Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 028, 27 pages      arXiv:0810.0184
Contribution to the Special Issue on Deformation Quantization

Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

Ian M. Musson a, Georges Pinczon b and Rosane Ushirobira b
a) Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
b) Institut de Mathématiques de Bourgogne, Université de Bourgogne, B.P. 47870, F-21078 Dijon Cedex, France

Received October 01, 2008, in final form February 25, 2009; Published online March 07, 2009

We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.

Key words: Hochschild cohomology; deformation theory; Clifford algebras; Weyl algebras; Clifford-Weyl algebras; parastatistics.

pdf (411 kb)   ps (255 kb)   tex (33 kb)


  1. Alev J., Farinati M.A., Lambre T., Solotar A.L., Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini, J. Algebra 232 (2000), 564-577.
  2. Arnal D., Benamor H., Pinczon G., The structure of sl(2,1)-supersymmetry: irreducible representations and primitive ideals, Pacific J. Math. 165 (1994), 17-49.
  3. Arnaudon D., Bauer L., Frappat L., On Casimir's ghost, Comm. Math. Phys. 187 (1997), 429-439, q-alg/9605021.
  4. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), 61-110.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. II. Physical applications, Ann. Physics 111 (1978), 111-151.
  5. Behr E.J., Enveloping algebras of Lie superalgebras, Pacific J. Math. 130 (1987), 9-25.
  6. Djokovic D.Z., Hochschild G., Semisimplicity of 2-graded Lie algebras. II, Illinois J. Math. 20 (1976), 134-143.
  7. Etingof P., Ginzburg V., Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243-348, math.AG/0011114.
  8. Flato M., Fronsdal C., Parastatistics, highest weight osp(N,∞) modules, singleton statistics and confinement, J. Geom. Phys. 6 (1989), 293-309.
  9. Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
  10. Gerstenhaber M., Schack D.S., Algebraic cohomology and deformation theory, in Deformation Theory of Algebras and Structures and Applications, Editors M. Hazewinkel and M. Gerstenhaber, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1988.
  11. Gerstenhaber M., On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103.
  12. Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
  13. Lesimple M., Pinczon G., Deformations of the metaplectic representations, J. Math. Phys. 42 (2001), 1887-1899.
  14. Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, Vol. 301, Springer-Verlag, Berlin, 1992.
  15. McConnell J.C., Robson J.C., Noncommutative Noetherian rings. With the cooperation of L.W. Small, revised ed., Graduate Studies in Mathematics, Vol. 30, American Mathematical Society, Providence, RI, 2001.
  16. Montgomery S., Constructing simple Lie superalgebras from associated graded algebras, J. Algebra 195 (1997), 558-579.
  17. Musson I.M., Some Lie superalgebras associated to the Weyl algebras, Proc. Amer. Math. Soc. 127 (1999), 2821-2827.
  18. Palev T., Para-Bose and para-Fermi operators as generators of orthosymplectic Lie superalgebras, J. Math. Phys. 23 (1982), 1100-1102.
  19. Palev T., Algebraic structure of the Greens's ansatz and its q-deformed analogue, J. Phys. A: Math. Gen. 27 (1994), 7373-7385, hep-th/9406066.
  20. Pinczon G., The enveloping algebra of the Lie superalgebra osp(1,2), J. Algebra 132 (1990), 219-242.
  21. Pinczon G., On two theorems about symplectic reflection algebras, Lett. Math. Phys. 82 (2007), 237-253.
  22. Pinczon G., Ushirobira R., New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology, J. Lie Theory 17 (2007), 633-667, math.RT/0507387.
  23. Pinczon G., Ushirobira R., Supertrace and superquadratic Lie structure on the Weyl algebra, and applications to formal inverse Weyl transform, Lett. Math. Phys. 74 (2005), 263-291, math.RT/0507092.
  24. Samelson H., Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, no. 23, Van Nostrand Reinhold Co., New York - London - Melbourne, 1969.
  25. Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in Mathematics, Vol. 716, Springer-Verlag, Berlin, 1979.
  26. Sridharan R., Filtered algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100 (1961), 530-550.
  27. Sternheimer D., Quantization is deformation, Contemp. Math. 391 (2005), 331-352.
  28. Wigner E.P., Do the equations of motion determine the quantum mechanical commutation relations?, Phys. Rev. 77 (1950), 711-712.

Previous article   Next article   Contents of Volume 5 (2009)