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Abstract. We considered two types of string models: on the Riemmann space of string
coordinates with null torsion and on the Riemman—Cartan space of string coordinates with
constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable
systems and Dubrovin solutions of WDVV associativity equation to construct new integrable
string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents
in first case. We used the invariant local chiral currents of principal chiral models for SU(n),
SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type
on the Riemmann space of the chiral primitive invariant currents and on the chiral non-
primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor
nonlocal currents to construct new nonlocal string equation.
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1 Introduction

String theory is a very promising candidate for a unified quantum theory of gravity and all
the other forces of nature. For quantum description of string model we must have classical
solutions of the string in the background fields. String theory in suitable space-time backgrounds
can be considered as principal chiral model. The integrability of the classical principal chiral
model is manifested through an infinite set of conserved charges, which can form non-Abelian
algebra. Any charge from the commuting subset of charges and any Casimir operators of charge
algebra can be considered as Hamiltonian in bi-Hamiltonian approach to integrable models.
The bi-Hamiltonian approach to integrable systems was initiated by Magri [1]. Two Poisson
brackets (PBs)

{0°(2), 0" W)} = Fs"(,9)(¢),  {0"(2), ")} = P*(x,9)(9)

are called compatible if any linear combination of these PBs
{#, %o + AM{*, %}

is PB also for arbitrary constant A\. The functions ¢*(¢,z), a = 1,2,...,n are local coordinates
on a certain given smooth n-dimensional manifold AM™. The Hamiltonian operators P(‘fb(:n, y) (),
P (z,y)(¢) are functions of local coordinates ¢%(x). It is possible to find such Hamiltonians Hy
and H; which satisfy bi-Hamiltonian condition [2]

do®(z)
at
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where Hyy = f027r har(¢(y))dy, M = 0,1. Two branches of hierarchies arise under two equations
of motion under two different parameters of evolution tyys and a0 [2]

d¢®(x) / mo Oho I b Oho
={¢%(x),Ho}1 = PP (x,y)=——dy = Rz, 2)P5°(2,y) =—+—dy,
dt()]_ {(z) ( ) 0}1 0 1 ( y) a¢b(y) Y 0 ( ) 0 ( y) a¢b(y) Y
d¢* () / b Ohy / P b dho
={¢%x),H1}o = P (x,y) =———dy = R™)%(x,2) Py (2, dy.
T (o) mo= [ P oty = [ R ) R s
There R{(z,y) is a recursion operator and (R™1)¥(z,y) is its inverse
27
Ri(z,y) = ; P{*(z,2)(Po);. (2, y)dz.
The first branch of the hierarchies of dynamical systems has the following form
do®(x) /2” . dho
= R - R(yn-1))o Py _ ————dy;--+d N=1,2,..., 00.
dtON 0 ( (xvyl) (yN 1))6 0 (yN 1ayN) a¢b(yN) Y1 YN, 5 4y , OO

The second branch of the hierarchies can be obtained by replacement R — R~! and ton — tno-
We will consider only the first branch of the hierarchies.

The local PBs of hydrodynamic type were introduced by Dubrovin, Novikov [3, 4] for Hamil-
tonian description of equations of hydrodynamics. They were generalized by Ferapontov [5] and
Mokhov, Ferapontov [6] to the non-local PBs of hydrodynamic type. The hydrodynamic type
systems were considered by Tsarev [8], Maltsev [9], Ferapontov [10], Mokhov [12] (see also [7]),
Pavlov [13] (see also [14]), Maltsev, Novikov [15]. The polynomials of local chiral currents were
considered by Goldshmidt and Witten [16] (see also [17]). The local conserved chiral charges in
principal chiral models were considered by Evans, Hassan, MacKay, Mountain [24]. The tensor
nonlocal chiral charges were introduced by Pohlmeyer [26] (see also [27, 28]). The string mod-
els of hydrodynamic type were considered by author [18, 19]. In Section 3, the author applied
hydrodynamic approach to integrable systems to obtain new integrable string equations. In Sec-
tion 4, the author used the nonlocal Pohlmeyer charges to obtain a new string equation in terms
of the nonlocal currents. In Section 5, the author applied the local invariant chiral currents to
a simple Lie algebra to construct new integrable string equations.

2 String model of principal chiral model type

A string model is described by the Lagrangian

12 09 (t, ) O¢(t, x)
L=- B (ot ’ d 1
5 i atola) 2GR A 1)
and by two first kind constraints
99" (x) 9¢"(x) | 9¢*(z) I¢"(x)] _ 09" (x) 9¢"(x) _
ol |20 | ST g (ot 2D O
The target space local coordinates ¢%(x), a = 1,...,n belong to certain given smooth n-dimen-
sional manifold M™ with nondegenerate metric tensor
9ab(¢(x)) = el ((x))ey (d(x)),
where p,v = 1,...,n are indices of tangent space to manifold M™ on some point ¢*(z). The
veilbein e (¢) and its inverse ef:(¢) satisfy the conditions

w b ¢b woav Uy
€€y = 0gs ele™ =nh".
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The coordinates z (z° = ¢, 2! = z) belong to world sheet with metric tensor g, in conformal
gauge. The string equations of motion have the form

0
BDapd® + T8(0)00d’p0] =0, 9o =

670" OéZO,l,
X

where

rL(0) = 5 [k + 5]
is the connection. In terms of canonical currents

Ja(9) = €5 (9)0a0”
the equations of motion have the form

n*0uJ5 (Bt ) =0, a5 (9) — OpJh() — Ch\(6) () I3(d) = O,

where

el Oel
o) =54 55~ s

is the torsion. The Hamiltonian has the form

1

27
H = 2/ [anJO/LJOZ/ + UoufJf]d$,
0

where Jou(¢) = €5 ()pa, J1' (4) = et 5y 9 9% and p,(t,z) = nuehel 5 9 4% is the canonical momen-
tum. The canonical commutation relations of currents are as follows

{Jou(9(2)), Jou (6(9))} = Cp ($(2)) Jo(¢(x))8(x — y),
{Jou(9(2)), I (6(y))} = Cpa(¢(@)) 7 (é(x))d(z — y) — 255885(95 - ),
{71 (6(2)), J1 (¢(y))} = 0.
Let us introduce chiral currents
U* =n* Jo, + J1, VHE =0 Jo, — JI

The commutation relations of chiral currents are the following
{U*(6(2)), U"(6(y))} = C{" (8(x))

(U6, V¥ (6(0)} = O (9l [0 (0(a)) + VA G)I6 — ),
(VA (0(@), V¥ (6(0) = O (0() | SV (6(w)) — 2UN(a))| 8a —9) + 1 iz — ).

SUN6(@) ~ 516 85— y) w55 ),

Equations of motion in light-cone coordinates

+ 1 9 _9 .9
=gt =gt

have the form
O_UH" = C¥, (¢(x))UV?, O_VH =" (o(x)VVU.

In the case of the null torsion
D2et

et
Czlj)\ =0, 65<¢) = %7 Fgc(¢) - 6Z 8(1)178(1)67 RﬁAp(‘b) =0
the string model is integrable.The Hamiltonian equations of motion under Hamiltonian (1) are
described by two independent left and right movers: U¥(t + x) and V#(t — x).
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3 Integrable string models of hydrodynamic type
with null torsion

We want to construct new integrable string models with Hamiltonians as polynomials of the
initial chiral currents U#(¢(z)). The PB of chiral currents U¥(z) coincides with the flat PB of
Dubrovin, Novikov

{0(2), U ()0 = iz — ).

Let us introduce a local Dubrovin, Novikov PB [3, 4]. It has the form

A
U @). 0" W) = ¢ W) 2ot — ) - T 0 @) 2T st ).
x x

This PB is skew-symmetric if g**(U) = ¢g"#*(U) and it satisfies Jacobi identity if I'} (U) = I'% (U),
CL(U) =0, R}.;,(U) = 0. In the case of non-zero curvature tensor we must include Weingarten
operators into right side of the PB with the step-function sgn (z — y)=(:L)~14(z — y)=v(z — y)
[5, 6]. The PBs {x,x*}¢ and {x, x}; are compatible by Magri [1] if the pencil {x,*}o+ A\{x,x}; is
also PB . As a result, Mokhov [12, 11] obtained the compatible pair of PBs

Popu(U)(@9) = — 282 — ),

oz
O’F(U) 0 PF(U) U
PL ) =22 ) 9 — ).
1w (U)(2.9) = 2550050 5.0 ~ V) + Sriggrars oz 0 Y

The function F(U) satisfies the equation

PEU) Ap PFU) B O3F(U) Ap PFEU)
dURAUPOUN" BUYOUCOUP — QUrOUPIUN | QUROUTOUP”
This equation is WDVV [20, 21] associativity equation and it was obtained in 2D topological
field theory. Dubrovin [22, 23] obtained a lot of solutions of WDVV equation. He showed
that local fields U*(x) must belong Frobenius manifolds to solve the WDVV equation and gave

examples of Frobenius structures. Associative Frobenius algebra may be written in the following
form

0 0 0
— =d) (U)=—.
au * auw = W)
Totally symmetric structure function has the form
~ OF(U)
©oUROUYOUN’

and associativity condition

o 9N, 0 9 (8 0
our " ouv) " aur — aur \auv  ouX

leads to the WDVV equation. Function F'(U) is quasihomogeneous function of its variables

<duU“83#> F(U) = dpF(U) + A UPUY + B,U* + C,

d,LLI/)\(U) M,V,)\Zl,...,n

here numbers d,, dr, A, B, C depend on the type of polynomial function F'(U). Here are
some Dubrovin examples of solutions of the WDVV equation

n=1,  F{U)=U;;
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1
n = 27 F(U) = §U12U2 + 6U27 dl = 13 d2 = 27 dF = 2, All =1 (2)

and quasihomogeneity condition for n = 2 has the form

0

0
<d1U1 U + do—— a0,

) F(U) = dFF(U) +A11U12.

We used local fields U, with low indices here for convenience. One of the Dubrovin polynomial
solutions is

1 1 1
F(U) = 5(UfUs + UhU3) + JU5U3 + <5 U3, (3)
here dy =1, dy = %, ds = 2, drp = 4 and the polynomial function
Looro 105
f(UQ,Ug) - ZUQ U3 + @Ui‘l

is a solution of the additional PDE.
In the bi-Hamiltonian approach to an integrable string model we must construct the recursion
operator to generate a hierarchy of PBs and a hierarchy of Hamiltonians

S
Rl () = /0 P, 2)(By (2, 9) awid

0*F(U(x)) 0*F(U(x)) OU (y)
————(x — — ).
a0 (a0 () F ~ Y Srmmenr et @ oy Y& Y
The Hamiltonian equation of motion with Hamiltonian Hj is the following
2m , our QU
Hy 2/0 Nu U (2)U” (z)dz, ot oz

First of the new equations of motion under the new time ¢; has the form [12]

7 2m I
o= [ rwan Wy = ().

o1 Jo ouv

(4)

This equation of motion can be obtained as Hamiltonian equation with new Hamiltonian H;

2m aF
"
H, = / 8U“ U (x)dz,

where F(U) is each of Dubrovin solutions WDVV associativity equation (2), (3). Any system
of the following hierarchy [12]
out
Ot

2 U
[ R k-

is an integrable system. As result we obtain chiral currents U*(p(trr, x)) = f*(p(tar, ), where
f*(¢) is a solution of the equation of motion. In the case of the Hamiltonian H; and of the
equation of motion (4) we can introduce new currents

VaF(U<t17 x))
ouv ’

Consequently, we can introduce a new metric tensor and a new veilbein depending of the new
time coordinate. The equation for the new metric tensor has the form

a(ba(tl?x) _ de“(qb(tl,a:)) _ nuyaF(f(¢(t17x)))
Ox dx of(¢(t1,x)

Jg(t17$> = Uu(tlvx)a J{L(tlax) = 77“

e (o(t1, z))
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4 New string equation in terms
of Pohlmeyer tensor nonlocal currents

In the case of the flat space ij y = 0 there exist nonlocal totally symmetric tensor chiral currents
called “Pohlmeyer” currents [26, 27, 28]

R (U (x)) = RW#2-) (U (z))
z Tp—2
—ubn(e) [ ooy [ U ),
0 0

where round brackets the mean totally symmetric product of chiral currents U#(U). The new
Hamiltonians may have the following forms

21
HOD — % / RO(U () dors R (U () dr,
0

where dyr = dy ..y, 18 totally symmetric invariant constant tensor, which can be constructed
from Kronecker deltas. For example

T
x

RO = R (U(2)) = S[U%() / U (21)der + U” () / UH(21)da],

0
0
1 27
H(2>:/
2 Jo

UF(x)UH(x) /037 U” (x1)dxy /03? U" (x9)dzo
+ UH(x)U" (x) /090 UH(x1)dxy /Ox U”(xg)dx2] dz.

The Hamiltonian H?®) commutes with the Hamiltonian H(") = 1 027r UH(z)UF(z)dz and it

commutes with the Casimir fo% UH(z)dz. The equation of motion under the Hamiltonian H(?)
is as follows

oUHF(x) 0

ot ox

Ut () /O U (@)d /O U (29)des + U () /O C U (1) day /O xU"(@)d@]

U (@)U () /Ox Ub(21)dzs — U™ (@)U () /0 U (21)da1.

In the variables
xr
s'(@)= [ UM(w)dy
0

the latter equation can be rewritten as follows

os* 0 z 025"
— = —(SH(8¥SY # Y—— | d =12,...,n.
o = apsss s [ (8 Yy =12

5 Integrable string models with constant torsion

Let us go back to the commutation relations of chiral currents. Let the torsion C¥, (¢(x)) # 0
and Cyy\ = fua be structure constant of s simple Lie algebra. We will consider a string model
with the constant torsion in light-cone gauge in target space. This model coincides with the
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principal chiral model on compact simple Lie group. We cannot divide the motion on right and
left mover because of chiral currents 0_U* = fl’f/\U VYA O_VH = fff)\V” U? are not conserved.
The correspondent charges are not Casimirs. The present paper was stimulated by paper [24].
Evans, Hassan, MacKay, Mountain (see [24] and references therein) constructed local invariant
chiral currents as polynomials of the initial chiral currents of SU(n), SO(n), SP(n) principal
chiral models and they found such combination of them that the corresponding charges are
Casimir operators of these dynamical systems. Their paper was based on the paper of de
Azcarraga, Macfarlane, MacKay, Perez Bueno (see [25] and references therein) about invariant
tensors for simple Lie algebras. Let ¢, be n ® n traceless hermitian matrix representations of
generators Lie algebra

[t,u;tv] = Qif/“,,\t)\, Tr(t#ty) = 2(5'uy.
Here is an additional relation for SU(n) algebra
4 2
{tu,ty}: ﬁfslw—l-Qd“y)\t)\, uw=1....n"—1.
De Azcarraga et al. gave some examples of invariant tensors of simple Lie algebras and they

gave a general method to calculate them. Invariant tensors may be constructed as invariant
symmetric polynomials on SU(n)

(a1 .
d(#l-'#M) B M!STr(tl‘l t”M)’
where STr means the completely symmetrized product of matrices and dE/]Z?..yM) is the totally

symmetric tensor and M = 2,3,...,00. Another family of invariant symmetric tensors [29, 30]
(see also [25]) called D-family based on the product of the symmetric structure constant d,,
of the SU(n) algebra is as follows:

(M) _ gk dFik2 ..

_ dkM—lewfi’;dkaB
(t1--par) (p1p"H3

HM—2 unr—1par)’

where D,(fl,) = MI,,DSBV)/\ =dnand M =4,5,...,00.

Here are n — 1 primitive invariant tensors on SU(n). The invariant tensors for M > n are
functions of primitive tensors. The Casimir operators on SU(n) algebra have the form

C(M) (t) - dé‘;{l...u]u)t,u‘l T t#]b{'

Evans et al. introduced local chiral currents based on the invariant symmetric polynomials on
simple Lie groups

M _ M M
JM(U)=8Te(U---U) =STe UM =dQD U ... ur, (5)
where U = ¢, U" and p =1,... ,n? —1 . It is possible to decompose the invariant symmetric

chiral currents JM)(U) into product of the basic invariant chiral currents D) (U)

D) = dYUrU” =0, UU”, D) U) = dunU*U"U?,
D(M)(U(IIZ')) _ dk1 dklkz . dkM—2k1M—3dk1M—3 Uul Uuz U

w1 o s M —2 WM —1HM 5y
where M =4,5,...,00. The author obtained the following expressions for local invariant chiral
currents JM) (U)

J® Zop®,  j@ _op@ 4 Ap@2
n
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g0 —9p® 4 Sp@pe  ge _op© 4 D2 4 8 "D 4 % D@3
n n

J0 —ap® 4 8 pep@ L 8 pe pe) +2 D(2>2D< )
n n
J® —ap® 4 2p@e, 8 pepe) 8D< ) D©) 7D<2>D<3>2+ %D@)zD( )y 16D( )
n n n n n
7O —ap® 4 Ep@wpe) 4 §D(3>D<6> L 8p@pm | %D@s n %D@)D( ) @)
n n mn n
n % p@2pe) . % 2L D3DE),

Both families of invariant chiral currents J™)(U(z)) and D) (U (z)) satisfy the conservation
equations 0_JM)(U(z)) =0, 0_DM)(U(z)) = 0.

The commutation relations of invariant chiral currents J)(U(z)) show that these currents
are not densities of dynamical Casimir operators for SU(n) group. Therefore, we will not
consider these currents in the following.

We considered abasic family of invariant chiral currents D) (U) and we proved that the
invariant chiral currents DM )(U ) form closed algebra under canonical PB and corresponding
charges are dynamical Casimir operators. The commutation relations of invariant chiral currents
DM)(U(z)) and DN(U(y)) for M, N =2,3,4 and for M =2, N =2,3,..., 00 are as follows

(DO (@), D)} = ~MNDMN2(0) L sz )

_ MN(N —1) 9DWHN=2)(4)
M+ N-2 ox

The commutation relations for M > 5, N > 3 are as follows

Sz —y).

(D)), DO(y)} = ~[12D)(z) + 3DV ()] 5(z — y)

— 312D (@) 4 3DV @5 — ),
Soi(r =)
S16DD () + 4D @))5(z - ),

{DO@), DO(y)} = 16DV (@) + 4DT)(a)]

30
7oz

(DO (2), DO ()} = —[12D7 () + 6D ()] L6 (x — y)

ox
— 38893[121)(7)(:5) + 6DV (2))6(x — y),

{D®)(2), DO (y)} = ~[16D () +- 8D () +- D2 (@]515 (z —y)

10
20z

(DO @), DW(y)} = 16D (2) + 8DCI ()] 5 — )
30
80z

(DD (@), DOy)} = ~[12DO)(x) + 6D (x) + 8D (2)] 5z — )

1
- Zaﬁ[mp@( )+ 6D (z) + 3D (2)]6(x — ),

—[16D® (z) + 8DV () + DB (2)]6(z — y),

5-116D®) (z) + 8D (2)]6(x — y),

9 5z —y)

{D¥) (), DV (y)} = ~12D) () + 6DV (2) + 6D ()]
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20
90z

(DO (), D )} = 16D (z) + 8D (w) + 4DOH ()] L 3Gz — )
10

— 58—[16D(9)(:1:) + 8D () + 4D (2)]6(z — y),
xr

{DO)(z), DOV} = —[16DP)(2) + 4D (z) +- 8DO?) () +- 2D (a:)]aaé(m ~y)
Xz

- 366[161)( () + 4D (2) + 8D () + 2D (2)]6(x — y),

(DD (), D )} = 12009 (&) + 6D (w) 1 6DW2)(x) 4 38DWN ()] L5z )

10
" 50x

{D®(z), DY (y)} = —[16D10 (2) + 8D (z) + 8 D101 (SC)](%(S(w —y)
3 0

— E%[mpﬂm (z) + 8D (z) + 8D (1))5(x — y),

{DD(z), DO (y)} = —[16D1)(z) + 8D1O3)(z) + 4D (7)

212D () + 6DV (z) + 6D (2)]5(x — y).

— (120U () 4 6 DOV (z) + 6D (z) + 3DUOI) (2)]6(x — y),

0
+4DUOD (2) 1+ 2D199)(1) 1+ DO (1)) L 5(z — )

— 288[16D(10) () + 8DU0) (z) + 4DUOD () 4 4DIOA) ()
xr

+2D009)(z) + DU (2)}3(z — ),
(D), DOy)} = ~[16D0(x) + 16002 (2) + 4DOD(2)] L 5(z )

10

~ 5. — 16019 (2) + 16 D12 (2) + 4D (2)]6(z — y).

The new dependent invariant chiral currents D1, D7D - pE1) _ pB3)  pe.1) _ pO4)
D10 _ pU0.7) (see Appendix A) have the form
DOY = ak dy dn d"mUrUrUrUPUTUY,
D<7 Y =dt,d db demd Ut Ut U UP U U Ry,
dy ] [P pld P UFU Y UAUPUUSUTUY,
N [de [ digld* P drmrur U UrUPUT U UTU,
Ay [dr, dim[dE | d P UFU Y UAUPUUSUTUY,
Ay ddR™ [dP, ) [dp, |l d™ P U U UAUPUC U UT U,
d
d

D2 _

DB3) —

9 (9,:2) _ kldln] [d;n@dzlp” T ]anT UMUZ/U/\UPUO'U@UT UGUw
DO = [dk, &) [dn, dum][dP yd? | URUY UANUPU UPUT U U,

Y [dp, (A )[dy Jd" T d" P UR UM UAUPUT U U U U,
A5 AR AP [d [ g )P UM U UAUPU U UT U U U,
dkldlndnm] [dp dpr] [ s ]dmrs U,u,UVU)\ UPUUPU™ UQUw U’B,
dkldln] [dm dmpdpr] [ds ]dnrs UMUVU)\UpUU U® UTUG v U,@’
d

= [d;,
= [d;
[dk
9 9,1) _ [dk
= [dy,
= [dy,
9 (9,4) _ [dk
10 1)

102

o

N [dy P [dp, di | AP URUYUAUPUT U UTU U U,

o

104

= [d,
= [dy,
10 ,3) [ dk
= [dyy
10 5) [ dk

r A5l [do ][ ][, g)d s AP U U UM UPU U P UT U U TP,
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DU = [ab ][, dm[dE, ] dL, ) d™ s dPr s UH U UM UPU T UPUT U U T,

DUOT = [dk d¥)[dn, 1 dm][dry|[d, gld ™ dPrsUHU U UPU T U UT U U TP,

Let us apply the hydrodynamic approach to integrable string models with constant tor-
sion. In this case we must consider the conserved primitive chiral currents DM)(U(x)), (M =
2,3,...,n—1) as local fields of the Riemmann manifold. The non-primitive local charges of in-
variant chiral currents with M > n form the hierarchy of new Hamiltonians in the bi-Hamiltonian
approach to integrable systems. The commutation relations of invariant chiral currents are local
PBs of hydrodynamic type.

The invariant chiral currents D) with M > 3 for the SU(3) group can be obtained from
the following relation

1
dklndkmp + dk’lmdknp + dk’lpdknm = g(élndmp + 5lm5np + 5lp5nm)'

The corresponding invariant chiral currents for SU(3) group have the form

1
3N—1

1
(anU'uUV)N = D(Q)Na

2N) __
D( ) = T gN-1

D(2N+1) = 3]\}—1 (nuuUuUV)N_ldkankUlUn = 3]\[1—1 D(Z)N_ID(S)'

The invariant chiral currents D, D®) are local coordinates of the Riemmann manifold M2.
The local charges DY) N > 2 form a hierarchy of Hamiltonians. The new nonlinear equations
of motion for chiral currents are as follows

aD(zt(U(m)) - {D(’“)W(@% / ) D@)N(U(y))dy}, k=23, N=2.. o
N 0
ODEWE) _ o 1) IDON W)

8tN oz ’
oD®) (U(x)) _ ODON-L(U(z)) ) OO (U (x))
B T —6NDB)(U(x)) o _oND@N 1(U(”7))T‘

The construction of integrable equations with SU(n) symmetries for n > 4 has difficulties in
reduction of non-primitive invariant currents to primitive currents.

The similar method of construction of chiral currents for SO(2l + 1) = B;, SP(2l) = (
groups was used by Evans et al. [24] on the base of symmetric invariant tensors of de Azcarraga
et al. [25]. In the defining representation these group generators corresponding to algebras t,
satisfy the rules

tusto] = 2iftn, Tr(tuty) =20,  tun = —ntl,

where n is a Euclidean or symplectic structure.
The symmetric tensor structure constants for these groups were introduced through com-
pletely symmetrized product of three generators of corresponding algebras

tututyy = vfwtp,

where v,,), is a totally symmetric tensor. The basic invariant symmetric tensors have the
form [25]

v =56, &V — M viva || V2N-3 N=2,.

= v NG ON
124 (B1p2...paN—142N) (p1paps ~ Hals H2N—2M2N—1M2N )’ )
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The invariant chiral currents J*™) (5) coincide with the basis invariant chiral currents V(2V)
2N
J(QN) — 2VM(1...;)LQNUM ... JH2N

The commutation relations of invariant chiral currents are PBs of hydrodynamic type

(700 (@), 7))} = ~MNTIND(0) D55 )

MN(N —1) 9JM+N=2)(g)
T M+ N2 g @y (©6)

The commuting charges of these invariant chiral currents are dynamical Casimir operators on
SO(2l + 1), SP(2l). The metric tensor of Riemmann space of invariant chiral currents is as
follows

gun(J(@)) = —MN(M + N — 2)JM+EN=2) (),

The commutation relations (6) coincide with commutation relations, which was obtained by
Evans at al. [24].

. . . 2N,1
We used relations for new symmetric invariant tensors y VD

()u'l '/J‘QN) (See Appenle B), Wthh

we obtained during calculation PB (6)

k I n kin _ 7,(10)

V(1 pops Yuapsps Uprpspe Vo) = (p1..-p10)°

k l n m Elnm _ 1,(12)

V(g paps Cnaps s Yprpspo piopn 1 paz) ¥ - V(m...;m)’

k ! n m klp , nmp __ (14)

Y paps Ypaps e Yprps o Yo iz Vs Ypsy) = Vg opaa)

Appendix A

The new dependent invariant chiral currents and the new dependent totally symmetric invariant
tensors for SU(NN) group can be obtained under different order of calculation of trace of the pro-
duct of the generators of SU(n) algebra. Let us mark the matrix product of two generators ¢, t,,
in round brackets

2 ,
(tMtV) = E5MV + (dﬁu + Zf;}jy)tk (7)

The expression of invariant chiral currents Jj;(U) depends on the position of the matrix product
of two generators in the general list of generators. For example

JO) = Te[t(tt)(t)t] = 2D + 2p@2 1 Spep@ 4 %D@)?’,
n n n

7O = Te[(et) (tt)(tt)] = 2DV 4 Zp@p@ 4 5 pes3,
n n
JO = Te[t(tt)t(tt)t] = 2D + 5 p@pw 4 %D(Z)D(E’) + %D(2)2D(3),
n n n
JD = Te[(tt) () ()] = 2D + pEpw 1%D(?)D(E’) + %D(”?D(?’),
n n n

J®) = Te[t(tt)et(tt)t] = 2D + Apw2 L 8p@pe) 4 8 p@p®
mn n n

L 2 pepe2 L 2 peep@ 16 pe
n2 n? n3 ’
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24
J® = Te((ut) ()t ()] = 2DGD 4 Lp@2 L L p® p6) 4 = DR pB2
n n n

L 2pepe % D@2pW) | LS D@1,
n n n
J®) = Te[(¢) () (1) (tt)] = 2D + 2pw2 B pepen | 32 peppe | 10 pex
n n n? n3 ’
J®) = Te[t(et) (t) (t)t] = 2D + L2 p@p® 4 2 pe pe)
n mn
n 2;; p@2pH) | % p@pe2 4 10 peu
n n n

JO) = Teft(et)ttt(tt)t] = 2D + S ppe) 4 B p@p© 4 p@pm %D(?’)S
n n n n

L Bph@pepw . 2 pe2pe) | 8 pespe)
n? n? n3 ’

JO) = Te[e(tt)tt(tt) (¢t))]
2pO) 4 Lpwpe) L Lpepm L Ap@pay 4 8 pe pen
n n n n
32
n

L 2 pepepw 4 32 pe2pe) 4 % pespe)
n? ns3 ’
JO) = Te[t(et)t(tt)t(tt)]
2p©2 4 2p@pe) L 8pep© L Epepm L 4 pe pen
n n n n

L8 pe3 L 20 p@ pe pw 4 32 peepe) . 54 pespe)
n2 n n2 n3

2p©3 4 Ep@pm L Apepr L 2 pepe 8 pes
n n n n
+ 2 p@p® p) 4 % D@2pe) | % D@3,

where ¢ = t,U" and two variants of two last expressions for J O)(U) were obtained from two
variants of expression for J©) (U) during calculation J)(U). Because the result of calculation
does not depend on the order of calculation, we can obtain relations between new invariant
chiral currents and basic invariant currents D) (1))

Py — p© L 2p®2 _ 2 pe) p
n n ’
4 4

DY = p( 4 ZpBpW) _ ZpR@ pb)
n n
pBY — p® L 2 pG p6) _ 2 p@ pe)
n n ’
pB2 — p® L pepe) _ tp@pe _ A peper | 4 pe2po
n n n2 n2 ’
D3 — p® 1 2 p@2 _ 2 pep©),
n n
pO — p® L 2pmwpe) _ A pes . 8 pepep@w L A pe2pe)
n n? n? n? ’
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pO2 — p® L 2p@wpe) _ 2 p@pm _ %D<2>D<3>D<4> n %D<2>2D(5>’
n n n n

D3 — p® L Apwpe) _ 2p@pm _ 2p@p©e _ A pepe pw . A pe2pe)
n n n n? n? ’
4 2

PO — p® L Apmwpe) _2pep© _ 8 pe3 L 2 pepepw | A pezpe)
n n n2 n2 n? '

Hence we can obtain the new relations for symmetric tensors

2

k kin k kl jln _n

d( d}\p O’Lp)d —d( d d d @)—’_ d(;w/\dpmp) 5(,U«Vd)\pd0'4p)7
4 kl 4l
O A5l i,

k nm jklm kl 3ln _gnm ym k ik
iy d>\p opdr) d d(wd dy'dy" dgry + *d( /\dpadsor) B o St

k nm gmp jkl k kl jln _gnm jm; k gkl kl jln gn
b, b dn AT AP = df, Sl dirdnm TP, + d(,md ddL )—ﬁé(wd didn

0)
k n klp jnm k kl jln _gnm jym, k gkl
d( d)\p op T@)d pd P — d(ul/d)\ dp do. d(ppdﬁ ) + d(NV/\d d d )

4 4

kl 3ln _gn k
_ Eé(‘wjd dg dgo dT@) 2 5(#Vd,\pgd 6) + 5(#!/5)\pdmpd76)

It is possible to obtain similar relations for invariant symmetric tensors of ninth order. The
commutation relations of chiral currents in terms of the basic invariant currents are as follows

(D), D)} = - [ 1509a) + S DO (a) - DO @)D (w)] s~ )

10 6 6
_ Y (6) 2 B2 _ 2 n® (4) _
392 [15D (z) + nD (x) D (z)D (x)} o(x —y),

6

(D), DD ()} = - [2000(0) + DO D) — 22D )P a)| Lo~ )

30
_ 27 90D
73[0 (o) +

@)D (a) - 2D )D(a)|d(o )

(0O(). DO )} = - |25D@) + DY) DO w) - 22

DO (z)D®? () + ﬁD(m(x)D(‘l) (x)] 35(@« — )

'*:\4; N BN N

{251)(8)( )+ 7D(3)(x)D(5)(x) v

Tle

D@ (2)DB?(z) + %D@)?(x)pw (33)] :
n

(DO (z), DD ()} = — [24D® 4 12 pwz 12

oo
Qv

12
2 24D® 4+ 2 pA)2 _
80z { * n

(DD(@), D ()} = — [211)(8) L S pae 121)( 35 pe) _ 18 e )D«ﬂ 9 =)
n

ox

10 0o p® 4 S pwe 12 5 pe) _ ﬁD( DO §(z — y)
4 0z n n ’

24

{D®(2), DB (y)} = — [241)(9) _ ED(Q)DU) + %D(4)D(5) _ TD(S)?’ + —ZD(Q)D(3)D(4)
n n

48 0 20
2p@2pG) | Zsp— ) - =2 9 _ @ p
+ n2D D ] d(r—y) 992 [24D D D
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+XD()D() 72D()+ED()D()D()+ D()D()6($—y),
{DD(z), DD (y)} = [281)(9) §D(3)D(6) D(2)D(7) D(4)D(5)
n n n
48 48 0
_ ED(Q)DB)DM) + ED( )2 H(5) 87:105(36 —)
10 8
~ 35 28D _ 2 pB3) p(6) D@ pM) DWW PG
x
48 48 |
_ ﬁD(2)D(3)D(4) + ﬁD@)QD@ §(z—),
(DO (), DO ()} = — [30 pO® _pepe _ 12 pepm . 32 2ppo 32 ()3
n n n2

24
2 D@ pODW 4 2 D@216) 825(:6 )
490 © _ 4566 _ 125050 L 32 Hw o)
30D DB D D@D DWD
9 0x n n
39 924 56
_ ﬁD(S)S + —QD(2)D(3)D(4) + 2D( 2DO)| §(x — y)

Appendix B

The invariant chiral currents JZN) and V2N) and the new dependent totally symmetric invariant
tensors for SO(2] + 1), SP(2l) groups can be obtained under different order of calculation of
trace of the product of the generators of corresponding algebras. Let us mark the matrix product
of three generators ¢, in round brackets

(t(utvtn) = Vuwaptp-
A different position of this triplet inside of J?V produces different expressions for V2V

JUO) = Tr[((tytats)ta(tstets) (tstotio))|Us - - - Uro = 205pquiboliaft (UL - Uyg = 210
JAO) = TY[((t1t9ts) (tatste) (trtste)ti0)]Us - - - Urg = 20kl Ul VU - Uy = 217 (10.1)
T2 = Te[(ty (tatats)ts(tetrts)to(tiot11t12))| Ut - - - Ura

= 2“?23“%”%@“?5”“%1112(]1 o Upg = 2V (12,
JU2) = Te[((t1t9ts) (tatste) (trtste) (trot1iti2))]Us - - - Uts

= 20k vl 0oV 110U - - Uy = 2V 12D
JY = Tr[((t1t9ts)ta(tstetr)ts(totrot11) (bratizt1a))|Ur - - - Ury

= 20k s ukLylimmy b b Uy - Uy = 2V 34,
JW) = Tr[((ttots) (Latsts) (trtste) (tiotirtia)tistia)]Ur - - - Ua

ok 1 n ,m klp mmp _ 14,1
= 20} )30V sV 110V UL PUL - Uy = 2V 4D,

Here we introduced the short notation t,, = t;, UM = U and Um . Mm—vlknm. New invariant
chiral tensors do not lead to new invariant chiral currents.
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