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Abstract. Recently, Galajinsky, Lechtenfeld and Polovnikov proposed an elegant group-
theoretical transformation of the generic conformal-invariant mechanics to the free one.
Considering the classical counterpart of this transformation, we relate this transformation
with the Weil model of Lobachewsky space.
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Since the middle of the seventies, after [1], much attention paid, in the field-theoretical
literature, to the simple one-dimensional mechanical system given by the Hamiltonian

H =
p2

2
+

g2

2x2
. (1)

The reason was that this Hamiltonian, together with the generators

D = px, K =
x2

2
(2)

forms the conformal algebra so(1, 2) with respect to the canonical Poisson brackets {p, x} = 1:

{H,D} = 2H, {H,K} = D, {K, D} = −2K. (3)

Here D is the dilatation and K is the conformal boost. It was also observed, that the action func-
tional of this system is invariant under conformal transformations, up to total derivative term.
Thanks to this observation the above system presently known in literature as “one-dimensional
conformal mechanics”. Notice, however, that this system is conformal invariant in the field-
theoretical context only, since its action functional possesses a conformal symmetry provided
that the time reparametrizations are admitted. While the Hamiltonian (1) is not invariant under
conformal transformation, and the generators D, K do not constitute the conserved quantities,
see (3). The matter is that in classical mechanics the invariance transformations do not admit
the time reparametrizations. This seeming contradiction can be explained as follows: to ad-
mit the time reparametrizations, the initial nondegenerated Lagrangian should be replaced by
the degenerated reparametrization-invariant one. The former Lagrangian defines unconstrained
Hamiltonian system with two-dimensional phase space, and the latter one defines the constrained
Hamiltonian system with four-dimensional phase space, where the role of additional coordinate
plays the time parameter, and the constraint plays the role of Hamiltonian. The latter system
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is invariant under conformal transformations, given by the above generators properly extended
by the time-dependent terms. Reducing the system to the nondegenerate one, we arrive to the
above presented one-dimensional “conformal mechanics”. For the higher-dimensional mechani-
cal systems the conformal invariance the same explanation.

One-dimensional conformal mechanics (1) can be considered as a two-particle Calogero model
(with the excluded center of mass), one-dimensional multi-particle integrable system with inver-
se-square interaction [2]

HCalogero =
d+1∑
i=1

p2
i

2
+

d+1∑
i<j=1

g2

(xi − xj)2
, {pi, q

j} = δj
i . (4)

The quantum Calogero model is defined by the above Hamiltonian, where the classical mo-
menta pi are replaced by the respective operators p̂i = −ı∂/∂xi, and the coupling constant g2 is
replaced by g(g− 1). This model has attracted much attention due to numerous applications in
a wide area of physics, as well as due to a rich internal structure (see, e.g., the recent review [3]
and references therein). Already in the pioneering paper [2] it was observed that the spectrum
of the Calogero model with an additional oscillator potential is similar to the spectrum of free
N -dimensional oscillator. It was claimed there that a similarity transformation to the free os-
cillator system may exist, at least, in part of the Hilbert space. However, this transformation
was written explicitly only decades after [4]. Later on Galaginsky, Lechtenfeld and Polovnikov
found the unitary transformation, defined by the SU(1, 1) group element [5], which maps the
Hamiltonian of the arbitrary conformal mechanics in the Hamiltonian of free particle (further
we shall refer it as GLP-transformation). This observation allowed them to build not only the
N = 2 supersymmetric Calogero model [6] but the N = 4 superconformal Calogero model as
well [7]. In [8] GLP-transformation was extended to the higher-dimensional many-body sys-
tems with conformal Galilean symmetry. So any conformal mechanics can be mapped on to the
free system but the prize is the nonlocality of transformation suggested in [5]. An important
and nontrivial feature of the GLP-transformation is the presence of quantum corrections in the
transformed generator of conformal boosts: these corrections provide the possibility to built
N = 4 superconformal Calogero.

Recently, one of the authors (A.N.), in collaboration with T. Hakobyan, proposed a simple
classical analog of the decoupling transformation for the one-dimensional conformal mecha-
nics (1) (and for its N = 2k superconformal extension) [9]. Namely, they parameterized the
phase space of the one-dimensional conformal mechanics by the single complex coordinate

w =
p

x
+

ıg

x2
, Im w > 0 : {w, w̄} = − ı

g
(w − w̄)2 .

In other words, the phase space of the system was identified with the Klein model of the
Lobachevsky plane.

In this parametrization, the so(1, 2) generators (1), (2) define the Killing potentials (Hamil-
tonian generators of the isometries of the Kähler structure) of the Lobachevsky plane given by
the following metric and potential

ds2 = − gdwdw̄

(w̄ − w)2
, K = g log ı(w̄ − w). (5)

Explicitly,

H = ıg
ww̄

w − w̄
, D = ıg

w + w̄

w − w̄
, K = ıg

1
w − w̄

. (6)

The Kähler structure (5) is invariant under the discrete transformation

w → − 1
w

, (7)
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whereas the Killing potentials (6) transform s follows:

H → K, K → H, D → −D.

So in the one-dimensional case everything is nice and local. However hard to believe, this
transformation can be extended to the d > 1-dimensional conformal mechanics in a local (i.e.
canonical) way. The discussion of this and related issues is the purpose of the present note.

For this purpose we, at first, introduce an appropriate “radial” coordinate and conjugated
momentum, so that the higher-dimensional system looks very similar to the one-dimensional
conformal mechanics. In that picture, the rest (“angular”) of the degrees of freedom are packed
in the Hamiltonian system on the (d−1)-dimensional sphere: it replaces the coupling constant g2

in the one-dimensional conformal mechanics, and defines the constant of motion of the is initial
conformal mechanics. Exploiting this observation we build, by the use of textbook integrable
systems on the spheres, some examples of integrable conformal mechanics. Then we relate, the
radial part of the d-dimensional conformal mechanics with the Klein model of the Lobachevsky
space, which is completely similar to the above-presented one-dimensional case. However we
find, that an analog of (7) transformation necessarily changes the “angular part” of the Poisson
brackets of the decoupling, i.e., is noncanonical one.

Let us consider the d-dimensional conformal mechanics defined by the following Hamiltonian
and symplectic structure:

ω = dp ∧ dr, H =
p2

2
+ V (r), where r · ∇V (r) = −2V (r).

This Hamiltonian together with the generators

D = p · r, K =
r2

2

forms the conformal algebra so(1, 2) (3). Here D defines the dilatation and K defines the
conformal boost, r = (x1, . . . , xd), p = (p1, . . . , pd), and the Poisson brackets are assumed to be
canonical {pi, x

j} = δj
i .

Extracting the radius r = |r| we can represent the above generators in the following form:

D = prr, K =
r2

2
, H =

p2
r

2
+

I

r2
, I ≡ J2

2
+ U, U ≡ r2V (r). (8)

Here pr = pr/r is the momentum conjugated to the radius {pr, r} = 1.
It is seen that the function U obeys the condition

r · ∇U = 0.

Introducing some spherical coordinates φα and their canonically conjugated momenta πα, we
get, that the function U is independent of the radius

∂U

∂r
= 0.

So, the function I(u), ua = (πα, φα) defines the constant of motion of the system

{H, I(u)} = 0.

Hence, the conserved quantity I defines the motion of particle on the (d−1)-dimensional sphere,
in the presence of potential U(φ), so that its phase space is the cotangent bundle of (d − 1)-
dimensional sphere, T ∗Sd−1. Parameterizing T ∗Sd−1 by the canonical variables ua, we can
represent this Hamiltonian system in the form(

T ∗Sd−1, ω0 = dπα ∧ dφα, I(u) = 1
2gαβ(φ)παπβ + U(φ)

)
. (9)
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where gαβ(φ) is the inverse metrics of the (d − 1)-dimensional sphere. It is clear, that the
integrable d-dimensional conformal mechanics defines the integrable (d− 1)-dimensional system
on the sphere, and vice versa. It deserves to be mentioned that the generators of conformal
algebra obey the equality:

4HK−D2 = 2I. (10)

Let us try to solve the equations of motion of the conformal mechanics in the parametrization
given by (8) and (9). Keeping in mind that pr = ṙ and fixing the values of the constants of
motion H = E and I = I0, we can immediately find the evolution of r,

t =
∫

dr√
2E − 2I0

r2

⇒ r2 =

 2Et2 +
I0

E
for E 6= 0,

2
√
−2I0t for E = 0

This procedure is completely to the one performed in the Landau and Lifshits textbook on
classical mechanics [10] for the one-dimensional systems and for the three-dimensional spherically
symmetric systems. The analyzes of the dynamics of the presented effective system on from the
initial conditions is also similar to those presented in [10]. Particulary, for I0 > 0 we get the
one-dimensional system with effectively repulsive force, and the energy E takes positive values
only. The case I0 < 0 leads to the one-dimensional system with with the “effectively attractive
force”, and the energy could takes both positive and negative values. In the latter case the range
of time could be finite, with corresponds to the “falling on the center” phenomenon.

The evolution of the angular part of the system is defined by the equations

dua

dt
= {ua,H} =

{ua, I(u)}
r2(t)

⇒ dua

dT
= {ua, I},

where T is the new evolution parameter

T = T (t) ≡
∫

dt

r2(t)

Hence, supposing that (9) is the integrable system and we have the solutions of its equations
of motion, ua = F a(T ), we can immediately write down the equations of motion of the initial
conformal mechanics

ua(t) = F a(T (t)).

So with the appropriate time reparametrization depending on the initial conditions of the system,
we can explicitly integrate its equations of motion.

Let us represent some examples of the systems of that sort.

Example 1. Adding an arbitrary constant κ to the Hamiltonian of the free particle on Sd−1

we get the system on Rd with the potential

V =
κ

r2
. (11)

More generally, since the addition of the constant to the initial Hamiltonian does not change its
integrability property, we can conclude that the adding this additional term (11) to the initial
conformal mechanics also preserves the integrability property.

The above-presented system is the simplest and most known example of conformal mechanics.
Nevertheless, minor modification of the initial system yields less trivial examples of conformal
mechanics.
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For example, one can consider the free particle on S2 moving in the presence of a constant
magnetic field. This system is still so(3) invariant. The respective three-dimensional system
describe the particle moving in the field of the Dirac monopole.

Similarly, the free-particle moving on S4 in the presence of the BPST instanton, posses-
ses so(5) symmetry. The respective five-dimensional conformal mechanics describes the particle
on R5 interacting with Yang monopole.

Example 2. The (d− 1)-dimensional spherical (Higgs) oscillator is defined (up to constant) by
the potential [11]

VHiggs =
ω2 tan2 θ

2
.

It has (d − 1)2 constants of motions defining the nonlinear deformation of su(d − 1) algebra.
The corresponding conformal mechanics is given by the potential

Vconf =
ω2

2x2
d

+
ω2

2r2
,

and has (d−1)2+1 constants of motion. Note that this system loses its exact solvability property
in the presence of the monopole (for d = 3) and BPST instanton (for d = 5) fields.

Example 3. The (d−1)-dimensional spherical Coulomb system given by the potential VSch-Coul=
γ cot θ was suggested by Schrödinger [12]. It has (d− 2)(d− 3)/2 constants of motion defining
the nonlinear deformation of the symmetry algebra of the Coulomb system. So the respective
d-dimensional conformal mechanics has (d− 2)(d− 3)/2 + 1 constants of motion and is given by
the potential

V = γ
xd

r2
√

r2 − x2
d

.

Let us mention the existence of the integrable spherical analogs of the two-center Coulomb
system [13] of the anisotropic oscillator, as well as the integrable spherical analog of the Coulomb
system in the constant electric field [14]. By the use of these systems we can construct the
respective integrable conformal mechanical models.

Example 4. The (d + 1)-particle Calogero model defined by the Hamiltonian (4) can also be
represented in the proposed form. Since this system is translation-invariant, one can transit to
the center-of mass- coordinate frame, reducing the initial d-dimensional system to the (d − 1)-
dimensional one. The two-particle Calogero model results, upon excluding the center of mass,
in the one-dimensional conformal mechanics given by Hamiltonian (1). In the three- and more
particle case the resulted system is more complicated. Splitting its radial and angular parts we
get the integrable system on the (d−1)-dimensional sphere, interacting with the (d−1)(d−2)/2
force centers by the Higgs oscillators law. This centers are located on the sphere in the special
order. For example, for the three-particle Calogero system we have three force centers on the
circle, with the 2π/3 angles between them. The four-particle Calogero model yields the system on
the two dimensional sphere, with the force centers located at the vertices of cuboctahedron [15].

Let us also mention the recent paper [16], where the representation (8) has been used for the
construction of N = 4 superconformal extension of the three-dimensional conformal mechanics
with the arbitrary positive function U(u), including, as a particular cases, the tree-particle
Calogero models of various types.
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Now let us consider the analog of decoupling transformation of one-dimensional conformal
mechanics, given by (7) in the higher-dimensional case. We shall use the representation of con-
formal mechanics given by (8). As we have already mentioned, the conserved quantity I2 defines
the motion of particle on the (d − 1)-dimensional sphere in the presence of the potential U , so
that its phase space is the cotangent bundle of (d − 1)-dimensional sphere, T ∗Sd−1. Parame-
terizing T ∗Sd−1 by the canonical variables ua = (πα, φα), we can represent this Hamiltonian
system in the form given by (9).

Similarly to the one-dimensional case [9], we introduce, instead of the radius r and its con-
jugated momentum pr, the following complex variable (we restrict ourselves, for simplicity, to
a particular case I > 1):

w =
pr

r
+

ı
√

2I

r2
≡ D + ı

√
2I

2K
, Im w > 0.

This complex variable obeys the following Poisson bracket relation

{w, w̄} = − ı√
2I(u)

(w − w̄)2 . (12)

Taking into account equality (10) we can write

H = ı
√

2I(u)
ww̄

w − w̄
, D = ı

√
2I(u)

w + w̄

w − w̄
, K = ı

√
2I(u)

w − w̄
, (13)

Now, completely similarly to the one-dimensional case, described in the introduction, we can
define the decoupling transformation

w → − 1
w

: H =
p2

r

2
+

I

r2
→ K =

r2

2
, (14)

and K → −H. Keeping in mind the expressions (8), let us represent the transformed coordi-
nate w̃ as follows

w̃ ≡ − r̃

p̃r
+ ı

√
2I(u)
p̃2

r

.

In that case, the transformation (14) yields the following transformation of the radius and
conjugated momentum. In the initial coordinates this transformation looks like

p̃r = ±
√

p2
r + 2I/r2 =

√
2H, r̃ = ± prr√

p2
r + 2I/r2

= ± D
2
√
H

. (15)

Hence, everything looks completely similar to the one-dimensional case.
Let us notice that the transformed Hamiltonian K does not contain any information on the

specific system. Also, the obtained transformation (15) can be written without refereeing to
the internal structure of the Hamiltonian. The only additional constraint is given by (10).
The matter is that in our representation the essential information on the system is encoded in
the Poisson brackets which depend on the “spherical” Hamiltonian I and is explicitly defined
by the use of the equations of motion. Indeed, the Poisson brackets are defined not only by
relation (12), but also by the following ones:

{ua, ub} = ωab(u), {ua, w} = (w − w̄)
V a(u)

2I
, {ua, w̄} = (w − w̄)

V a(u)
2I

,

where V a = {ua, I(u)} are the equations of motion of the spherical system (9), and ωab(u) are
its the Poisson brackets.
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The symplectic structure of the conformal mechanics can be represented as follows:

Ω = −ı

√
2I(u)dw ∧ dw̄

(w̄ − w)2
+

(dw + dw̄) ∧ d
√

2I(u)
ı(w̄ − w)

+
1
2
ωabdua ∧ dub,

while the local one-form defining this symplectic structure reads

Ω = dA, A = ı
√

2I(u)
dw + dw̄

ı(w − w̄)
+ A0(u), dA0 =

1
2
ωabdua ∧ dub.

It is convenient to represent these forms as follows:

Ω = −ı

√
2I(u)dw ∧ dw̄

(w̄ − w)2
− ı

w + w̄

w̄ − w
d log(w + w̄) ∧ d

√
2I(u) +

1
2
ωabdua ∧ dub,

A = −ı
√

2I(u)
w + w̄

w̄ − w
d log(w + w̄) + A0(u).

It is seen that transformation (14) does not preserves the symplectic structure, i.e., it is not
a canonical transformation for the generic d > 1-dimensional conformal mechanics. To make
the transformation canonical, we have to admit the time reparametrizations and to mix the
“angular” coordinates ua with the “radial” one given by w. This means, that we can’t make the
decoupling transformation canonical in the strong sense (assuming preservation of the symplectic
structure dp∧dr). But the decoupling transformation could be extended to the “false” canonical
transformation (in the sense of [10]), which assumes the preservation of the contact structure
pdr − Hdt and, consequently, of the Hamiltonian equations of motion. The discussion of the
difference between these definitions can be found in [17].

Remark. Considering the decoupling transformation of conformal mechanics, we restricted
ourself by the particular case I > 0. For the I < 0 case the discussion and conclusions are
very similar former one. We should simply replace ı

√
2I by

√
−2I. In that case w and w

become real variables, and the symplectic structure can not be related with the Kähler structure.
Consequently, the generators (13) can not be interpreted as a Killing potentials.

Straightforward transition to the quantum mechanics via canonical quantization is ill defined
procedure for the presented picture. The relevant quantization scheme for the one-dimensional
conformal mechanics is the geometric quantization (which is well-defined procedure for the
quantization on Lobachevsky space). Even in this simplest case on quantum mechanical level
we shall get some new peculiarities, when consider the decoupling transformation. Namely, the
inversion procedure would change the range of validity of the wavefunction. In other worlds, it
will define the unitary transformation for the part of the Hilbert space of the initial system only.
One can expect, that in the d > 1 dimensional case we must deal similar to the one-dimensional
case, with the radial part, encoded in w coordinate. On the other hand in in our construction
the main role is given to the square root from the “spherical” Hamiltonian,

√
I. But taking

the “square root” from the quantum-mechanical operator is dangerous. One can, seemingly, to
avoid it for the class of quantum spherical Hamiltonians, which are factorisable ones. In that
case the operator

√
I will be just the linear operator in the canonically quantized system. This

will yields, obviously, nontrivial quantum corrections, observed in [5].
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