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Abstract. We prove an explicit formula for a projection of singular vectors in the Verma
module over a rank 2 Kac–Moody Lie algebra onto the universal enveloping algebra of the
Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general
but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986),
no. 2, 103–113]. In the simpler case of A1

1 the formula was obtained in [Fuchs D., Funct.
Anal. Appl. 23 (1989), no. 2, 154–156].
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1 Introduction

Let G(A) be the complex Kac–Moody Lie algebra corresponding to an n × n symmetrizable
Cartan matrix A, let N−,H, N+ ⊂ G(A) be subalgebras generated by the groups of standard
generators: fi, hi, ei, i = 1, . . . , n. Then G(A) = N− ⊕ H ⊕ N+ (as a vector space), the Lie
algebras N− and N+ are virtually nilpotent, and H is commutative. Let λ : H −→ C be a linear
functional and let M be a G(A)-module. A non-zero vector w ∈M is called a singular vector of
type λ if gw = 0 for g ∈ N+ and hw = λ(h)w for h ∈ H. Let

Jλ = {α ∈ U(N−)| ∃ a G(A)-module M and a singular vector w ∈M

of type λ such that αw = 0}.

Obviously Jλ is a left ideal of U(N−). It has a description in terms of Verma modules M(λ).
Let Iλ be a one-dimensional (H ⊕ N+)-module with hu = λ(h)u, gu = 0 for g ∈ N+ and

arbitrary u ∈ Iλ. The Verma module M(λ) is defined as the G(A)-module induced by Iλ; as
a U(N−)-module, M(λ) is a free module with one generator u; this “vacuum vector” u is, with
respect to the G(A)-module structure, a singular vector of type λ. It is easy to see that M(λ)
has a unique maximal proper submodule and this submodule L(λ) is, actually, Jλu.

This observation demonstrates the fundamental importance of the following two problems.

1. For which λ is the module M(λ) reducible, that is, L(λ) 6= 0?

2. If M(λ) is reducible, then what are generators of L(λ) (equivalently, what are generators
of Jλ)?

Problem 1 is solved, in a very exhaustive way, by Kac and Kazhdan [5]. They describe
a subset S ⊆ H∗ such that the module M(λ) is reducible if and only if λ ∈ S; this subset is
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a countable union of hyperplanes. (See a precise statement in Section 2 below.) Actually, λ ∈ S
if and only if M(λ) contains a singular vector not proportional to u.

A formula for such a singular vector in a wide variety of cases is given in the work of Feigin,
Fuchs and Malikov [6]. This formula is short and simple, but it involves the generators fi

raised to complex exponents; when reduced to the classical basis of U(N−) the formula becomes
very complicated (as shown in [6] in the example G(A) = sln). There remains a hope that the
projection of these singular vectors onto reasonable quotients of U(N−) will unveil formulas that
possess a more intelligible algebraic meaning, and this was shown to be the case by Fuchs with
the projection over the algebra A1

1 into U(sl2) and U(H), where H is the Heisenberg algebra [3],
work which took its inspiration from the earlier investigation of Verma modules over the Virasoro
algebra by Feigin and Fuchs [2].

In this note we extend these results by providing projections to U(sl2) and U(H) of the
singular vectors over the family of Kac–Moody Lie algebras G(A) of rank 2 (see Theorem 3 in
Section 4 and a discussion in Section 5). As in [3] and [2], our formulas express the result in the
form of an explicit product of polynomials of degree 2 in U(H) and U(sl2).

It is unlikely that this work can be extended to algebras of larger rank.

2 Preliminaries

Let A = (aij) be an integral n × n matrix with aij = 2 for i = j and aij ≤ 0 for i 6= j. We
assume that that A is symmetrizable, that is, DA = Asym, where D = [d1, . . . , dn] is diagonal,
di 6= 0, and Asym is symmetric. To A is associated a Kac–Moody Lie algebra G(A) defined in
the following way.
G(A) is a complex Lie algebra with the generators ei, hi, fi, i = 1, . . . , n and the re-

lations [hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, ej ] = δijhi, (ad ei)−aij+1ej = 0,
(ad fi)−aij+1fj = 0. There is a vector space direct sum decomposition G(A) = N− ⊕ H ⊕ N+

where N−,H, N+ ⊂ G(A) are subalgebras generated separately by {fi}, {hi}, {ei}. Actually,
H is a commutative Lie algebra with the basis {hi}. We introduce in H a (possibly, degenerate)
inner product by the formula 〈hi, hj〉 = diaij .

Fix an auxiliary n-dimensional complex vector space T with a basis α1, . . . , αn; Let Γ denote
a lattice generated by α1, . . . , αn, and let Γ+ be the intersection of Γ with the (closed) positive
octant. For an integral linear combination α =

∑n
i=1 miαi, denote by Gα the subspace of G(A)

spanned by monomials in ei, hi, fi such that for every i, the difference between the number of
occurrences of ei and fi equals mi. If α 6= 0 and Gα 6= 0, then α is called a root of G(A). Every
root is a positive, or a negative, integral linear combination of αi; accordingly the root is called
positive or negative (and we write α > 0 or α < 0). Obviously, N+ = ⊕α>0Gα, N− = ⊕α<0Gα.
Remark that Verma modules have a natural grading by the semigroup Γ+.

For α =
∑

kiαi, let hα =
∑

kid
−1
i hi. We can carry the inner product from H to T using

the formula 〈α, β〉 = 〈hα, hβ〉. If 〈α, α〉 6= 0, then we define a reflection sα : H∗ → H∗ by the
formula

(sαλ)(h) = λ(h)− 2λ(hα)
〈α, α〉

〈hα, h〉.

The similar formula

sαβ = β − 2〈α, β〉
〈α, α〉

α

defines a reflection sα : T → T . “Elementary reflections” si = sαi generate the action of the
Weyl group W (A) of G(A) in H∗ and in H. In H∗ we consider, besides the reflections sα the
reflections sρ

α, sρ
α(λ) = sα(λ+ρ)−ρ where ρ ∈ H∗ is defined by the formula ρ(hi) = 1, 1 ≤ i ≤ n.
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The Kac–Kazhdan criterion for reducibility of Verma modules M(λ), mentioned above, has
precise statement:

Theorem 1. M(λ) is reducible if and only if for some positive root α and some positive inte-
ger m,

(λ + ρ)(hα)− m

2
〈α, α〉 = 0. (1)

Moreover, if λ satisfies this equation for a unique pair α, m, then all non-trivial singular vectors
of M(λ) are contained in M(λ)mα.

For m and α satisfying this criterion, Feigin, Fuchs and Malikov [6] give a description for the
singular vector of degree mα in M(λ). In the case when α is a real root, that is, 〈α, α〉 6= 0, their
description is as follows. Let sα = siN · · · si1 be a presentation of sα ∈ W (A) as a product of
elementary reflections. For λ ∈ H∗, set λ0 = λ, λj = sij (λj−1 +ρ)−ρ for 0 < j ≤ N . Obviously,
the vector

−−−−→
λj−1λj is collinear to αij (or, rather, to 〈αij , 〉); let

−−−−→
λj−1λj = γj . Let α satisfies (for

some m) the equation (1). Then

F (sα;λ)u where F (sα;λ) = f−γN
iN
· · · f−γ1

i1

is a singular vector in M(λ)mα. Notice that the exponents in the last formula are, in general,
complex numbers. It is explained in [6] why the expression for F (sα;λ) still makes sense.

3 The case of rank two

In the case n = 2, a (symmetrizable) Cartan matrix given by

A =
(

2 −q
−p 2

)
,

where p > 0, q > 0. Since for pq ≤ 3, the algebra G(A) is finite-dimensional, we consider below
the case when pq ≥ 4.

Simple calculations show that sα1(α1) = −α1, sα1(α2) = pα1 + α2, sα2(α1) = α1 + qα2,
and sα2(α2) = −α2, and it is easy to check that the orbit of the root (1, 0) lies in the curve
qx2 − pqxy + py2 = q and the orbit of (0, 1) lies in qx2 − pqxy + py2 = p. (If pq < 4, these two
curves are hyperbolas sharing asymptotes, in the (degenerate) case of pq = 4, they are pairs of
parallel lines with a slope of q

2 .)
Define a sequence recursively by a0 = 0, a1 = 1, and an = san−1−an−2 where s2 = pq. Then

for σ2 = q
p we can calculate

(1, 0) = (a1, σa0),
s2((1, 0)) = (1, q) = (a1, σa2),
s1s2((1, 0)) = (pq − 1, q) = (a3, σa2),
s2s1s2((1, 0)) = (pq − 1, q(pq − 2)) = (a3, σa4).

More generally, the following is true.

Proposition 1. The orbit of (1, 0) consists of points

· · · (a2n−1, σa2n−2), (a2n−1, σa2n), (a2n+1, σa2n), (a2n+1, σa2n+2) · · ·

determined by the sequence {an} above; while the orbit of (0, 1) consists of points

· · · (σ−1a2n−2, a2n−1), (σ−1a2n, a2n−1), (σ−1a2n, a2n+1), (σ−1a2n+2, a2n+1) · · ·

for n ≥ 1.
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Proof. The proof is by induction on n. �

Obtaining explicit coordinates for the real orbits is straightforward in the affine case, because
of the simpler geometry. For pq > 4 an explicit description of the sequence {an} is possible using
an argument familiar to Fibonnaci enthusiasts:

Proposition 2. The nth term is

an =
1√

pq − 4

(√
pq +

√
pq − 4

2

)n

− 1√
pq − 4

(√
pq −

√
pq − 4

2

)n

.

Proof. Direct computation. �

With these real roots now labelled by the sequence {an}, we present the singular vectors
indexed by them in the Verma modules over G(A). Write λ = xλ1 + yλ2 where λi(hj) = δij , so
that λ(h1) = x and λ(h2) = y. Let us define the numbers Γk

1, Γk
2 by the formulas:

Γ2m
1 = q

m−1∑
i=0

(−1)i

(
2m− i− 1
2m− 2i− 1

)
(pq)m−i−1,

Γ2m
2 =

m−1∑
i=0

(−1)i

(
2(m− 1)− i

2(m− 1)− 2i

)
(pq)m−i−1,

Γ2m+1
1 =

m∑
i=0

(−1)i

(
2m− i

2m− 2i

)
(pq)m−i,

Γ2m+1
2 = p

m−1∑
i=0

(−1)i

(
2m− i− 1
2m− 2i− 1

)
(pq)m−i−1.

(Note that Γ0
1 = Γ0

2 = 0.)
The formula from [6] takes in our case the following form.

Theorem 2. For the algebra G(A) with Cartan matrix

A =
(

2 −p
−q 2

)
the singular vectors are as follows:

1. For the root α = (a2n−1, σa2n−2), with m ∈ N, and t ∈ C arbitrary,

F (sα;λ) = f

Γ4n−3
1 m

a2n−1
+Γ2n−1

2 t

1 f

Γ4n−4
1 m

a2n−1
+Γ2n−2

2 t

2 f

Γ4n−5
1 m

a2n−1
+Γ2n−3

2 t

1

· · · f
Γ2n
1 m

a2n−1
+Γ2

2t

2 fm
1 f

Γ2n−2
1 m

a2n−1
−Γ2

2t

2 · · · f
Γ2
1m

a2n−1
−Γ2n−2

2 t

2 f

Γ1
1m

a2n−1
−Γ2n−1

2 t

1

and the vector F (sα, λ)u is singular in M(λ) = M
(

m−Γ2n−1
1

Γ2n−1
1

− Γ2n−1
2 t, Γ2n−1

1 t− 1
)
.

2. For α = (a2n−1, σa2n),

F (sα;λ) = f

Γ4n
2 m

σ−1a2n
+Γ2n

2 t

2 f

Γ4n−1
2 m

σ−1a2n
+Γ2n−1

2 t

1 f

Γ4n−2
2 m

σ−1a2n
+Γ2n−2

2 t

2

· · · f
Γ2n+2
2 m

σ−1a2n
+Γ2

2t

2 fm
1 f

Γ2n
2 m

σ−1a2n
−Γ2

2t

2 · · · f
Γ3
2m

σ−1a2n
−Γ2n−1

2 t

1 f

Γ2
2m

σ−1a2n
−Γ2n

2 t

2

and the vector F (sα, λ)u is singular in M(λ) = M
(
Γ2n

2 t− 1,
m−Γ2n

2

Γ2n
2
− Γ2n

1 t
)
.
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3. For α = (σ−1a2n−2, a2n−1),

F (sα, λ) = f

Γ4n−2
2 m

a2n−1
+Γ2n−2

1 t

2 f

Γ4n−3
2 m

a2n−1
+Γ2n−3

1 t

1 f

Γ4n−4
2 m

a2n−1
+Γ2n−4

1 t

2

· · · f
Γ2n+1
2 m

a2n−1
+Γ1

1t

1 fm
2 f

Γ2n−1
2 m

a2n−1
−Γ1

1t

1 · · · f
Γ3
2m

a2n−1
−Γ2n−3

1 t

1 f

Γ2
2m

a2n−1
−Γ2n−2

1 t

2

and the vector F (sα, λ)u is singular in M(λ) = M
(
Γ2n−1

2 t− 1,
m−Γ2n−1

2

Γ2n−1
2

− Γ2n−1
1 t

)
.

4. For α = (σ−1a2n, a2n−1),

F (sα;λ) = f

Γ4n−1
1 m

σa2n
+Γ2n−1

1 t

1 f

Γ4n−2
1 m

σa2n
+Γ2n−2

1 t

2 f

Γ4n−3
1 m

σa2n
+Γ2n−3

1 t

1

· · · f
Γ2n+1
1 m

σa2n
+Γ1

1t

1 fm
2 f

Γ2n−1
1 m

σa2n
−Γ2n−3

1 t

1 · · · f
Γ2
1m

σa2n
−Γ2n−2

1 t

2 f

Γ1
1m

σa2n
−Γ2n−1

1 t

1

and the vector F (sα, λ)u is singular in M(λ) =
(

m−Γ2n
1

Γ2n
1
− Γ2n

2 t, Γ2n
1 t− 1

)
.

Proof. It must be checked that the vectors given above actually correspond to the Feigin–
Fuchs–Malikov (FFM) procedure for obtaining singular vectors, and also that the Kac–Kazhdan
criterion for reducibility is satisfied. For λ = xλ1 + yλ2 and the reflection sα = siN · · · si1 (pro-
duct of simple reflections) the algorithm requires successive application of the transformations
sρ
1 := s1(λ + ρ)− ρ and sρ

2 := s2(λ + ρ)− ρ. One generates the list

λ0 = xλ1 + yλ2, λj = sij (λ
j−1 + ρ)− ρ

and the auxiliary sequence {
−−−−→
λj−1λj}j≥1. The algorithm then gives

F (sα;λ) = fθN
iN
· · · fθ1

i1
,

where
−−−−→
λj−1λj = −θjαij (here αij is the functional 〈hαij

, ·〉).
So we first need to know the decomposition of sα into elementary reflections for α in the

orbit of (1, 0) or (0, 1). Let Si(m) denote the word in H∗ beginning and ending with si, and
containing m si’s. For example, S1(3) = s1s2s1s2s1.

Lemma 1. For real α as above, sα is the word

(a2n−1, σa2n−2)←→ S1(2n− 1),
(a2n−1, σa2n)←→ S2(2n),

(σ−1a2n, a2n−1)←→ S1(2n),

(σ−1a2n−2, a2n−1)←→ S2(2n− 1).

Proof. This is an easy induction on n. �

The coefficients of collinearity θj have the following description.

Lemma 2. For λk = Λk
1λ1 + Λk

2λ2 we have

(i)
−−−−−−−−→
λ2n+1λ2n+2 = −(Λ2n+1

2 + 1)〈hα2 , ·〉,

(ii)
−−−−−−→
λ2nλ2n+1 = −(Λ2n

1 + 1)〈hα1 , ·〉.
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Proof. One easily computes that 〈hα1 , ·〉 = 2λ1 + qλ2, 〈hα2 , ·〉 = −pλ1 + 2λ2, and further that

sρ
1(xλ1 + yλ2) = (−x− 2)λ1 + (y + q(x + 1))λ2,

sρ
2(xλ1 + yλ2) = (x + p(y + 1))λ1 + (−y − 2)λ2.

Then for (i) it is verified that
−−→
λ1λ2 = −(y + qx + q + 1)(−pλ1 + 2λ2) = −(Λ1

2 + 1)〈hα2 , ·〉. For
n > 0,

λ2n+2 = sρ
2(s

ρ
1(λ

2n)) = sρ
2((−Λ2n

1 − 2)λ1 + (Λ2n
2 + qΛ2n

1 + q)λ2)

= (−Λ2n
1 − 2 + pΛ2n

2 + pqΛ2n
1 + pq + p)λ1 + (−Λ2n

2 − qΛ2n
1 − q − 2)λ2

while

λ2n+1 = sρ
1(λ

2n) = (−Λ2n
1 − 2)λ1 + (Λ2n

2 + qΛ2n
1 + q)λ2.

So
−−−−−−−−→
λ2n+1λ2n+2 = −(Λ2n

2 + qΛ2n
1 + q + 1)(−pλ1 + 2λ2). Since λ2n+1 = sρ

1(λ
2n) = (−Λ2n

1 − 2)λ1 +
(Λ2n

2 + qΛ2n
1 + q)λ2, we have −Λ2n+2

2 − 1 = −(Λ2n
2 + qΛ2n

1 + q + 1) as desired. The argument
for (ii) is similar. �

Let us put Γk = Γk
1x + Γk

2y. We will also need

Lemma 3.

(i) Γ2n+1 = pΓ2n − Γ2n−1,

(ii) Γ2n+2 = qΓ2n+1 − Γ2n.

Proof. These can be verified directly. �

We are now in a position to show by induction that the FFM-exponents correspond to the Γk

in the statement of Theorem 2. It suffices by the second lemma to show that

Γ2n+1 = Λ2n
1 + 1 and Γ2n+2 = Λ2n+1

2 + 1.

Making a change of variable x + 1→ x and y + 1→ y one can calculate that

−−→
λ0λ1 = −x〈hα1 , ·〉,
−−→
λ1λ2 = −(qx + y)〈hα2 , ·〉,
−−→
λ2λ3 = −((pq − 1)x + py)〈hα1 , ·〉,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

The FFM exponents are just the coefficients of these functionals with reversed sign. For the
base case of our induction, n = 0, observe that λ0 = (x−1)λ1 +(y−1)λ2, hence Λ0

1 +1 = x = Γ1

(using the binomial definition of Γ1), while Λ1
2 + 1 = y + qx since sρ

1(λ
0) = (−x − 1)λ1 + (y −

1 + qx)λ2, agreeing with the binomial sum Γ2 = y + qx.
Inductively assume that for some (n− 1) > 0

Γ2(n−1)+1 = Λ2n−2
1 + 1 and Γ2(n−1)+2 = Λ2n−1

2 + 1.

We need to show that

Γ2n+1 = Λ2n
1 + 1 and Γ2n+2 = Λ2n+1

2 + 1.
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Just observe that

Λ2n
1 + 1 = Λ2n−1

1 + p(Λ2n−1
2 + 1) + 1 = (Λ2n−1

1 + 1) + p(Λ2n−1
2 + 1)

= (−Λ2n−2
1 − 2 + 1) + p

[
Λ2n−2

2 + q(Λ2n−2
1 + 1) + 1

]
= −(Λ2n−2

1 + 1) + p
[
(Λ2n−2

2 + 1) + q(Λ2n−2
1 + 1)

]
= −Γ2n−1 + p(Λ2n−1

2 + 1) = −Γ2n−1 + pΓ2n = Γ2n+1,

where the last equality comes from Lemma 3 and the inductive hypothesis is used in the preceding
two lines. The same tack proves that Γ2n+2 = Λ2n+1

2 + 1.

We now know that the FFM-exponents are as given Theorem 2. It only remains to check
that the Kac–Kazhdan criterion (Theorem 1) is satisfied. For m and α satisfying this criterion,
[6] give the prescription for the singular vector F (sα;λ)u of degree mα in M(λ); so we need to
verify the existence of such α and m.

For α = aα1 + bα2 and λ = xλ1 + yλ2, hα = ad−1
1 h1 + bd−1

2 = a
ph1 + b

qh2, so the criterion can

be restated as 2(xλ1 + yλ2 + ρ)
(

a
ph1 + b

qh2

)
= m〈aα1 + bα2, aα1 + bα2〉. After the calculations

this is

2
(

x
a

p
+ y

b

q
+

a

p
+

b

q

)
= m

(
2a2

p
− 2ab +

2b2

q

)
or

(x + 1)
a

p
+ (y + 1)

b

q
= m

(
a2

p
− ab +

b2

q

)
.

So after change of variable x + 1→ x and y + 1→ y the Kac–Kazhdan criterion becomes

x
a

p
+ y

b

q
= m

(
a2

p
− ab +

b2

q

)
.

We show that the integral exponent of the centermost element in the singular vectors in the
statement of the theorem precisely meets the integrality requirement of the criterion. This is
a case by case check, and somewhat tedious and technical; let us verify it for roots of type
(a2n+1, σa2n), whose singular vector comprises 2n + 1 f1’s and 2n f2’s raised to appropriate
powers; the centermost exponent is then the 2n + 1-st coefficient of collinearity in the FFM
procedure, or what we have called Γ2n+1.

A remark, a lemma, and a corollary will show that Γ2n+1 does what it is supposed to.

Remark 1. qΓ2n+1
2 = pΓ2n

1 , as is transparent from the definitions of Γ2n and Γ2n+1.

The next lemma will relate the root sequence {an} to the exponents of the singular vectors.

Lemma 4. The following is true for n ≥ 0:

Γ2n+1
1 = a2n+1, Γ2n+2

1 = σa2n+2.

Proof. Induction on n. �

Corollary 1. Γ2n+1 = a2n+1x + p
q σa2ny.

Proof. Γ2n+1 = Γ2n+1
1 x+Γ2n+1

2 y = a2n+1x+Γ2n+1
2 y = a2n+1x+ p

q Γ2n
1 y = a2n+1x+ p

q ua2ny. �
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Finally the Kac–Kazhdan criterion for (a2n+1, ua2n) is

a2n+1
x

p
+ ua2n

y

q
= m

(
(a2n+1)2

p
− ua2na2n+1 +

(ua2n)2

q

)
or equivalently

a2n+1x +
p

q
ua2ny = m((a2n+1)2 − pua2na2n+1 +

p

q
(ua2n)2)

= m((a2n+1)2 − pua2na2n+1 +
p

q

q

p
(a2n)2) = m′ ∈ N

since a2n+1 and ua2n are integral (polynomial in p and q). But the left-hand side here is by
the corollary exactly the exponent of the centermost letter in the singular vector, which by the
formula given in the theorem is an integer; so the Kac–Kazhdan criterion is indeed satisfied in
this case. One can check in similar fashion that the remaining three cases also fit the integrality
requirement.

The singular vectors in the statement of the theorem appear as follows. The exponent of the
centermost vector in all four cases must be integral: setting this expression in x and y equal
to m one then solves for x (or y) in terms of m and y (respectively, x); t is then introduced as
a scalar multiple of y (resp., x) to minimize notational clutter. This completes the proof of the
theorem. �

4 Projections

We next obtain projections of the singular vectors into the Heisenberg algebra, where they
factor as products. While the theorem gives a simple and perhaps the most natural expression
for the singular vectors in terms of the Γk a change of variable is advantageous in the projection
and factoring of these vectors in the Heisenberg algebra. In each case this involves setting the
exponent of the vector immediately to the left of the centermost letter equal to a complex variab-
le α (which will then depend on n). For example the root γ = (u−1a4, a3) = (p(pq − 2), pq − 1)
has from the theorem the corresponding singular vector:

f
((pq)3−5(pq)2+6pq−1)m

q(pq−2)
+(pq−1)t

1 f
q((pq)2−4pq+3)m

q(pq−2)
+qt

2 f
(pq)2−3pq+1)m

q(pq−2)
+t

1 fm
2

× f
(pq−1)m
q(pq−2)

−t

1 f
qm

q(pq−2)
−qt

2 f
m

q(pq−2)
−(pq−1)t

1 .

Taking

α =
((pq)2 − 3pq + 1)m

q(pq − 2)
+ t

the singular vector becomes

f
(pq−1)α−pm
1 f qα−m

2 fα
1 fm

2 fpm−α
1 f

q(pm−α)−m
2 f

(pq−1)(pm−α)−pm
1

which can in turn be rewritten in terms of the Γk as:

f
Γ4

2α−Γ3
2m

1 f
Γ2

1α−Γ1
1m

2 f
Γ2

2α−Γ1
2m

1 fm
2 f

−Γ2
2α+Γ3

2m
1 f

−Γ2
1α+Γ3

1m
2 f

−Γ4
2α+Γ5

2m
1 .

Proposition 3. Under this change of variable the singular vectors take the following form:
1. For α = (a2n−1, σa2n−2) the corresponding F (sα;λ) is

f
Γ2n−1

2 α−Γ2n−2
2 m

1 f
Γ2n−3

1 α−Γ2n−4
1 m

2 f
Γ2n−3

2 α−Γ2n−4
2 m

1 f
Γ2n−5

1 α−Γ2n−6
1 m

2 f
Γ2n−5

2 α−Γ2n−6
2 m

1
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· · · fΓ3
1α−Γ2

1m
2 f

Γ3
2α−Γ2

2m
1 f

Γ1
1α−Γ0

1m
2 fm

1 f
−Γ1

1α+Γ2
1m

2 f
−Γ3

2α+Γ4
2m

1 f
−Γ3

1α+Γ4
1m

2

· · · f−Γ2n−3
2 α+Γ2n−2

2 m
1 f

−Γ2n−3
1 α+Γ2n−2

1 m
2 f

−Γ2n−1
2 α+Γ2n

2 m
1 .

2. For γ = (a2n−1, ua2n) the corresponding singular vector F (sγ ;λ) is

f
Γ2n−1

1 α−Γ2n−2
1 m

2

(
F (s(a2n−1,ua2n−2);λ

)
f
−Γ2n−1

1 α+Γ2n
1 m

2 .

3. For γ = (u−1a2n−2, a2n−1) the singular vector F (sγ ;λ) becomes

f
Γ2n−2

1 α−Γ2n−3
1 m

2 f
Γ2n−2

2 α−Γ2n−3
1 m

1 f
Γ2n−4

1 α−Γ2n−5
1 m

2 f
Γ2n−4

2 α−Γ2n−5
2 m

1 · · ·

f
Γ2

1α−Γ1
1m

2 f
Γ2

2α−Γ1
2m

1 fm
2 f

−Γ2
2α+Γ3

2m
1 f

−Γ2
1α+Γ3

1m
2 · · · f−Γ2n−2

2 α+Γ2n−1
2 m

1 f
−Γ2n−2

1 α+Γ2n−1
1 m

2 .

4. For γ = (u−1a2n, a2n−1) the singular vector is

f
Γ2n

2 α−Γ2n−1
2 m

1

(
F (s(u−1a2n−2,a2n−1)

;λ)
)
f
−Γ2n

2 α+Γ2n+1
2 m

1 .

Proof. This can be established by induction on the number of pairs transformed. �

We now project the singular vectors into the universal enveloping algebra of the three-
dimensional Heisenberg algebra H. Recall that this is generated by f1, f2, with [f1, f2] =: h,
[f1, h] = [f2, h] = 0. Thus, the projection U(N−)→ U(H) is the factorization over the (two-sided)
ideal generated by [f1, h], [f2, h].

Let Hu := f2f1+uh for u ∈ C. Observe that HuHv = HvHu, u, v ∈ C. The following relations
also hold in the Heisenberg (for positive integers, and hence for arbitrary complex numbers α,
β, u).

Lemma 5. For α, β, u ∈ C,

1) fα
2 Hu = Hu−αfα

2 ;

2) fβ
1 Hu = Hu+βfβ

1 ;

3) fα
1 fn

2 fn−α
1 = HαHα−1 · · ·Hα−(n−1);

4) fα
2 fn

1 fn−α
2 = H1−αH2−α · · ·Hn−α.

Proof. The calculations follow readily from the complex binomial formula given in [6]: for
g1, g2 ∈ G a Lie algebra, γ1, γ2 ∈ C, we have

gγ1
1 gγ2

2 = gγ2
2 gγ1

1 +
∞∑

j1=1

∞∑
j2=1

(
γ1

j1

)(
γ2

j2

)
Qj1j2(g1, g2)g

γ2−j2
2 gγ1−j1

1 ,

where
(
γ
j

)
= γ(j)

j! with γ(j) = γ(γ − 1) · · · (γ − j + 1) and the Lie polynomials Qj1j2 can be
calculated explicitly, for example using the recursion

Qj1j2(g1, g2) = [g1, Qj1−1,j2(g1, g2)] +
j2−1∑
v=0

(
j2

v

)
Qj1−1,v(g1, g2)[g2, . . . , [g2, [g2︸ ︷︷ ︸

j2−v

, g1]] . . . ]

with Q00 = 1 and Q0,v = 0 for v > 0. �
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Now set, for r, s ∈ N

Hr,s
0 = 1 (the empty product),

Hr,s
1 =

(Γ2
2−Γ0

1)m∏
k=1

H(−Γ2
2+Γ3

2−···±Γr
2)α+(−Γ1

1+Γ2
1−···±Γs

1)m +k.

The for j ≥ 1 define

Hr,s
2j =

(Γ2j
1 −Γ2j

2 )m∏
k=1

H
(Γ2j+1

2 −Γ2j+2
2 +···±Γr

2)α+(−Γ2j−1
1 +Γ2j

1 −···±Γs
1)m− (k−1)

,

Hr,s
2j+1 =

(Γ2j+2
2 −Γ2j

1 )m∏
k=1

H
(−Γ2j+2

2 +Γ2j+3
2 −···±Γr

2)α+(Γ2j
1 −Γ2j+1

1 +···±Γs
1)m +k

.

We will also need the following, not dissimilar, but warranting its own notation:

H̃r,s
0 = 1,

H̃r,s
1 =

(Γ2
2−Γ1

2)m∏
k=1

H(Γ1
1−Γ2

1+···±Γr
1)α+(Γ2

2−Γ3
2+···±Γs

2)m−(k−1).

For j ≥ 1 define

H̃r,s
2j =

(Γ2j+1
2 −Γ2j

2 )m∏
k=1

H
(−Γ2j

1 +Γ2j+1
1 −···±Γr

1)α+(Γ2j
2 −Γ2j+1

2 +···±Γs
2)m +k

,

H̃r,s
2j+1 =

(Γ2j+2
2 −Γ2j+1

2 )m∏
k=1

H
(Γ2j+1

1 −Γ2j+2
1 +···±Γr

1)α+(−Γ2j+1
2 +Γ2j+2

2 −···±Γs
2)m−(k−1)

.

Theorem 3. The singular vectors whose words F (sα;λ) were given in the preceding theorem
project to the Heisenberg algebra as the following products:

1. The singular vector corresponding to (a2n−1, ua2n−2) projects to
2n−2∏
w=1

H2n−1,2n−3
w f

(Γ2n−1
1 −Γ2n−2

1 )m
1 .

2. The singular vector corresponding to (a2n−1, ua2n) projects to
2n−1∏
w=1

H2n,2n−2
w f

(Γ2n
1 −Γ2n−1

1 )m
2 .

3. The singular vector for (u−1a2n−2, a2n−1) projects to
2n−2∏
w=1

H̃2n−2,2n−2
w f

(Γ2n
2 −Γ2n−1

2 )m
2 .

4. The singular vector for (u−1a2n, a2n−1) projects to
2n−1∏
w=1

H̃2n−1,2n−1
w f

(Γ2n+1
2 −Γ2n

2 )m
1 .

Proof. Induction on n. This is completely straightforward using the change of variables for the
singular vectors given in the proposition above. �
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5 Other projections

One might ask whether projections into other algebras, for instance into U(sl2), are equally
possible. A homomorphism from the universal enveloping algebra of N− to U(sl2) is defined
when p > 1 and q > 1. It is the factorization over the (two-sided) ideal generated by [h, f1]− f1

and [h, f2] + f2 (where, as before, h = [f1, f2]). Set, for u ∈ C,

Ju = f2f1 + uh− u(u− 1)
2

.

It can then be checked that for β ∈ C we have the following in U(sl2) (putting e = f1, f = f2) :

fβ
1 Ju = Ju+βfβ

1 , fβ
2 Ju = Ju−βfβ

2

as well as, for n ∈ N,

fβ
1 fn

2 fn−β
1 = JβJβ−1 · · · Jβ−(n−1),

fβ
2 fn

1 fn−β
2 = J1−βJ2−β · · · Jn−β,

fn
1 fn

2 = J1 · · · Jn.

These properties permit the formal manipulations that afford the factorization results we have
already detailed. Simply substitute J for H in the statement of the projection theorem.

6 Concluding remarks

In [3] it is observed that information about singular vectors of Verma modules can be used to
obtain information about the homologies of nilpotent Lie algebras. Namely, the differentials
of the Bernstein–Gel’fand–Gel’fand resolution BGG of C over N− (see [1]) are presented by
matrices whose entries are singular vectors in the Verma modules. Thus, if V is an N−-module
that is trivial over the kernel of the projection of U(N−) onto U(H) or U(sl2) considered above,
then our formulas give an explicit description of BGG⊗ V and Hom(BGG, V ).
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