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Abstract. Given a finite associative ring with unity, R, any free (left) cyclic submodule
(FCS) generated by a unimodular (n + 1)-tuple of elements of R represents a point of
the n-dimensional projective space over R. Suppose that R also features FCSs generated by
(n+1)-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs?
Here, we (partially) answer this question for n = 2 when R is the (unique) non-commutative
ring of order eight. The corresponding geometry is dubbed a “Fano-Snowflake” due to its
diagrammatic appearance and the fact that it contains the Fano plane in its center. There
exist, in fact, two such configurations – each being tied to either of the two maximal ideals
of the ring – which have the Fano plane in common and can, therefore, be viewed as twins.
Potential relevance of these noteworthy configurations to quantum information theory and
stringy black holes is also outlined.
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Classical projective geometries, i.e., the ones where coordinates are elements of a (possibly
skew) field, represent a venerable and well-developed branch of algebraic geometry. On the
contrary, geometries over rings which are not fields, despite a quite abundant literature [1], still
lie well outside the current mainstream research and there is still a lot to be done and disco-
vered. Our interest in these geometries stems from the recent recognition of their importance
for the field of quantum information theory (see, e.g., [2, 3, 4, 5, 6, 7] and references therein).
Being motivated by this fact, we have had a detailed look at the fine structure of projective
lines and, to a lesser extent, projective planes over a number of finite (both commutative and
non-commutative) rings up to order 31. In doing so, we came across a number of interesting
features [8] which have apparently not been treated so far by either mathematicians or physi-
cists. This short note aims at acquainting the reader with, in our opinion, most fascinating of
them.
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Let us consider an associative ring with unity 1 ( 6= 0), R, and denote the left module on n+1
generators over R by Rn+1. The set R(r1, r2, . . . , rn+1), defined as follows

R(r1, r2, . . . , rn+1) :=
{
(αr1, αr2, . . . , αrn+1) | (r1, r2, . . . , rn+1) ∈ Rn+1, α ∈ R

}
,

is a left cyclic submodule of Rn+1. Any such submodule is called free if the mapping α 7→
(αr1, αr2, . . . , αrn+1) is injective, i.e., if (αr1, αr2, . . . , αrn+1) are all distinct. Next, we shall call
(r1, r2, . . . , rn+1) ∈ Rn+1 unimodular if there exist elements x1, x2, . . . , xn+1 in R such that

r1x1 + r2x2 + · · ·+ rn+1xn+1 = 1.

It is a very well-known fact (see, e.g., [9, 10, 11]) that if (r1, r2, . . . , rn+1) is unimodular, then
R(r1, r2, . . . , rn+1) is free; any such free cyclic submodule represents a point of the n-dimensional
projective space defined over R [10]. The converse statement, however, is not generally true.
That is, there exist rings which also give rise to free cyclic submodules featuring exclusively
non-unimodular (n + 1)-tuples, i.e., free cyclic submodules that cannot be associated with any
point of the corresponding projective space. The first case when this happens is the unique
non-commutative ring of order eight, R♦, i.e., the ring isomorphic to the one of upper (or lower)
triangular two-by-two matrices over the Galois field of two elements. Let us therefore have
a detailed look at this case.

To this end in view, we first introduce the standard matrix representation of R♦ [12, 13],

R♦ ≡
{(

a b
0 c

)
| a, b, c ∈ GF (2)

}
,

from where it is readily seen that the ring contains two maximal (two-sided) ideals,

I1 =
{(

0 b
0 c

)
| b, c ∈ GF (2)

}
and

I2 =
{(

a b
0 0

)
| a, b ∈ GF (2)

}
,

which give rise to a non-trivial (two-sided) Jacobson radical J ,

J = I1 ∩ I2 =
{(

0 b
0 0

)
| b ∈ GF (2)

}
.

As for our further purposes it will be more convenient to work with numbers than matrices, we
shall relabel the elements of R♦ as follows

0 ≡
(

0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
, 2 ≡

(
1 1
0 1

)
, 3 ≡

(
1 1
0 0

)
,

4 ≡
(

0 0
0 1

)
, 5 ≡

(
1 0
0 0

)
, 6 ≡

(
0 1
0 0

)
, 7 ≡

(
0 1
0 1

)
. (1)

The addition and multiplication in the ring is that of matrices over GF (2), which in our compact
notation reads as shown in Table 1 (adopted, with a slight notational difference, from [14]). From
the multiplication table (as well as from expressions (1)) it follows that, apart from unity, there
is only one more invertible element, 2, and that the zero-divisors are of two kinds: nilpotent
(0 and 6) and idempotent (3, 4, 5, and 7). The two maximal ideals now acquire the form

I1 := {0, 4, 6, 7} and I2 := {0, 3, 5, 6} ,
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Table 1. Addition (left) and multiplication (right) in R♦.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 6 7 5 4 2 3
2 2 6 0 4 3 7 1 5
3 3 7 4 0 2 6 5 1
4 4 5 3 2 0 1 7 6
5 5 4 7 6 1 0 3 2
6 6 2 1 5 7 3 0 4
7 7 3 5 1 6 2 4 0

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 1 3 7 5 6 4
3 0 3 5 3 6 5 6 0
4 0 4 4 0 4 0 0 4
5 0 5 3 3 0 5 6 6
6 0 6 6 0 6 0 0 6
7 0 7 7 0 7 0 0 7

and the Jacobson radical reads,

J = I1 ∩ I2 = {0, 6} .

Confining to the case of n = 2, we will now demonstrate that there exist triples of elements
(r1, r2, r3) ∈ R3

♦ which are not unimodular and yet they generate free cyclic submodules.
It is a straightforward task to verify that such triples are tied uniquely to the first maxi-

mal ideal (I1); here, we shall list them implicitly together with the corresponding free cyclic
submodules:

R♦(4, 6, 7) = R♦(7, 6, 4)
= {(0, 0, 0), (4, 6, 7), (7, 6, 4), (6, 6, 0), (4, 0, 4), (0, 6, 6), (6, 0, 6), (7, 0, 7)} ,

R♦(4, 7, 6) = R♦(7, 4, 6)
= {(0, 0, 0), (4, 7, 6), (7, 4, 6), (6, 0, 6), (4, 4, 0), (0, 6, 6), (6, 6, 0), (7, 7, 0)} ,

R♦(6, 4, 7) = R♦(6, 7, 4)
= {(0, 0, 0), (6, 4, 7), (6, 7, 4), (6, 6, 0), (0, 4, 4), (6, 0, 6), (0, 6, 6), (0, 7, 7)} ,

R♦(4, 4, 7) = R♦(7, 7, 4)
= {(0, 0, 0), (4, 4, 7), (7, 7, 4), (6, 6, 0), (4, 4, 4), (0, 0, 6), (6, 6, 6), (7, 7, 7)} ,

R♦(4, 7, 4) = R♦(7, 4, 7)
= {(0, 0, 0), (4, 7, 4), (7, 4, 7), (6, 0, 6), (4, 4, 4), (0, 6, 0), (6, 6, 6), (7, 7, 7)} ,

R♦(7, 4, 4) = R♦(4, 7, 7)
= {(0, 0, 0), (7, 4, 4), (4, 7, 7), (0, 6, 6), (4, 4, 4), (6, 0, 0), (6, 6, 6), (7, 7, 7)} ,

R♦(4, 4, 6) = R♦(7, 7, 6)
= {(0, 0, 0), (4, 4, 6), (7, 7, 6), (6, 6, 6), (4, 4, 0), (0, 0, 6), (6, 6, 0), (7, 7, 0)} ,

R♦(4, 6, 4) = R♦(7, 6, 7)
= {(0, 0, 0), (4, 6, 4), (7, 6, 7), (6, 6, 6), (4, 0, 4), (0, 6, 0), (6, 0, 6), (7, 0, 7)} ,

R♦(6, 4, 4) = R♦(6, 7, 7)
= {(0, 0, 0), (6, 4, 4), (6, 7, 7), (6, 6, 6), (0, 4, 4), (6, 0, 0), (0, 6, 6), (0, 7, 7)} ,

R♦(6, 6, 7) = R♦(6, 6, 4)
= {(0, 0, 0), (6, 6, 7), (6, 6, 4), (6, 6, 0), (0, 0, 4), (6, 6, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(6, 7, 6) = R♦(6, 4, 6)
= {(0, 0, 0), (6, 7, 6), (6, 4, 6), (6, 0, 6), (0, 4, 0), (6, 6, 6), (0, 6, 0), (0, 7, 0)} ,

R♦(7, 6, 6) = R♦(4, 6, 6)
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= {(0, 0, 0), (7, 6, 6), (4, 6, 6), (0, 6, 6), (4, 0, 0), (6, 6, 6), (6, 0, 0), (7, 0, 0)} ,

R♦(0, 6, 7) = R♦(0, 6, 4)
= {(0, 0, 0), (0, 6, 7), (0, 6, 4), (0, 6, 0), (0, 0, 4), (0, 6, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(0, 7, 6) = R♦(0, 4, 6)
= {(0, 0, 0), (0, 7, 6), (0, 4, 6), (0, 0, 6), (0, 4, 0), (0, 6, 6), (0, 6, 0), (0, 7, 0)} ,

R♦(0, 4, 7) = R♦(0, 7, 4)
= {(0, 0, 0), (0, 4, 7), (0, 7, 4), (0, 6, 0), (0, 4, 4), (0, 0, 6), (0, 6, 6), (0, 7, 7)} ,

R♦(6, 0, 7) = R♦(6, 0, 4)
= {(0, 0, 0), (6, 0, 7), (6, 0, 4), (6, 0, 0), (0, 0, 4), (6, 0, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(7, 0, 6) = R♦(4, 0, 6)
= {(0, 0, 0), (7, 0, 6), (4, 0, 6), (0, 0, 6), (4, 0, 0), (6, 0, 6), (6, 0, 0), (7, 0, 0)} ,

R♦(4, 0, 7) = R♦(7, 0, 4)
= {(0, 0, 0), (4, 0, 7), (7, 0, 4), (6, 0, 0), (4, 0, 4), (0, 0, 6), (6, 0, 6), (7, 0, 7)} ,

R♦(6, 7, 0) = R♦(6, 4, 0)
= {(0, 0, 0), (6, 7, 0), (6, 4, 0), (6, 0, 0), (0, 4, 0), (6, 6, 0), (0, 6, 0), (0, 7, 0)} ,

R♦(7, 6, 0) = R♦(4, 6, 0)
= {(0, 0, 0), (7, 6, 0), (4, 6, 0), (0, 6, 0), (4, 0, 0), (6, 6, 0), (6, 0, 0), (7, 0, 0)} ,

R♦(4, 7, 0) = R♦(7, 4, 0)
= {(0, 0, 0), (4, 7, 0), (7, 4, 0), (6, 0, 0), (4, 4, 0), (0, 6, 0), (6, 6, 0), (7, 7, 0)} .

We find altogether 42 non-unimodular triples of elements of R3
♦ generating 21 distinct free left

cyclic submodules which in their entirety comprise all 64 triples of elements formed from I1.
These submodules are, as illustrated in Fig. 1, very intricately “interwoven” with each other as:

• the triple (0, 0, 0) (not shown in the figure) is the common meet of all of them;

• each of the seven triples (6, 0, 0), (0, 6, 0), (0, 0, 6), (6, 6, 0), (6, 0, 6), (0, 6, 6), (6, 6, 6) (rep-
resented by big circles in the figure) shares nine of them;

• each of the 14 triples (4, 0, 0), (0, 4, 0), (0, 0, 4), (4, 4, 0), (4, 0, 4), (0, 4, 4), (4, 4, 4), (7, 0, 0),
(0, 7, 0), (0, 0, 7), (7, 7, 0), (7, 0, 7), (0, 7, 7), (7, 7, 7) (medium-size circles) has three of them
in common; and

• each of the remaining 42 triples (small circles) lies on a unique submodule.

It is obvious from Fig. 1 that the seven triples of the set listed in the second item above
can be viewed as the points of the smallest projective plane, the Fano plane. As these triples
are seen to form specific three-member subsets each of which defines a unique aggregate of
submodules of cardinality three, and there are just seven such aggregates (distinguished in
Fig. 1 by different colors), these aggregates of submodules can be regarded as the lines of this
plane. This is a truly remarkable property because the entries of the seven triples come from J ,
which is a ring of order two without unity, i.e., the ring not isomorphic to the Galois field of two
elements. Turning now to the second maximal ideal (I2), we find that we cannot create from
it any non-unimodular triple generating free left cyclic submodules. If, however, we switch to
right cyclic submodules instead, we do find the configuration completely identical in its shape
to that shown in Fig. 1; moreover, as J , by its very definition, belongs to the both maximal
ideals, the two configurations share the same Fano plane and, so, can be regarded as twin (or
dual to each other) “Fano-Snowflakes”.

The Fano plane occurs in algebraic geometry and geometric algebra in various disguises
[15, 16], and is perhaps most recognized as a “gadget” completely describing the algebra structure
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Figure 1. The “Fano-Snowflake” – a diagrammatic illustration of a very intricate relation between the 21
free left cyclic submodules generated by non-unimodular triples of R3

♦ (represented here by the circles of
different sizes as explained in the text). As the (0, 0, 0) triple is not shown, each submodule is represented
by seven circles (three big, two medium-sized and two small) lying on a common segmented/broken line.
The colors were chosen in such a way to make (the lines of) the Fano plane sitting in the middle of
the configuration readily discernible. There are seven “protrusions”, or “extensions”, of the Fano plane
emanating from its points, each giving rise to three more ramifications. (The “protrusion/extension”
emanating from the point at the very center is illustrated as going perpendicularly out of the sheet of
page so that only its three ramifications can be seen properly.) On a side note, any of the seven sets of
three submodules represented by the same color stands for an n = 1 case.

of the octonions [17]. It is, therefore, not surprising that this plane has also found numerous
applications in physics (coding and information theory, network-switching, etc.). In this context
it is especially worth mentioning recently-discovered relations between stringy black holes and
quantum information theory. We have in mind intriguing mathematical coincidences between
black-hole solutions in string theory and quantum entanglement in certain finite-dimensional
Hilbert spaces, where some symmetry structures relevant to string theories are encoded into the
incidence structure of the Fano plane. In particular, different types of so-called E7-symmetric
black-hole solutions can neatly be classified in terms of different types of entangled quantum
states attached to the points/lines of the Fano plane and the black hole entropy formula based
on the Fano plane yields an entanglement measure of seven qubits [18, 19, 20, 21]. It may well
happen that the above-described generalized/extended Fano configurations, and a variety of
their relatives to be discovered over many higher-order non-commutative rings, provide a geo-
metric link between more involved stringy black holes and more complex forms of quantum
entanglement featured by multipartite quantum systems. It is already the next case in the
hierarchy, viz. the ring of ternions over the field of three elements, which deserves a detailed
inspection. Here, in analogy with the Fano case, we find a “snowflake” centered around the
projective plane of order three (see Fig. 2)1. This projective plane has a noteworthy link to
a few sporadic simple groups [22], including the largest one, the Monster group [23]. And the
Monster is intimately connected with another wide class of 3D black holes, so-called BTZ black
holes [24], as the logarithm of the dimension of one of its representations yields the entropy

1Based on these two cases, we surmise that the corresponding configuration always features PG(2, q) as the
core geometry, irrespectively of the order q of the base field of the ring of ternions.
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Figure 2. A sketchy illustration – in the symbols and notation of Fig. 1 – of a generic part of the
“Snowflake” created by free left cyclic submodules generated by non-unimodular triples of the ring of
ternions over GF (3); the double-circle stands, on the one hand, for two distinct triples of the Jacobson
radical of the ring and, on the other hand, for a single point of the underlying projective plane of order
three.

of such a black hole [25]. It is, therefore, our hope that this paper will stir the equal interest
of both mathematicians and theoretical physicists: the former into a systematic treatment of
free cyclic submodules generated by non-unimodular vectors, the latter into a serious search for
possible applications of the associated geometrical configurations.
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