt

λ̃− t
+

κ2

λ− λ̃
, k̃ = k. (4.5)

The functions ũ1(z) and ũ2(z) are expressed as

ũ1(z) = (u0 + θ0)u1(z)− kλ

t
u2(z) + (u1 + θ1)u3(z)

+
k(λ− 1)

t− 1
u4(z) + (ut + θt)u5(z) +

k(λ− t)
t(1− t)

u6(z),

ũ2(z) =
κ2λ(λ− 1)(λ− t)

κ1(λ− λ̃)

(
(λµ + κ1)(u0 + θ0)

kλ
u1(z)− λµ + κ1

t
u2(z)

+
((λ− 1)µ + κ1)(u1 + θ1)

k(λ− 1)
u3(z) +

(λ− 1)µ + κ1

t− 1
u4(z)

+
((λ− t)µ + κ1)(ut + θt)

k(λ− t)
u5(z) +

(λ− t)µ + κ1

t(1− t)
u6(z)

)
. (4.6)

Combining Proposition 1 with equation (4.6) and setting ỹ1(z) = ũ1(z), ỹ2(z) = ũ2(z), we have
the following theorem by means of a straightforward calculation:
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Theorem 1. Set κ1 = (θ∞ − θ0 − θ1 − θt)/2 and κ2 = −(θ∞ + θ0 + θ1 + θt)/2. If y1(z) is
a solution to the Fuchsian equation Dy1(θ0, θ1, θt, θ∞;λ, µ), then the function Ỹ = t(ỹ1(z), ỹ2(z))
defined by

ỹ1(z) =
∫

[γz ,γp]

dy1(w)
dw

(z − w)κ2dw, (4.7)

ỹ2(z) =
κ2λ(λ− 1)(λ− t)

k(λ− λ̃)

∫
[γz ,γp]

{(
dy1(w)

dw
− µy1(w)

)
1

λ− w
+

µ

κ1

dy1(w)
dw

}
(z − w)κ2dw,

satisfies the Fuchsian system DY (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃; k) for p ∈ {0, 1, t,∞},
where

λ̃ = λ− κ2

µ− θ0
λ −

θ1
λ−1 −

θt
λ−t

, µ̃ =
κ2 + θ0

λ̃
+

κ2 + θ1

λ̃− 1
+

κ2 + θt

λ̃− t
+

κ2

λ− λ̃
. (4.8)

Since

0 =
∫

[γz ,γp]

d

dw
(y1(w)(z − w)κ2) dw

=
∫

[γz ,γp]

dy1(w)
dw

(z − w)κ2dw + κ2

∫
[γz ,γp]

y1(w)(z − w)κ2−1dw, (4.9)

we have

Proposition 2 ([17]). If y1(z) is a solution to Dy1(θ0, θ1, θt, θ∞;λ, µ), then the function

ỹ(z) =
∫

[γz ,γp]
y1(w)(z − w)κ2−1dw, (4.10)

satisfies Dy1(κ2 +θ0, κ2 +θ1, κ2 +θt, κ2 +θ∞; λ̃, µ̃) for p ∈ {0, 1, t,∞}, where λ̃ and µ̃ are defined
in equation (4.8).

Note that this proposition was obtained by Novikov [17] by another method. Kazakov
and Slavyanov [14] essentially obtained this proposition by investigating Euler transformation
of 2 × 2 Fuchsian systems with singularities {0, 1, t,∞} which are realized differently from
DY (θ0, θ1, θt, θ∞;λ, µ, k).

Let us recall the symmetry of the sixth Painlevé equation. It was essentially established by
Okamoto [19] that the sixth Painlevé equation has symmetry of the affine Weyl group W (D(1)

4 ).
More precisely, the sixth Painlevé system is invariant under the following transformations, which
are involutive and satisfy Coxeter relations attached to the Dynkin diagram of type D

(1)
4 , i.e.

(si)2 = 1 (i = 0, 1, 2, 3, 4), sjsk = sksj (j, k ∈ {0, 1, 3, 4}), sjs2sj = s2sjs2 (j = 0, 1, 3, 4):

θt θ∞ θ1 θ0 λ µ t

s0 −θt θ∞ θ1 θ0 λ µ− θt
λ−t t

s1 θt 2− θ∞ θ1 θ0 λ µ t
s2 κ1 + θt −κ2 κ1 + θ1 κ1 + θ0 λ + κ1

µ µ t

s3 θt θ∞ −θ1 θ0 λ µ− θ1
λ−1 t

s4 θt θ∞ θ1 −θ0 λ µ− θ0
λ t

i

i

i

i
i

0

3

1

4

2

The map (θ0, θ1, θt, θ∞;λ, µ) 7→ (θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) determined by equation (4.5) coincides
with the composition map s0s3s4s2s0s3s4, because

(θ0, θ1, θt, θ∞;λ, µ) s0s3s47→
(
− θ0,−θ1,−θt, θ∞;λ, µ− θ0

λ −
θ1

λ−1 −
θt

λ−t

)
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s27→
(
− κ2 − θ0,−κ2 − θ1,−κ2 − θt, κ1; λ̃, µ− θ0

λ −
θ1

λ−1 −
θt

λ−t

)
s0s3s47→

(
κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃

)
.

Therefore, if we know a solution to the Fuchsian system DY (θ0, θ1, θt, θ∞;λ, µ; k), then we have
integral representations of solutions to the Fuchsian system DY (θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃; k) obtained
by the transformation s0s3s4s2s4s3s0. Note that the transformations si (i = 0, 1, 2, 3, 4) are
extended to isomorphisms of the space of initial conditions E(t).

We recall the middle convolution for the case ν = κ1.

Proposition 3 ([30, Proposition 3.2]). If Y = t(y1(z), y2(z)) is a solution to the Fuch-
sian system DY (θ0, θ1, θt, θ∞;λ, µ; k) (see equation (2.9)), then the function Ỹ = t(ỹ1(z), ỹ2(z))
defined by

ỹ1(z) =
∫

[γz ,γp]

{
κ1y1(w) + (w − λ̃)

dy1(w)
dw

}
(z − w)κ1

w − λ
dw,

ỹ2(z) =
−θ∞
κ2

∫
[γz ,γp]

dy2(w)
dw

(z − w)κ1dw, (4.11)

satisfies the Fuchsian system DY (κ1 +θ0, κ1 +θ1, κ1 +θt,−κ2;λ+κ1/µ, µ; k) for p ∈ {0, 1, t,∞}.

The parameters (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ) are obtained from the parameters
(θ0, θ1, θt, θ∞;λ, µ) by applying the transformation s2. Note that the relationship the transfor-
mation s2 was obtained by Filipuk [5] explicitly (see also [7]), and Boalch [1] and Dettweiler and
Reiter [4] also obtained results on the symmetry of the sixth Painlevé equation and the middle
convolution.

5 Middle convolution, integral transformations
of Heun’s equation and the space of initial conditions

In this section, we investigating relationship among the middle convolution, integral transfor-
mations of Heun’s equation and the space of initial conditions.

Kazakov and Slavyanov established an integral transformation on solutions to Heun’s equa-
tion in [13], which we express in a slightly different form.

Theorem 2 ([13]). Set

(η − α)(η − β) = 0, γ′ = γ + 1− η, δ′ = δ + 1− η, ε′ = ε + 1− η,

{α′, β′} = {2− η,−2η + α + β + 1},
q′ = q + (1− η)(ε + δt + (γ − η)(t + 1)). (5.1)

Let v(w) be a solution to

d2v

dw2
+
(

γ′

w
+

δ′

w − 1
+

ε′

w − t

)
dv

dw
+

α′β′w − q′

w(w − 1)(w − t)
v = 0. (5.2)

Then the function

y(z) =
∫

[γz ,γp]
v(w)(z − w)−ηdw

is a solution to

d2y

dz2
+
(

γ

z
+

δ

z − 1
+

ε

z − t

)
dy

dz
+

αβz − q

z(z − 1)(z − t)
y = 0, (5.3)

for p ∈ {0, 1, t,∞}.
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Here we derive Theorem 2 by considering the limit λ → 0 in Proposition 2. Let us recall
notations in Proposition 2. We consider the limit λ → 0 while fixing µ for the case θ0 6= 0 and
θ0 + κ2 6= 0. Then we have λ̃ → 0 and µ̃ → (tθ0µ + κ2(t(κ1 + θt) + κ1 + θ1))/(t(κ2 + θ0)). Hence
it follows from Proposition 2 and equation (3.4) that, if y(z) satisfies

d2y(z)
dz2

+
(
−θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy(z)
dz

+
κ1(κ2 + 1)z + tθ0µ

z(z − 1)(z − t)
y(z) = 0, (5.4)

then the function

ỹ(z) =
∫

[γz ,γp]
y(w)(z − w)κ2−1dw, (5.5)

satisfies

d2ỹ(z)
dz2

+
(
−κ2 − θ0

z
+

1− κ2 − θ1

z − 1
+

1− κ2 − θt

z − t

)
dỹ(z)
dz

+

θ∞(1− κ2)z + t(κ2 + θ0)
tθ0µ+κ2(t(κ1+θt)+κ1+θ1))

t(κ2+θ0)

z(z − 1)(z − t)

 ỹ(z) = 0. (5.6)

By setting γ = −κ2 − θ0, δ = 1 − κ2 − θ1, ε = 1 − κ2 − θt, α = η = 1 − κ2, β = θ∞,
q = −{tθ0µ+κ2(t(κ1+θt)+κ1+θ1))} and comparing with the standard form of Heun’s equation
(equation (1.1)), we recover Theorem 2. Note that we can obtain the formula corresponding to
the case θ0 = 0 (resp. θ0 + κ2 = 0) by considering the limit θ0 → 0 (resp. θ0 + κ2 → 0).

The limit λ → 0 while fixing µ implies the restriction of the coordinate (λ, µ) to the line L0

in the space of initial conditions E(t), and the line L0 with the parameter (θ0, θ1, θt, θ∞;λ, µ) is
mapped to the line L0 in the space of initial conditions with the parameter (κ2+θ0, κ2+θ1, κ2+θt,
κ2 + θ∞; λ̃, µ̃) where λ̃ and µ̃ are defined in equation (4.8), because λ̃ → 0 and µ̃ converges
by the limit. It follows from equations (5.4), (5.5), (5.6) that the integral transformation in
Proposition 2 reproduces the integral transformation on Heun’s equations in Theorem 2 by
restricting to the line L0. We can also establish that the line L1 (resp. Lt) in the space of
initial conditions with the parameter (θ0, θ1, θt, θ∞;λ, µ) is mapped to the line L1 (resp. Lt)
with the parameter (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃) by taking the limit λ → 1 (resp.
λ → t), and the integral transformation in Proposition 2 reproduces the integral transformation
on Heun’s equations in Theorem 2. We discuss the restriction of the map (θ0, θ1, θt, θ∞;λ, µ) 7→
(κ2+θ0, κ2+θ1, κ2+θt, κ2+θ∞; λ̃, µ̃) to the line L∗∞. Let (q4, p4) (resp. (q̃4, p̃4)) be the coordinate
of U4 for the parameters (θ0, θ1, θt, θ∞;λ, µ) (resp. (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃)
(see equations (3.1), (3.2)). Then we can express q̃4 and p̃4 by the variables q4 and p4. By
setting p4 = 0, we have p̃4 = 0 and q̃4 = q4 − κ2(t(κ1 + θt − 1) + κ1 + θ1 − 1). Hence the
line L∗∞ with the parameter (θ0, θ1, θt, θ∞;λ, µ) is mapped to the line L∗∞ with the parameter
(κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃). It follows from Proposition 2 that if y1(z) satisfies
equation (3.11) then the function ỹ(z) defined by Proposition 2 satisfies Heun’s equation with
the parameters γ = 1 − θ0 − κ2, δ = 1 − θ1 − κ2, ε = 1 − θt − κ2, α = 1 − κ2, β = 1 + θ∞,
q = −q4−(1+t)κ2+(t(κ1+θt)+κ1+θ1)), and the integral representation reproduces Theorem 2
by setting η = α = 1− κ2. Therefore we have the following theorem:

Theorem 3. Let X = L0, L1, Lt or L∗∞. By the map s0s3s4s2s4s3s0 : (θ0, θ1, θt, θ∞;λ, µ) 7→
(κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃) where λ̃ and µ̃ are defined in equation (4.8), the line X
in the space of initial conditions with the parameter (θ0, θ1, θt, θ∞;λ, µ) is mapped to the line X
in the space of initial conditions with the parameter (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃)
where λ̃ and µ̃ are defined in equation (4.8), and the integral transformation in Proposition 2
determined by the middle convolution reproduces the integral transformation on Heun’s equations
in Theorem 2 by the restriction to the line X.
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Note that if X = L∗0, L∗1, L∗t or L∞ then the image of the line X by the map s0s3s4s2s4s3s0

may not included in X with the parameter (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃).
We consider restrictions of the middle convolution for the case ν = κ1 (see Proposition 3) to

lines in the space of initial conditions. We discuss the restriction of the map (θ0, θ1, θt, θ∞;λ, µ)
7→ (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ) to the line L∗0. Let (q1, p1) (resp. (q̃1, p̃1)) be the
coordinate of U1 for the parameters (θ0, θ1, θt, θ∞;λ, µ) (resp. (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ +
κ1/µ, µ)). Then we can express q̃1 and p̃1 by the variables q1 and p1, and by setting p1 = 0 we
have p̃1 = 0 and q̃1 = q1. Let y1(z) be a solution to the Fuchsian equation Dy1(θ0, θ1, θt, θ∞;λ, µ)
for the case p1 = 0 and set v1(z) = z−1y1(z). Then v1(z) satisfies Heun’s equation written as
equation (3.8). On the case p1 = 0, the integral representation (equation (4.11)) is written as

ỹ1(z) =
∫

[γz ,γp]

{
κ1y1(w) + w

dy1(w)
dw

}
(z − w)κ1

w
dw, (p ∈ {0, 1, t,∞}).

We set ṽ1(z) = z−1ỹ1(z). By integration by parts we have

ṽ1(z) =
1
z

∫
[γz ,γp]

{
κ1v1(w)(z − w)κ1 +

d(wv1(w))
dw

(z − w)κ1

}
dw

=
1
z

∫
[γz ,γp]

{
κ1(z − w)v1(w)(z − w)κ1−1 + κ1wv1(w)(z − w)κ1−1

}
dw

= κ1

∫
[γz ,γp]

v1(w)(z − w)κ1−1dw. (5.7)

On the other hand, it follows from Proposition 3 and equation (3.8) that ṽ1(z) satisfies Heun’s
equation with the parameters γ = 2 − θ0 − κ1, δ = 1 − θ1 − κ1, ε = 1 − θt − κ1, α = 1 − κ1,
β = 2−θ∞, q = −tq1+(κ1+θ0−1){t(κ1+θ1−1)+κ1+θt−1}. Hence equation (5.7) reproduces
Theorem 2 by setting η = α = 1 − κ1, We can also obtain similar results for L∗1, L∗t and L∗∞.
Therefore we have the following theorem:

Theorem 4. Let X = L∗0, L∗1, L∗t or L∗∞. By the map s2 : (θ0, θ1, θt, θ∞;λ, µ) 7→ (κ1 + θ0,
κ1 +θ1, κ1 +θt,−κ2;λ+κ1/µ, µ), the line X in the space of initial conditions with the parameter
(θ0, θ1, θt, θ∞;λ, µ) is mapped to the line X in the space of initial conditions with the parameter
(κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ), and the integral transformation in Proposition 3
determined by the middle convolution reproduces the integral transformation on Heun’s equations
in Theorem 2 by the restriction to the line X.

Note that if X = L0, L1, Lt or L∞ then the image of the line X by the map s2 may not
included in X with the parameter (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ).

6 Middle convolution for the case that the parameter is integer

On the case κ2 ∈ Z, the function in equation (4.10) containing the Pochhammer contour may be
vanished, and we propose other expressions of solutions to Fuchsian equation Dy1(κ2+θ0, κ2+θ1,
κ2 + θt, κ2 + θ∞; λ̃, µ̃) in use of solutions to Dy1(θ0, θ1, θt, θ∞;λ, µ).

We have the following proposition for the case κ2 ∈ Z<0,

Proposition 4. (i) Let A0, A1, At be matrices in C2×2, and let B
(ν)
0 , B

(ν)
1 , B

(ν)
t ∈ C6×6 be the

matrices defined in equation (4.1) for ν ∈ C. Assume that ν ∈ Z<0 and Y = t(y1(z), y2(z)) is
a solution to the system of differential equations

dY

dz
=
(

A0

z
+

A1

z − 1
+

At

z − t

)
Y.
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Write ν = −1− n (n ∈ Z≥0). Then the function

U =



(d/dz)n(z−1y1(z))
(d/dz)n(z−1y2(z))
(d/dz)n((z − 1)−1y1(z))
(d/dz)n((z − 1)−1y2(z))
(d/dz)n((z − t)−1y1(z))
(d/dz)n((z − t)−1y2(z))

 ,

satisfies the system of differential equations

dU

dz
=

(
B

(−1−n)
0

z
+

B
(−1−n)
1

z − 1
+

B
(−1−n)
t

z − t

)
U. (6.1)

(ii) If κ2 ∈ Z<0 and Y = t(y1(z), y2(z)) is a solution to the Fuchsian system DY (θ0, θ1, θt, θ∞;
λ, µ; k), then the function Ỹ = t(ỹ1(z), ỹ2(z)) defined by

ỹ1(z) =
(

d

dz

)−κ2

y1(z),

ỹ2(z) =
κ2λ(λ− 1)(λ− t)

k(λ− λ̃)

[{(
d

dz

)−κ2

y1(z)− µ

(
d

dz

)−κ2−1

y1(z)

}
1

λ− z

+
µ

κ1

(
d

dz

)−κ2

y1(z)

]
, (6.2)

satisfies the Fuchsian system DY (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃; k), where λ̃ and µ̃ are
defined in equation (4.8).

(iii) If κ2 ∈ Z<0 and y1(z) is a solution to Dy1(θ0, θ1, θt, θ∞;λ, µ), then the function

ỹ(z) =
(

d

dz

)−κ2

y1(z),

satisfies Dy1(κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃).

Proof. (i) If ν = −1, then it follows immediately that the function U = t(z−1y1(z), z−1y2(z),
(z−1)−1y1(z), (z−1)−1y2(z), (z−t)−1y1(z), (z−t)−1y2(z)) satisfied equation (6.1) for n = 0. As-
sume now that the function U = t(u1(z), u2(z), u3(z), u4(z), u5(z), u6(z)) satisfies equation (6.1).
Set V = dU/dz. Since

B
(−1−n)
0

z2
+

B
(−1−n)
1

(z − 1)2
+

B
(−1−n)
t

(z − t)2
=

1
z

B
(−1−n)
0

z



u1(z)
u2(z)

0
0
0
0

+
1

z − 1
B

(−1−n)
0

z − 1



0
0

u3(z)
u4(z)

0
0



+
1

z − t

B
(−1−n)
0

z − t



0
0
0
0

u5(z)
u6(z)

 =
1
z



u′1(z)
u′2(z)

0
0
0
0

+
1

z − 1



0
0

u′3(z)
u′4(z)

0
0

+
1

z − t



0
0
0
0

u′5(z)
u′6(z)

 ,
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we have

dV

dz
=

d

dz

{(
B

(−1−n)
0

z
+

B
(−1−n)
1

z − 1
+

B
(−1−n)
t

z − t

)
U

}

= −

(
B

(−1−n)
0

z2
+

B
(−1−n)
1

(z − 1)2
+

B
(−1−n)
t

(z − t)2

)
U +

(
B

(−1−n)
0

z
+

B
(−1−n)
1

z − 1
+

B
(−1−n)
t

z − t

)
V

=

(
B

(−2−n)
0

z
+

B
(−2−n)
1

z − 1
+

B
(−2−n)
t

z − t

)
V.

Hence (i) is proved inductively.
(ii) Let A0, A1, At be the matrices defined by equation (2.5) and set ν = κ2. We define

the matrix S by equation (4.4) and set Ũ = S−1U . Then Ỹ = t(ũ1(z), ũ2(z)) satisfies the
Fuchsian differential equation DY (θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃; k̃) where the parameters are determined by
equation (4.5), and ũ1(z), ũ2(z) are expressed as equation (4.6). By a straightforward calculation
as obtaining equation (4.7), we have equation (6.2).

(iii) follows from (ii). �

Note that (i) is valid for Fuchsian differential systems of arbitrary size and arbitrary number
of regular singularities. We have a similar statement for the case ν = κ1 and κ1 ∈ Z<0.
Namely, if κ1 ∈ Z<0 and Y = t(y1(z), y2(z)) is a solution to the Fuchsian differential equation
DY (θ0, θ1, θt, θ∞;λ, µ; k) (see equation (2.9)), then the function Ỹ = t(ỹ1(z), ỹ2(z)) defined by

ỹ1(z) =
(

d

dz

)−κ1−1{ 1
z − λ

(
κ1y1(z) + (z − λ̃)

dy1(z)
dz

)}
,

ỹ2(z) =
(

d

dz

)−κ1

y2(z),

satisfies the Fuchsian system DY (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ; k).
If κ2 = 0 (resp. κ1 = 0), then the Fuchsian system DY (κ2+θ0, κ2+θ1, κ2+θt, κ2+θ∞; λ̃, µ̃; k)

(resp. DY (κ1 + θ0, κ1 + θ1, κ1 + θt,−κ2;λ + κ1/µ, µ; k)) coincides with DY (θ0, θ1, θt, θ∞;λ, µ; k),
and the function Ỹ = t(ỹ1(z), ỹ2(z)) just corresponds to t(y1(z), y2(z)).

On the case κ2 ∈ Z>0, we have the following proposition:

Proposition 5. Let p ∈ {0, 1, t,∞} and Cp be the cycle starting from w = z, turning w = p
anti-clockwise and return to w = z.

(i) If κ2 ∈ Z>0 and Y = t(y1(z), y2(z)) is a solution to the Fuchsian system DY (θ0, θ1, θt, θ∞;
λ, µ; k), then the function Ỹ = t(ỹ1(z), ỹ2(z)) defined by

ỹ1(z) =
∫

Cp

dy1(w)
dw

(z − w)κ2dw, (6.3)

ỹ2(z) =
κ2λ(λ− 1)(λ− t)

k(λ− λ̃)

∫
Cp

{(
dy1(w)

dw
− µy1(w)

)
1

λ− w
+

µ

κ1

dy1(w)
dw

}
(z − w)κ2dw,

satisfies the Fuchsian system DY (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃; k) for p ∈ {0, 1, t,∞}
where λ̃ and µ̃ are defined in equation (4.8).

(ii) If κ2 ∈ Z>0 and y1(z) is a solution to Dy1(θ0, θ1, θt, θ∞;λ, µ), then the function

ỹ(z) =
∫

Cp

y1(w)(z − w)κ2−1dw, (6.4)

satisfies Dy1(κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃) for p ∈ {0, 1, t,∞}.
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Note that the functions ỹ1(z), ỹ2(z), ỹ(z) may not be polynomials although the integrands
of equations (6.3) and (6.4) are polynomials in z.

Proof. Set

K1(w) =
dy1(w)

dw
,

K2(w) =
κ2λ(λ− 1)(λ− t)

k(λ− λ̃)

{(
dy1(w)

dw
− µy1(w)

)
1

λ− w
+

µ

κ1

dy1(w)
dw

}
.

It follows from Theorem 1 that the function Y (z) =
(

ỹ1(z)
ỹ2(z)

)
defined by

ỹi(z) =
∫

γzγpγ−1
z γ−1

p

Ki(w)(z − w)κ2dw

= (1− e2π
√
−1κ2)

∫
γp

Ki(w)(z−w)κ2dw +
∫

γz

(Kγp

i (w)−Ki(w))(z − w)κ2dw (i = 1, 2)

is a solution to DY (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃; k) for p ∈ {0, 1, t}, where K
γp

i (w) is
the function analytically continued along the cycle γp.

If κ2 > −1, then the integrals
∫
γz

(Kγp

i (w) − Ki(w))(z − w)κ2dw tends to zero as the base

point o of the integral tends to z, and it follows that the function

( ∫
Cp

K1(w)(z − w)κ2dw∫
Cp

K2(w)(z − w)κ2dw

)
is

a solution to DY (κ2 + θ0, κ2 + θ1, κ2 + θt, κ2 + θ∞; λ̃, µ̃; k) for κ2 ∈ R>−1 \Z>−1. By considering
the limit κ2 → n, n ∈ Z>0, we obtain (i) for p ∈ {0, 1, t}. The case p = ∞ follows from
C∞ = C−1

t C−1
1 C−1

0 .
By integration by parts as equation (4.9) we obtain (ii). �

We have similar proposition for the case ν = κ1 and κ1 ∈ Z>0. On middle convolution mcν

for Fuchsian differential systems of arbitrary size and arbitrary number of regular singularities
whose parameter ν is positive integer, the contour [γz, γp] can be replaced by Cp.

We can reformulate Theorem 3 (resp. Theorem 4) for the case k2 ∈ Z<0 (resp. k1 ∈ Z<0) by
changing the integral to successive differential and for the case k2 ∈ Z>0 (resp. k1 ∈ Z>0) by
changing the contour [γz, γp] to Cp. The corresponding setting for Heun’s equation is described
as follows:

Proposition 6. Let v(w) be a solution to Heun’s equation written as equation (5.2) with the
parameters in equation (5.1).

(i) If η ∈ Z>1, then the function

y(z) = (d/dz)η−1v(z)

is a solution to Heun’s equation (5.3).
(ii) If η ∈ Z<1, then the function

y(z) =
∫

Cp

v(w)(z − w)−ηdw

is a solution to Heun’s equation (5.3) for p ∈ {0, 1, t,∞}.

The generalized Darboux transformation (Crum–Darboux transformation) for elliptical rep-
resentation of Heun’s equation was introduced in [29], and we can show that Proposition 6 (i)
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gives another description of the generalized Darboux transformation. Hence the integral trans-
formation given by Theorem 2 can be regarded as a generalization of the generalized Darboux
transformation to non-integer cases. Khare and Sukhatme [15] conjectured a duality of quasi-
exactly solvable (QES) eigenvalues for elliptical representation of Heun’s equation. By rewriting
parameters of the duality to Heun’s equation on the Riemann sphere, we obtain a correspon-
dence on the parameters α, β, γ, δ, ε, q and α′, β′, γ′, δ′, ε′, q′ on the integral transformation
of Heun’s equation in Theorem 2. We will report further from a viewpoint of monodromy in
a separated paper.

A Appendix

We investigate the realization of the Fuchsian system (equation (2.1)) for the cases λ = 0, 1, t,∞
in the setting of Section 2 and observe relationships with the lines L0, L∗0, L1, L∗1, Lt, L∗t , L∞,
L∗∞ (see equation (3.3)) in the space of initial conditions E(t).

We consider the case λ = 0, i.e., the case a
(0)
12 = 0, a

(1)
12 6= 0, a

(t)
12 6= 0, (t+1)a(0)

12 +ta
(1)
12 +a

(t)
12 6= 0

(see equation (2.4)). Since a
(0)
12 = 0 and the eigenvalues of A0 are θ0 and 0, the matrix A0 is

written as

A0 =
(

θ0 0
v 0

)
or A0 =

(
0 0
v θ0

)
,

and it follows from a
(1)
12 6= 0, a

(t)
12 6= 0 that the matrices A1, At may be expressed as equation (2.5).

We determine w1, wt so as to satisfy a12(z) = −w1(z− 1)−wt/(z− t) = k/(z(z− 1)). Then we
have

w1 = k/(t− 1), wt = −k/(t− 1). (A.1)

On the case

A0 =
(

0 0
v θ0

)
, A1 =

(
u1 + θ1 −w1

u1(u1 + θ1)/w1 −u1

)
,

At =
(

ut + θt −wt

ut(ut + θt)/wt −ut

)
, (A.2)

we determine u1, ut so as to satisfy equation (2.2), namely

v + u1(u1 + θ1)/w1 + ut(ut + θt)/wt = 0,

u1 + θ1 + ut + θt = −κ1, θ0 − u1 − ut = −κ2.

We have

u1 = −θ1 +
1

θ∞ − θ0

(
kv

t− 1
− κ1(κ1 + θt)

)
,

ut = −θt −
1

θ∞ − θ0

(
kv

t− 1
+ κ1(κ1 + θ1)

)
. (A.3)

Hence we have one-parameter realization of equation (A.2) with the prescribed condition. We
discuss relationship with the Fuchsian system on the line L0. For this purpose, we recall matri-
ces A0, A1, At determined by equations (2.5), (2.7), (2.8) and restrict them to λ = 0. Then all
elements in A0, A1 and At are well-defined and we have

A0 |λ=0 =
(

0 0
θ0{t(θ0 − θ∞)µ + κ1(κ1 + θ1 + t(κ1 + θt))}/(kθ∞) θ0

)
.
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In fact the matrices A0, A1, At restricted to the line L0 coincide with the ones determined
by equations (A.2), (A.1), (A.3) and v = θ0{t(θ0 − θ∞)µ + κ1(κ1 + θ1 + t(κ1 + θt))}/(kθ∞).
Note that the second-order differential equation for the function y1 on the case of the matrices
in equations (A.2), (A.1), (A.3) is obtained as equation (3.4) by substituting µ = (kθ∞v −
κ1θ0(κ1 + θ1 + t(κ1 + θt)))/(tθ0(θ0 − θ∞)).

On the case

A0 =
(

θ0 0
v 0

)
, A1 =

(
u1 + θ1 −w1

u1(u1 + θ1)/w1 −u1

)
,

At =
(

ut + θt −wt

ut(ut + θt)/wt −ut

)
, (A.4)

u1, ut are determined as

u1 =
1

θ∞ + θ0

(
kv

t− 1
− κ2(κ2 + θt)

)
, ut =

−1
θ∞ + θ0

(
kv

t− 1
+ κ2(κ2 + θ1)

)
, (A.5)

to satisfy equation (2.2). To realize the Fuchsian system on the line L∗0, we recall matrices A0,
A1, At determined by equations (2.5), (2.7), (2.8), transform (λ, µ)(= (q0, p0)) to (q1, p1) by
equation (3.2) and restrict matrix elements to q1 = 0. Then the matrices A0, A1 and At are
determined as equations (A.4), (A.1), (A.5), where

v = {−t(θ0 + θ∞)q1 + θ0(κ1 + θ0)((κ2 + θt) + t(κ2 + θ1))}/(kθ∞). (A.6)

Note that the second-order differential equation for the function ỹ1 = z−1y1 on the case of the
matrices in equations (A.4), (A.1), (A.5) is obtained as equation (3.8) by substituting equa-
tion (A.6).

We consider the case λ = 1, i.e., the case a
(1)
12 = 0, a

(0)
12 6= 0, a

(t)
12 6= 0, (t+1)a(0)

12 +ta
(1)
12 +a

(t)
12 6= 0.

Since a
(1)
12 = 0 and the eigenvalues of A1 are θ1 and 0, the matrix A1 is written as

A1 =
(

θ1 0
v 0

)
or A1 =

(
0 0
v θ1

)
,

and the matrices A0, At may be expressed as equation (2.5). To satisfy a12(z) = −w0/z −
wt/(z − t) = k/(z(z − t)), we have

w0 = k/t, wt = −k/t. (A.7)

On the case

A1 =
(

0 0
v θ1

)
, A0 =

(
u0 + θ0 −w0

u0(u0 + θ0)/w0 −u0

)
,

At =
(

ut + θt −wt

ut(ut + θt)/wt −ut

)
, (A.8)

u0, ut are determined as

u0 = −θ0 +
1

θ∞ − θ1

(
kv

t
− κ1(κ1 + θt)

)
,

ut = −θt −
1

θ∞ − θ1

(
kv

t
+ κ1(κ1 + θ0)

)
, (A.9)
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to satisfy equation (2.2). To realize the Fuchsian system on the line L1, we recall matrices A0,
A1, At determined by equations (2.5), (2.7), (2.8) and restrict matrix elements to λ = 1. Then
the matrices A0, A1 and At are determined as equations (A.8), (A.7), (A.9), where

v = θ1{(1− t)(θ1 − θ∞)µ− κ1(κ1 + θ0 + (1− t)(κ1 + θt))}/(kθ∞). (A.10)

Note that the second-order differential equation for the function y1 on the case of the matrices
in equations (A.8), (A.7), (A.9) is obtained as equation (3.5) by substituting equation (A.10).

On the case

A1 =
(

θ1 0
v 0

)
, A0 =

(
u0 + θ0 −w0

u0(u0 + θ0)/w0 −u0

)
,

At =
(

ut + θt −wt

ut(ut + θt)/wt −ut

)
, (A.11)

u0, ut are determined as

u0 =
1

θ∞ + θ1

(
kv

t
− κ2(κ2 + θt)

)
, ut =

−1
θ∞ + θ1

(
kv

t
+ κ2(κ2 + θ0)

)
, (A.12)

to satisfy equation (2.2). To realize the Fuchsian system on the line L∗1, we recall matrices A0,
A1, At determined by equations (2.5), (2.7), (2.8), transform (λ, µ)(= (q0, p0)) to (q2, p2) by
equation (3.2) and restrict matrix elements to q2 = 0. Then the matrices A0, A1 and At are
determined as equations (A.11), (A.7), (A.12), where

v = {(t− 1)(θ1 + θ∞)q2 − θ1(κ1 + θ1)((κ2 + θt) + (1− t)(κ2 + θ0))}/(kθ∞). (A.13)

Note that the second-order differential equation for the function ỹ1 = (z − 1)−1y1 on the case
of the matrices in equations (A.11), (A.7), (A.12) is obtained as equation (3.9) by substituting
equation (A.13).

We consider the case λ = t, i.e., the case a
(t)
12 = 0, a

(0)
12 6= 0, a

(1)
12 6= 0, (t+1)a(0)

12 +ta
(1)
12 +a

(t)
12 6= 0.

Then the matrix At is written as

At =
(

θt 0
v 0

)
or At =

(
0 0
v θt

)
,

and the matrices A0, A1 may be expressed as equation (2.5). To satisfy a12(z) = −w0/z −
w1/(z − 1) = k/(z(z − 1)), we have

w0 = k, w1 = −k. (A.14)

On the case

At =
(

0 0
v θt

)
, A0 =

(
u0 + θ0 −w0

u0(u0 + θ0)/w0 −u0

)
,

A1 =
(

u1 + θ1 −w1

u1(u1 + θ1)/w1 −u1

)
, (A.15)

u0, u1 are determined as

u0 = −θ0 +
1

θ∞ − θt
(kv − κ1(κ1 + θ1)) ,

u1 = −θ1 −
1

θ∞ − θt
(kv + κ1(κ1 + θ0)) , (A.16)
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to satisfy equation (2.2). To realize the Fuchsian system on the line Lt, we recall matrices A0,
A1, At determined by equations (2.5), (2.7), (2.8) and restrict matrix elements to λ = t. Then
the matrices A0, A1 and At are determined as equations (A.15), (A.14), (A.16), where

v = θt{t(t− 1)(θt − θ∞)µ− κ1(t(κ1 + θ0) + (t− 1)(κ1 + θ1))}/(kθ∞). (A.17)

Note that the second-order differential equation for the function y1 on the case of the matrices in
equations (A.15), (A.14), (A.16) is obtained as equation (3.6) by substituting equation (A.17).

On the case

At =
(

θt 0
v 0

)
, A0 =

(
u0 + θ0 −w0

u0(u0 + θ0)/w0 −u0

)
,

A1 =
(

u1 + θ1 −w1

u1(u1 + θ1)/w1 −u1

)
, (A.18)

u0, ut are determined as

u0 =
1

θ∞ + θt
(kv − κ2(κ2 + θ1)) , u1 =

−1
θ∞ + θt

(kv + κ2(κ2 + θ0)) , (A.19)

to satisfy equation (2.2). To realize the Fuchsian system on the line L∗t , we recall matrices A0,
A1, At determined by equations (2.5), (2.7), (2.8), transform (λ, µ)(= (q0, p0)) to (q3, p3) by
equation (3.2) and restrict matrix elements to q3 = 0. Then the matrices A0, A1 and At are
determined as equations (A.18), (A.14), (A.19), where

v = {t(1− t)(θt + θ∞)q3 − θt(κ1 + θt)(t(κ2 + θ1) + (t− 1)(κ2 + θ0))}/(kθ∞). (A.20)

Note that the second-order differential equation for the function ỹ1 = (z− 1)−1y1 on the case of
the matrices in equations (A.18), (A.14), (A.19) is obtained as equation (3.10) by substituting
equation (A.20).

We consider the case λ = ∞, i.e., the case a
(0)
12 6= 0, a

(1)
12 6= 0, a

(t)
12 6= 0, (t + 1)a(0)

12 + ta
(1)
12 +

a
(t)
12 = 0. We can set A0, A1, At as equation (2.5) and we determine u0, u1, ut, w0, w1, wt to

satisfy equation (2.2) and

a12(z) = −w0

z
− w1

z − 1
− wt

z − t
=

k

z(z − 1)(z − t)
.

Then we have

w0 = −k/t, w1 = k/(t− 1), wt = −k/(t(t− 1)), (A.21)

and other relations are written as

u0(u0 + θ0)/w0 + u1(u1 + θ1)/w1 + ut(ut + θt)/wt = 0,

u0 + θ0 + u1 + θ1 + ut + θt = −κ1, −u0 − u1 − ut = −κ2.

We solve the equation for u0, u1, ut by adding one more relation −(u1 + θ1 + t(ut + θt)) = l. We
have

u0 = −θ0 − κ1 +
l̃

tθ∞
, u1 = −θ1 +

l̃ − θ∞l

(1− t)θ∞
, ut = −θt +

l̃ − tθ∞l

t(t− 1)θ∞
,

l̃ = l2 + (θ1 + tθt)l + tκ1(κ1 + θ0). (A.22)
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The second-order differential equation for the function y1 is written as

d2y1

dz2
+
(

1− θ0

z
+

1− θ1

z − 1
+

1− θt

z − t

)
dy1

dz
+

κ1(κ2 + 2)z − q

z(z − 1)(z − t)
y1 = 0,

q = l(θ∞ − 1) + κ1(t(κ2 + θt + 1) + κ2 + θ1 + 1).

To realize the Fuchsian system on the line L∞, we recall matrices A0, A1, At determined by
equations (2.5), (2.7), (2.8), transform (λ, µ)(= (q0, p0)) to (q∞, p∞) by equation (3.2), replace k
by −kq∞ and restrict matrix elements to q∞ = 0. Then the matrices A0, A1 and At are
determined as equations (2.5), (A.21), (A.22), where

l = p∞.

We have observed that Fuchsian systems on the lines L0, L∗0, L1, L∗1, Lt, L∗t , L∞ are realized
by Fuchsian systems for the case λ = 0, 1, t,∞. Here the case L∗∞ is missing. In fact this case
does not simply correspond with the Fuchsian system as equation (2.1), because we have

u0 =
1

tθ∞

1
p2
4

+ O
(
p−1
4

)
, u1 =

1
(1− t)θ∞

1
p2
4

+ O
(
p−1
4

)
,

ut =
1

t(t− 1)θ∞
1
p2
4

+ O
(
p−1
4

)
,

as p4 → 0 in the coordinate (q4, p4) in equation (3.2), although we can restrict the second-order
differential equation for y1 to p4 = 0 as equation (3.11).
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