Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 4 (2008), 055, 21 pages      arXiv:0807.2508
Contribution to the Special Issue on Deformation Quantization

Space-Time Diffeomorphisms in Noncommutative Gauge Theories

Marcos Rosenbaum, J. David Vergara and L. Román Juarez
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. Postal 70-543, México D.F., México

Received April 11, 2008, in final form June 25, 2008; Published online July 16, 2008

In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007), 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics) where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985), 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987), 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

Key words: noncommutativity; diffeomorphisms; gauge theories.

pdf (349 kb)   ps (222 kb)   tex (29 kb)


  1. Rosenbaum M., Vergara J.D., Juarez L.R., Canonical quantization, space-time noncommutativity and deformed symmetries in field theory, J. Phys. A: Math. Theor. 40 (2007), 10367-10382, hep-th/0611160.
  2. Isham C.J., Kuchar K.V., Representations of space-time diffeomorphisms. I. Canonical parametrized field theories, Ann. Physics 164 (1985), 288-315.
  3. Isham C.J., Kuchar K.V., Representations of space-time diffeomorphisms. II. Canonical geometrodynamics, Ann. Physics 164 (1985), 316-333.
  4. Kuchar K.V., Stone S.L., A canonical representation of space-time diffeomorphisms for the parametrized maxwell field, Classical Quantum Gravity 4 (1987), 319-328.
  5. Chaichian M., Kulish P.P., Nishijima K., Tureanu A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004), 98-102, hep-th/0408069.
  6. Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., A gravity theory on noncommutative spaces, Classical Quantum Gravity 22 (2005), 3511-3532, hep-th/0504183.
  7. Aschieri P., Dimitrijevic M., Meyer F., Wess J., Noncommutative geometry and gravity, Classical Quantum Gravity 23 (2006), 1883-1912, hep-th/0510059.
  8. Wess J., Einstein-Riemann gravity on deformed spaces, SIGMA 2 (2006), 089, 9 pages, hep-th/0611025.
  9. Vassilevich D.V., Twist to close, Modern Phys. Lett. A 21 (2006), 1279-1284, hep-th/0602185.
  10. Aschieri P., Dimitrijevic M., Meyer F., Schraml S., Wess J., Twisted gauge theories, Lett. Math. Phys. 78 (2006), 61-71, hep-th/0603024.
  11. Chaichian M., Tureanu A., Twist symmetry and gauge invariance, Phys. Lett. B 637 (2006), 199-202, hep-th/0604025.
  12. Chaichian M., Tureanu A., Zet G., Twist as a symmetry principle and the noncommutative gauge theory formulation, Phys. Lett. B 651 (2007), 319-323, hep-th/0607179.
  13. Banerjee R., Samanta S., Gauge symmetries on q-deformed spaces, J. High Energy Phys. 2007 (2007), no. 02, 046, 17 pages, hep-th/0611249.
  14. Rosenbaum M., Vergara J.D., Juárez L.R., Dynamical origin of the *q-noncommutativity in field theory from quantum mechanics, Phys. Lett. A 354 (2006), 389-395, hep-th/0604038.
  15. Kuchar K.V., Canonical quantization of gravity, in Relativity, Astrophysics and Cosmology, Editor W. Israel, Reidel Pub. Co., Dordrecht, Holland, 1973, 237-288.
  16. Kuchar K.V., Kinematics of tensor fields in hyperspace. II, J. Math. Phys. 17 (1976), 792-800.
  17. Dirac P.A.M., Lectures on quantum mechanics, Belfast Graduate School of Science, Yeshiva University New York, 1964.
  18. Kuchar K.V., Kinematics of tensor fields in hyperspace. III, J. Math. Phys. 17 (1976), 801-820.
  19. Chaichian M., Presnajder P., Shikh-Jabbari M.M., Tureanu A., Noncommutative gauge field theories: a no-go theorem, Phys. Lett. B 526 (2002), 132-136, hep-th/0107037.
  20. Arai M., Saxell S., Tureanu A., Uekusa N., Circumventing the no-go theorem in noncommutative gauge field theory, Phys. Lett. B 661 (2008), 210-215, arXiv:0710.3513.
  21. Bleecker D., Gauge theory and variational principles, Addison-Wesley Publishing Co., Reading, Mass., 1981.
  22. Blohmann Ch., Realization of q deformed space-time as star product by a Drinfeld twist, in Group 24: Physical and Mathematical Aspects of Symmetries, Proceedings of International Colloquium on Group Theoretical Methods in Physics (July 15-20, 2002, Paris), Editors J.P. Gazeau, R. Kerner, J.P. Antoine, S. Metens and J.Y. Thibon, IOP Conference Series, Vol. 173, 2003, 443-446, math.QA/0402199.
  23. Oeckl R., Untwisting noncommutative Rd and the equivalence of quantum field theories, Nuclear Phys. B 581 (2000), 559-574, hep-th/0003018.
  24. Chaichian M., Presnajder M., Tureanu A., New concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications, Phys. Rev. Lett. 94 (2005), 151602, 15 pages, hep-th/0409096.
  25. Wess J., Deformed coordinate spaces: derivatives, in Proceedings of the BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges beyond the Standard Model: Perspectives of Balkans Collaboration (August 29 - September 2, 2003, Vrnjacka Banja, Serbia), Editors G. Djordjevic, L. Nesic and J. Wess, World Scientific, 2005, 122-128, hep-th/0408080.
  26. Kosinski P., Maslanka P., Lorentz-invariant interpretation of noncommutative space-time: global version, hep-th/0408100.
  27. Stratonovich R.L., On distributions in representation space, Zh. Eksp. Teor. Fiz. 31 (1956), 1012-1020 (English transl.: Sov. Phys. JETP 4 (1957), 891-898).
  28. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
  29. Romero J.M., Vergara J.D., Santiago J.A., Noncommutative spaces, the quantum of time and the Lorentz symmetry, Phys. Rev. D 75 (2007), 065008, 7 pages, hep-th/0702113.
  30. Wess J., Deformed gauge theories, J. Phys. Conf. Ser. 53 (2006), 752-763, hep-th/0608135.
  31. Giller S., Gonera C., Kosinski P., Maslanka P., On the consistency of twisted gauge theory, Phys. Lett. B 655 (2007), 80-83, hep-th/0701014.
  32. Kassel Ch., Quantum groups, Springer-Verlag, New York - Berlin - Heidelberg, 1995.
  33. Vassilevich D.V., Symmetries in noncommutative field theories: Hopf versus Lie, arXiv:0711.4091.
  34. Duenas-Vidal A., Vazquez-Mozo M.A., Twisted invariances of noncommutative gauge theories, arXiv:0802.4201.

Previous article   Next article   Contents of Volume 4 (2008)