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Abstract. The Midwest Geometry Conference 2007 was devoted to the substantial mathe-
matical legacy of Thomas P. Branson who passed away unexpectedly the previous year. This
contribution to the Proceedings briefly introduces this legacy. We also take the opportunity
of recording his bibliography. Thomas Branson was on the Editorial Board of SIGMA and
we are pleased that SIGMA is able to publish the Proceedings.
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In memory of Thomas P. Branson (1953–2006)

Tom’s research interests ranged broadly; this is perhaps best indicated by the diverse group
of collaborators listed implicitly in his bibliography, which follows this section. Tom was also
known for his general knowledge in many areas of mathematics, and many of his colleagues will
remember well his prompt and in-depth replies to email questions.

In the 1980s Tom’s research on conformal invariance was significantly ahead of its time.
An enduring theme of his research was the natural interplay between invariance and the under-
lying symmetry groups. Tom’s work continues to motivate and inspire a thriving and impressive
international research effort. Many of the conference speakers have contributed to the various
research trends that Tom Branson started.

It is impossible in a written summary to do justice to Tom’s research career. Here we shall
outline just a few directions that we feel to be especially significant.

1 Q-curvature and extremal problems

Tom Branson is perhaps most well known for his definition, development, and application of
a new curvature quantity in Riemannian geometry. For dimension 4 this first entered the public
arena in his joint work [22] with Ørsted, but it was extended to all even dimensions and developed
significantly in [29] and [36]; these days it is usually termed “Branson’s Q-curvature”. A key
feature is its conformal transformation law in dimension n,

e−nωQ̂ = Q + Pω,
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where ĝ = e2ωg for a smooth function ω and P is the celebrated conformal (i.e. conformally
covariant) operator of the form ∆n/2+lower order terms due to Graham–Jenne–Mason–Sparling
(and Paneitz in dimension 4). Because P turns out to be a divergence, this generalises the
transformation of Gauss curvature in 2 dimensions and shows that on closed manifolds

∫
Q is

a global conformal invariant.
The article with Ørsted was motivated by the study of the functional determinants of integral

powers of conformal operators and, in particular, the issue of extremising such quantities within
the class of conformally related metrics of a fixed volume. This was part of a theme, extended
in his work [27] with Chang and Yang, in [31] with Gilkey, and in [38], of developing results
for dimension 4 and higher even dimensions, which paralleled the results from dimension 2 due
to Polyakov and others. An excellent expository account of these directions, written by Tom
Branson himself, is to be found in [76], which appears in this volume.

2 Conformal differential operators

Tom was also a pioneer of the systematic construction and study of conformal differential ope-
rators and related issues. The importance and use of ellipticity was an enduring theme and,
for example in [46], he identified the elliptic operators within the class of second order formally
self-adjoint operators arising as Stein–Weiss gradients. On the other hand, in [48] he provided
a classification of second order linear conformal differential operators. The work [13], which
constructs operators between differential forms on Minkowski space, was motivated by their
rôle as representation intertwinors and links to physics. This partly followed some earlier work
on differential forms in [11]. There he constructed, for example, new conformal differential
operators of order 4 and 6 and some applications of these to variational problems. Notable is
that on (unweighted) differential forms the operators he found took the form L = dMd, where d
is the exterior derivative, which is itself conformal. Although it was not highlighted at the time
it later became clear that, while conformal operators on forms with the symbol of L were to
be expected, factorisations along these lines are rare, surprising, and valuable. This thread was
picked up much later in the joint work [67] with Gover. There, using the Fefferman–Graham
ambient metric and its links to conformal tractor calculus, it was found that on any k-forms for
k ≤ n/2 − 1 there are conformal differential operators generalising his earlier discoveries, but
especially significant is what is captured in the details of the factorisation. The operators may
be expressed in the form

Lk = d ∗
{ Qk+1︷ ︸︸ ︷

(d ∗ d∗)n/2−k−1 + lower order terms
}

︸ ︷︷ ︸
Gk+1

d, (1)

where ∗ is the Hodge ∗-operator. As an operator on closed forms, Qk+1 generalises the Q
curvature and the composition d ∗ Qk+1 = Gk+1 forms a conformal gauge companion for d or
alternatively for Lk+1; paired with either of these Gk+1 yields an injectively elliptic conformal
system. Another consequence of the factorisations (1) is that they lead to new elliptic conformal
complexes. A driving motivation here is that such complexes admit torsions (or determinants),
which generalise Cheeger’s de Rham half torsion and, in particular, have Polyakov type conformal
variation formulae. These ideas are sketched in Tom’s fine survey article [66].

3 Spectrum generating functions and intertwining operators

Another enduring theme of Tom’s work was exploiting the implications of invariance for spectral
data. For example, on the round sphere the conformal covariance relation satisfied by the
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conformal Laplacian D = ∆ + n(n−2)
4 imposes relations among the eigenvalues of the Laplacian

itself. In fact, in this case there are sufficient relations to deduce all the spectral data, and hence
the term “spontaneous generation of eigenvalues” which titles the joint work of Branson with
Ørsted [71]. Here, a heavy use is made of symmetry. The conformal covariance implies a simple
formula for the commutator of D with the Lie derivative along conformal vector fields. But the
sphere has a maximal dimension space of such fields and, via the commutation relation, one can
show that the action of appropriately chosen conformal vector fields will shift eigenvectors to
linear combinations of eigenvectors with adjacent eigenvalues.

An observation made much earlier by Tom is that, given the explicit spectral data for a basic
Laplacian operator and again sufficient symmetry, one may deduce rather explicit formulae for
a series of intertwinors, which are not generally differential. Of course, this uses that the span
of the eigenfunctions for the given Laplacian is dense on the compact manifold concerned. Once
again using the sphere as an example, one may suppose that some operator A2r, acting between
sections of the trivial bundle, is a function of ∆ and satisfies an obvious generalisation of the
conformal covariance relation enjoyed by D. Compressing to eigenspaces of the Laplacian, this
implies characterising relations for the spectrum of the operator. For this series of operators,
Tom was able to obtain the rather striking formula

A2r =
Γ(A1 + 1

2 + r)
Γ(A1 + 1

2 − r)
, A1 =

√
∆ +

(
n− 1

2

)2

for r ∈ C and r /∈ {−n/2,−n/2 − 1, . . . }. These are intertwinors of the spherical principal
series. As pointed out in [13], for r ∈ Z+ one obtains an explicit formula for a class of conformal
differential operators, namely the conformal Laplacian operators on the sphere:

r∏
p=1

{
∆ +

(n

2
+ p− 1

) (n

2
− p

)}
,

(cf. Robin Graham’s article in this volume1). In fact, in [13] Branson used similar ideas to
construct the conformal differential operators on forms mentioned earlier. These are differential
operators D2l,k, on forms of all even orders 2l, on differential forms of all orders k, on the double
cover of the n-dimensional compactified Minkowski space.

Tom’s early ideas were put into a representation theoretic framework and generalised in
the significant work [37], with Ólafsson and Ørsted. There they used a spectrum generating
operator, constructed from a combination of quadratic Casimirs and the development of ideas as
above to construct intertwinors for representations induced from a maximal parabolic subgroup.

4 Heat kernel asymptotics

The so-called heat kernel asymptotics have long been of considerable interest in the study of an
elliptic operator F . The coefficients of the small time expansion of such a kernel are spectral
invariants; they encode information about the asymptotic properties of the spectrum of F .

Tom made substantial contributions in calculating such invariants. Perhaps his best known
article in this direction is [17] written joint with Gilkey. They consider a rather general setting,
namely a Riemannian manifold with possible boundary together with a smooth vector bundle V
with connection ∇, a given section E of End(V ), and an auxiliary smooth function f . The
associated heat kernel is Tr(fe−tP ), where P = ∇∗∇+E. The inclusion of the function f allows
for an efficient and secure calculation of the coefficients an(f, P ) for n = 0, 0.5, 1, 1.5, 2 under

1Graham C.R., Conformal powers of the Laplacian via stereographic projection, SIGMA 3 (2007), 121, 4 pages,
arXiv:0711.4798.
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both Dirichlet and Neumann boundary conditions. In particular, by setting f = 1 in a2(f, P ),
this fifth coefficient of the heat kernel aysymptotics is calculated for the first time. Another
appealing feature of incorporating the function f is that its normal derivatives showing up in
their formulae better record the distribution-like behaviour of the heat kernel near the boundary.

Another pioneering contribution of Tom’s work in this area concerned the heat kernel asymp-
totics of operators not necessarily of Laplace type. This joint work with Gilkey and Fulling [23],
and later Avramidi [57], assumes the second order operators concerned still have positive definite
leading symbol but does not assume this coincides with (the inverse of) a background Rieman-
nian metric. Results, in this general setting, include explicit formulae for the first two terms of
the asymptotics.
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and Physics (Srńı, 2004), Rend. Circ. Mat. Palermo Suppl. 75 (2005), 11–55.

[67] Branson T.P., Gover A.R., Conformally invariant operators, differential forms, cohomology and a generali-
sation of Q-curvature, Comm. Partial Differential Equations 30 (2005), 1611–1669, math.DG/0309085.
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