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1 Introduction

In this work Exterior Differential Systems (EDS) are formulated for abelian and SU(2)-gauge
theories in 3 to 6 dimensions, beginning with Maxwell vacuum electrodynamics and SU(2)-
Yang–Mills theory in 4 dimensions. The generalization to larger groups and n dimensions
becomes apparent. The results are new in that the Cartan integer character tables are explicitly
calculated, showing the EDS’ to be well posed field theories. Cartan characters yield the numbers
of evolution equations, of first order (second order, etc.), of constraint equations (or integrability
conditions), and of gauge degrees of freedom; well posed EDS’ allow systematic derivation of
isovectors and similarity solutions, conservation laws and prolongations.

An EDS for vacuum Maxwell theory in 4 dimensions has been set on a 14 dimensional
manifold [1, 2, 3] with variables Ai, Fij = −Fji, xi, i = 1, 2, 3, 4. Its generalization to Yang–
Mills SU(2), in terms of 34 variables Aa

i , F
a
ij = −F a

ji, x
i, i = 1, 2, 3, 4, a = 1, 2, 3 was also

partially formulated in the first two of these references. An analogous EDS for vacuum general
relativity was more recently found, and Cartan characters and conservation laws calculated for
both it and vacuum Maxwell theory [4, 3]. These EDS’ are generated by sets of “torsion” 2-forms
and dynamic 3-forms, and these factor the terms of a Cartan–Poincaré (or multisymplectic) 5-
form dΛ expressing the underlying variational principle. The generalized EDS’ in n dimensions
to be given in Sections 2 and 3 will follow this structure, using torsion 2-forms and (n−1)-forms.

It should be noted that this approach to finding a Cartan n-form Λ, or Lagrangian density,
for a field theory differs from one that constructs a Cartan–Poincaré form dΛ using “contact”
1-forms and dynamic n-forms [5, 6]. That approach has been carefully worked out as “multi-
contact” geometry [7]. In 4-dimensional Maxwell theory, e.g., the multicontact EDS is set on
a 24 dimensional manifold, spanned by four potential fields Ai, 16 fields Ai

.j and the xi. The
Cartan characteristic integer table is quite different.

The Cartan forms and EDS’ in this work were manipulated and checked algebraically using
the MATHEMATICA suite of programs AVF (Algebra Valued Forms) written by the late

?This paper is a contribution to the Special Issue “Élie Cartan and Differential Geometry”. The full collection
is available at http://www.emis.de/journals/SIGMA/Cartan.html
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H.D. Wahlquist [8]. The integer characters were calculated using his Monte Carlo program
characters.m, which assigns random integer values to unknown components of successively cal-
culated vectors spanning integral manifolds of an EDS, vectors satisfying the nested linear equa-
tions of Cartan–Kuranishi integration theory. After three or so of these are calculated, using
integer arithmetic, the new vector components solved for become rational numbers with scores
of digits, and the consequent calculation of the ranks of the resulting matrices (and so the integer
characters) is absolutely robust. (In principle of course this program could be rewritten to use
the first few hundred primes instead of random integers, making the calculation of characters
exact.)

In 2003 Wahlquist circulated on CD a final version of his principal MATHEMATICA note-
books, with documentation and demonstrations, as “AVF Programs”. This is now available from
the SIGMA web-site: http://www.emis.de/journals/SIGMA/2008/063/Wahlquist2003.zip.

2 Maxwell and Yang–Mills

We will be generalizing the EDS and Cartan form for the vacuum Maxwell equations; these are
most conveniently written using a 2-form F = 1

2Fijdx
i ∧ dxj and a dual 2-form ∗F = 1

4Fijdx
k ∧

dxlεij..kl involving the fields and a 1-form A = Aidx
i coding the potentials. i, j = 1, . . . , 4,

and indices are raised/lowered with the Lorentz metric. The EDS is generated [3] by a 2-form
θ = dA− F , its closure dθ and another 3-form ψ = −d ∗ F . The Cartan characters are s0 = 0,
s1 = 1, s2 = 3, s3 = 5, s4 = 1. The genus g = 4 (the dimension of the maximal regular integral
manifold, or solution), and the dxi are in involution (so independent variables in the PDE.)
We summarize this well-posed structure by writing 14[0,1,3,5]4+1. The last integer, s4, is the
number of arbitrary functions or gauge freedom in a solution. There are no Cauchy vectors, so
Cartan’s test for well-posedness requires that the first integer equals the sum of the rest.

The Cartan–Poincaré form for this EDS is

dΛ = θ ∧ ψ. (1)

That this outer product is indeed closed as we have written follows from a direct computation
that d(θ ∧ ψ) = 0. This in turn is true because

dF ∧ d ∗ F = 0

which is nothing else than dFij ∧ dFij = 0. Integrating equation (1) by parts, we take

Λ = − ∗ F ∧ dA+ 1
2F ∧ ∗F.

This Cartan form corresponds to the Lagrangian density for Maxwell theory used by field theo-
rists [9, page 98, equation (9.13)].

The generalization to Yang–Mills theory in 4 dimensions is of course well known. Its form is
nicely exposed when written as an EDS. Structure constants of an m-dimensional Lie group γa

bc,
a, b, . . . = 1, . . . ,m are used, taken in a basis where these are completely antisymmetric (γa

bc =
−γa

cb = γb
ca = γc

ab) and we take γ1
23 = 1. Quadratically nonlinear terms are introduced consis-

tently coupling indexed variables Aa
i and F a

ij . In the following we consider only the case m = 3,
which is SU(2). We define 1-forms and 2-forms

Aa = Aa
i dx

i,

F a = 1
2F

a
ijdx

i ∧ dxj ,

∗ Fa = 1
4F

a
ijdx

k ∧ dxlεij..kl
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and now set

θa = dAa − F a + 1
8γ

a
bcA

b ∧Ac,

ψa = −d ∗ Fa − 1
4γ

c
abA

b ∧ ∗Fc.

The EDS in 34 variables is generated by the three 2-forms θa, three 3-forms dθa and three
additional 3-forms ψa. That this EDS is closed follows from calculating

dψa = −1
4γ

c
abA

b ∧ ψc − 1
4γ

c
abθ

b ∧ ∗Fc,

so dψa are in the EDS (the essential identity in this is γc
ab ∗ Fc ∧ F b = 0).

The Cartan–Poincaré form is now

dΛ = θa ∧ ψa

and it can be explicitly integrated to take

Λ = − ∗ Fa ∧ dAa + 1
2F

a ∧ ∗Fa − 1
8γ

c
abA

a ∧Ab ∧ ∗Fc.

A possibly new result is a calculation of the Cartan character table. We find

34[0, 3, 9, 15]4 + 3

showing this theory to be well-posed, with 3 degrees of gauge freedom.

3 Generalization to other dimensions

All the equations of Section 2 can be taken as they stand in any number of spacetime dimensions,
i, j = 1, . . . , n. We need only redefine the dual field form as an (n− 2)-form

∗Fa = 1
2(n−2)!F

a
ijdx

k ∧ dxl ∧ · · · ∧ dxnεij..kl...n.

The ψa are now (n − 1)-forms. We have explicitly verified this generalization, and calculated
the Cartan characters for theories through n = 6, showing the EDS’ to be well-posed. These
results are summarized in Table 1, and the pattern for higher dimensions is apparent.

Table 1. Calculated Cartan characters for Maxwell and SU(2)-Yang–Mills theories in n dimensions. The
characters s0, . . . , sn−1 are given in brackets [ ], followed by n. The preceding number is the dimension
of the manifold where the EDS is set. The last number is sn, the gauge freedom.

Maxwell characters in n dimensions

9[0,2,3]3 + 1
14[0,1,3,5]4 + 1
20[0,1,2,4,7]5 + 1
27[0,1,2,3,5,9]6 + 1

SU(2)-Yang–Mills characters in n dimensions

21[0,6,9]3 + 3
34[0,3,9,15]4 + 3
50[0,3,6,12,21]5 + 3
69[0,3,6,9,15,27]6 + 3
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