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Abstract. Group classification of the three-dimensional equations describing flows of fluids
with internal inertia, where the potential function W = W (ρ, ρ̇), is presented. The given
equations include such models as the non-linear one-velocity model of a bubbly fluid with
incompressible liquid phase at small volume concentration of gas bubbles, and the dispersive
shallow water model. These models are obtained for special types of the function W (ρ, ρ̇).
Group classification separates out the function W (ρ, ρ̇) at 15 different cases. Another part
of the manuscript is devoted to one class of partially invariant solutions. This solution is
constructed on the base of all rotations. In the gas dynamics such class of solutions is called
the Ovsyannikov vortex. Group classification of the system of equations for invariant func-
tions is obtained. Complete analysis of invariant solutions for the special type of a potential
function is given.
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1 Introduction

The article focuses on group classification of a class of dispersive models [1]1

ρ̇+ ρdiv(u) = 0, ρu̇+∇p = 0,

p = ρ
δW

δρ
−W = ρ

(
∂W

∂ρ
− ∂

∂t

(
∂W

∂ρ̇

)
− div

(
∂W

∂ρ̇
u

))
−W, (1)

where t is time, ∇ is the gradient operator with respect to the space variables, ρ is the fluid
density, u is the velocity field, W (ρ, ρ̇) is a given potential, “dot” denotes the material time
derivative: ḟ = df

dt = ft +u∇f , and δW
δρ denotes the variational derivative of W with respect to ρ

at a fixed value of u. These models include the non-linear one-velocity model of a bubbly fluid
(with incompressible liquid phase) at small volume concentration of gas bubbles (Iordanski [2],
Kogarko [3], Wijngaarden [4]), and the dispersive shallow water model (Green & Naghdi [5],
Salmon [6]). For the Green–Naghdi model, the potential function is [1]

W (ρ, ρ̇) = ρ(3gρ− ε2ρ̇2)/6,

?This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2007.html

1See also references therein.
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where g is the gravity, ε is the ratio of the vertical length scale to the horizontal length scale.
For the Iordanski–Kogarko–Wijngaarden model, the potential function is [1]

W (ρ, ρ̇) = ρ
(
c2ρ20ε20(ρ20)− 2πnρ10R

3Ṙ2
)
,

where

4
3
πnR3 =

(
1
ρ
− c1
ρ10

)
, ρ20 = c2

(
1
ρ
− c1
ρ10

)−1

,

ε20 is the internal energy of the gas phase, c1 and c2 are the mass concentrations of the liquid
and gas phases, n is the number of bubbles per unit mass, ρ10 and ρ20 are the physical densities
of components. The quantities c1, c2, n and ρ10 are assumed constant.

One of the methods for studying of differential equations is group analysis [7]. Many appli-
cations of group analysis to partial differential equations are collected in [8]. Group analysis
beside construction of exact solutions provides a regular procedure for mathematical modeling
by classifying differential equations with respect to arbitrary elements. An application of group
analysis involves several steps. The first step is the group classification with respect to arbitrary
elements. This paper considers group classification of equations (1) in the three-dimensional
case, where the function Wρ̇ρ̇ satisfies the condition Wρ̇ρ̇ 6= 0. Notice that for Wρ̇ρ̇ = 0 or
W (ρ, ρ̇) = ρ̇ϕ(ρ) + ψ(ρ), the momentum equation becomes

u̇+ ψ′′ρx = 0.

Hence in the case Wρ̇ρ̇ = 0, equations (1) are similar to the gas dynamics equations. This case
has been completely studied [9] (see also [10]).

The one-dimensional case of equations (1) was studied in [11]. As in the case of the gas
dynamics equations there are differences in the group classifications of one-dimensional and
three-dimensional equations.

Another part of this paper is devoted to a special vortex solution. This solution was in-
troduced by L.V. Ovsyannikov [12] for ideal compressible and incompressible fluids. This is
a partially invariant solution, generated by the Lie group of all rotations. L.V. Ovsyannikov
called it a “singular vortex”. It is related with a special choice of non-invariant function. He
also gave complete analysis of the overdetermined system corresponding to this type of partially
invariant solutions: all invariant functions satisfy the well-defined system of partial differential
equations with two independent variables. The main features of the fluid flow, governed by the
obtained solution, were pointed out in [12]. It was shown that trajectories of particles are flat
curves in three-dimensional space. The position and orientation of the plane, which contains
the trajectory, depends on the particle’s initial location. Later particular solutions of the sys-
tem of partial differential equations for invariant functions were studied in [13, 14, 15, 16]. For
some other models, this type of partially invariant solutions was considered in [17, 18]. Exact
solutions in fluid dynamics generated by a rotation group are of great interest by virtue of their
high symmetry. The classical spherically symmetric solutions is one of the particular cases of
such solutions.

In this manuscript a singular vortex of the mathematical model of fluids with internal inertia
is studied. Complete group classification of the system of equations for invariant functions is
given. All invariant solutions for this system are presented.

2 Equivalence Lie group

Since the function W depends on the derivatives of the dependent variables, for the sake of
simplicity of finding the equivalence Lie group, new dependent variables are introduced:

u5 = ρ̇, φ1 = W, φ2 = Wρ, φ3 = Wρ̇,
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where u4 = ρ and x4 = t. An infinitesimal operator Xe of the equivalence Lie group is sought
for in the form [19]:

Xe = ξi∂xi + ζuj∂uj + ζφk∂φk
,

where all coefficients ξi, ζuj and ζφk (i = 1, 2, j = 1, 2, 3, 4, 5, k = 1, 2, 3) are functions of the
variables2 xi, uj and φk. Hereafter a sum over repeated indices is implied.

The coefficients of the prolonged operator are obtained by using the prolongation formulae:

ζuα,i = De
i ζ

uα − uα,jD
e
i ξ

xj (i = 1, 2, 3, 4),
De

i = ∂xi + uα,i∂uα + (ρxiWβ,1 + ρ̇xiWβ,2)∂Wβ
,

where α = (α1, α2, α3, α4) and β = (β1, β2) are multiindices (αi ≥ 0, βi ≥ 0),

(α1, α2, α3, α4), j = (α1 + δ1j , α2 + δ2j , α3 + δ3j , α4 + δ4j),

u(α1,α2,α3,α4) =
∂α1+α2+α3+α4u

∂xα1
1 ∂xα2

2 ∂xα3
3 ∂tα4

, W(β1,β2) =
∂β1+β2W

∂ρβ1∂ρ̇β2
.

The conditions that W does not depend on t, xi, ui (i = 1, 2, 3) give that

ζuk
xi

= 0, ζuk
uj

= 0, ζW
xi

= 0, ζW
uj

= 0 (i = 1, 2, 3, 4, j = 1, 2, 3, k = 4, 5).

With these relations the prolongation formulae for the coefficients ζWβ become:

ζWβ,i = D̃e
i ζ

Wβ −Wβ,1D̃
e
i ζ

u4 −Wβ,2D̃
e
i ζ

u5 (i = 1, 2),

where

D̃e
1 = ∂ρ +Wβ,1∂Wβ

, D̃e
2 = ∂ρ̇ +Wβ,2∂Wβ

.

For constructing the determining equations and solving them, the symbolic computer program
Reduce [20] was applied. Calculations yield the following basis of generators of the equivalence
Lie group

Xe
1 = ∂x1 , Xe

2 = ∂x2 , Xe
3 = ∂x3 , Xe

4 = t∂x1 + ∂u1 , Xe
5 = t∂x2 + ∂u2 ,

Xe
6 = t∂x3 + ∂u3 , Xe

7 = u2∂u2 − u1∂u2 + x2∂x1 − x1∂x2 ,

Xe
8 = u3∂u1 − u1∂u3 + x3∂x1 − x1∂x3 , Xe

9 = u3∂u2 − u2∂u3 + x3∂x2 − x2∂x3 ,

Xe
10 = ∂t, Xe

11 = t∂t + xi∂xi , Xe
12 = ∂W , Xe

13 = ρ∂W , Xe
14 = ρ̇∂W ,

Xe
15 = ρ̇∂ρ̇ + ρ∂ρ +W∂W , Xe

16 = xi∂xi + ui∂ui − 2ρ∂ρ.

Here, only the essential part of the operators Xe
i is written. For example, the operator Xe

11

found as a result of the calculations, is

t∂t + xi∂xi − ρ̇∂ρ̇.

The part −ρ̇∂ρ̇ is obtained from Xe
11 using the prolongation formulae. The symmetry opera-

tors Xe
j (1 ≤ j ≤ 10) are symmetries of the Galilean group3, which are independent of a potential

function W (ρ, ρ̇). The symmetries corresponding to the operators Xe
1 , Xe

2 , Xe
3 are the space

translation symmetries, Xe
4 , Xe

5 , Xe
6 are the Galilean boosts, Xe

7 , Xe
8 and Xe

9 are the rotations

2In the classical approach [7, Chapter 2, Section 6.4] for an equivalence Lie group it is assumed ξi
φk

= ζj
φk

= 0.
Discussion of the generalization of the classical approach is given in [19, Chapter 5, Section 2.1].

3This group is admitted by many systems of partial differential equations applied in Newtonian continuum
mechanics. See, for example, [7, 8] and references therein.
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and Xe
10 is the time translation symmetry. The operator Xe

11 corresponds to a scaling symmet-
ry, which is also admitted by the gas dynamics equations [7]. The symmetry corresponding
to the operator Xe

16 applies for a gas with a special state equation [7]. Since the equivalence
transformations corresponding to the operators Xe

11, X
e
12, . . . , Xe

16 are applied for simplifying
the function W in the process of the classification, let us present these transformations. As the
function W depends on ρ and ρ̇, only the transformations of these variables are presented:

Xe
11 : ρ′ = ρ, ρ̇′ = e−aρ̇, W ′ = W ;

Xe
12 : ρ′ = ρ, ρ̇′ = ρ̇, W ′ = W + a;

Xe
13 : ρ′ = ρ, ρ̇′ = ρ̇, W ′ = W + aρ;

Xe
14 : ρ′ = ρ, ρ̇′ = ρ̇, W ′ = W + aρ̇;

Xe
15 : ρ′ = eaρ, ρ̇′ = eaρ̇, W ′ = eaW ;

Xe
16 : ρ′ = e−2aρ, ρ̇′ = e−2aρ̇, W ′ = W.

Here a is the group parameter.

3 Admitted Lie group of (1)

An admitted generator X of equations (1) is sought in the form

X = ξx1∂x1 + ξx2∂x2 + ξx3∂x3 + ξt∂t + ζu1∂u1 + ζu2∂u2 + ζu3∂u3 + ζρ∂ρ,

where the coefficients of the generator are functions of the variables x1, x2, x3, t, u1, u2, u3, ρ.
Calculations showed that

ξx1 = c6x1t+ c4t+ c3x3 + x1c7 + x1c1 + c5,

ξx2 = c6x2t+ c12t+ x3c11 + x2c7 + x2c1 − x1c12 + c13,

ξx3 = c6x3t+ c16t+ c7x3 + c1x3 − c11x2 − c3x1 + c17,

ξt = c6t
2 + c7t+ c8, ζρ = (−3c6t+ c15)ρ,

ζu1 = c3u3 + c2u2 − c6u1t+ c1u1 + c6x1 + c4,

ζu2c11u3 − c6u2t+ c1u2 − c2u1 + c6x2 + c12,

ζu3 = −c6u3t+ c1u3 − c11u2 − c3u1 + c6x3 + c16,

where the constants ci (i = 1, 2, . . . , 8, 11, 12, 13, 15) satisfy the conditions

27c6ρ3(3Wρ̇ρρρρ̇ρ+Wρ̇ρρρ̇− 3Wρρρρ−Wρρ) + 600Wρ̇ρ̇c6ρ̇
2ρ

+ 25ρ̇3(5Wρ̇ρ̇ρ̇ρ̇ρ̇
2(c15 − c7) + 5Wρ̇ρ̇ρ̇ρρ̇ρc15 + 18Wρ̇ρ̇ρρc15

+Wρ̇ρ̇ρ̇ρ̇(28c15 − 33c7 − 10c1) + 18Wρ̇ρ̇(c15 − 2c7 − 2c1)) = 0, (2)
Wρ̇ρ̇ρ̇ρ̇(c7 − c15)− c15ρWρ̇ρ̇ρ + (2c1 − c15 + 2c7)Wρ̇ρ̇ + 3c6Wρ̇ρ̇ρ̇ρ = 0, (3)

9Wρ̇ρρρρ̇ρ
3c15 + 40Wρ̇ρ̇ρ̇ρ̇ρ̇

4(c7 − c15) +Wρ̇ρ̇ρ̇ρρ̇
3ρ(9c7 − 49c15)− 9Wρ̇ρ̇ρρρ̇

2ρ2c7

+ 8Wρ̇ρ̇ρ̇ρ̇
3(10c1 − 17c15 + 22c7) + 2Wρ̇ρ̇ρρ̇

2ρ(9c1 − 37c15 + 9c7)− 9Wρρρρ
3c15

+ 9Wρ̇ρρρ̇ρ
2(c15 − 2c1) + 56Wρ̇ρ̇ρ̇

2(2c1 − c15 + 2c7) + 9Wρρρ
2(2c1 − c15) = 0, (4)

c6(5Wρ̇ρ̇ρ̇ρ̇+ 3Wρ̇ρ̇ρρ+ 5Wρ̇ρ̇) = 0. (5)

The determining equations (2)–(5) define the kernel of admitted Lie algebras and its exten-
sions. The kernel of admitted Lie algebras consists of the generators

Y1 = ∂x1 , Y2 = ∂x2 , Y3 = ∂x3 , Y10 = ∂t,
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Y4 = t∂x1 + ∂u1 , Y5 = t∂x2 + ∂u2 , Y6 = t∂x3 + ∂u3 ,

Y7 = x2∂x3 − x3∂x2 + u2∂u3 − u3∂u2 ,

Y8 = x3∂x1 − x1∂x3 + u3∂u1 − u1∂u3 ,

Y9 = x1∂x2 − x2∂x1 + u1∂u2 − u2∂u1 .

Extensions of the kernel depend on the value of the functionW (ρ, ρ̇). They can only be operators
of the form

c1X1 + c6X6 + c7X7 + c15X14,

where

X1 = xi∂xi + ui∂ui , X6 = t(t∂t + xi∂xi − ui∂ui − 3ρ∂ρ) + xi∂ui

X7 = xi∂xi + t∂t, X9 = x2∂x2 + u2∂u2 , X14 = ρ∂ρ.

Relations between the constants c1, c6, c7, c15 depend on the function W (ρ, ρ̇).

3.1 Case c6 6= 0

Let c6 6= 0, then equation (5) gives

5Wρ̇ρ̇ρ̇ρ̇+ 3Wρ̇ρ̇ρρ+ 5Wρ̇ρ̇ = 0.

The general solution of this equation is Wρ̇ρ̇ = ρ−5/3g(ρ̇ρ−5/3), where the function g is an
arbitrary function of integration. Substitution of Wρ̇ρ̇ into equation (3) shows that the function
g = 2q0 is constant. Hence,

W = q0ρ̇2ρ−5/3 + ϕ1(ρ)ρ̇+ ϕ2(ρ),

where the functions ϕ2(ρ) and ϕ1(ρ) are arbitrary. Substituting this potential function in the
other equations (2)–(4), one obtains

3ρϕ′′′2 + ϕ′′2 = 0, (c7 + 2c1)ϕ′′2 = 0, c15 = −3(c1 + c7).

If ϕ′′2 = 0, then the extension of the kernel of admitted Lie algebras is given by the generators

X6, X1 − 3X14, X7 − 3X14.

If ϕ′′2 = C2ρ
−3 6= 0, then the extension of the kernel is given by the generators

X6, X1 − 2X7 + 3X14.

3.2 Case c6 = 0

Let c6 = 0, then equation (3) becomes

−c15a+ (c1 + c7)b+ c7c = 0, (6)

where

a = ρ̇Wρ̇ρ̇ρ̇ + ρWρ̇ρ̇ρ +Wρ̇ρ̇, b = 2Wρ̇ρ̇, c = ρ̇Wρ̇ρ̇ρ̇.

Further analysis of the determining equations (2)–(4) is similar to the group classification of the
gas dynamics equations [7].

Let us analyze the vector space Span(V ), where the set V consists of vectors (a, b, c) with ρ
and ρ̇ are changed. If the function W (ρ, ρ̇) is such that dim(Span(V )) = 3, then equation (6) is
only satisfied for

c1 = 0, c7 = 0, c15 = 0,

which does not give extensions of the kernel of admitted Lie algebras. Hence, one needs to study
dim(Span(V )) ≤ 2.
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3.2.1 Case dim(Span(V )) = 2

Let dim(Span(V )) = 2. There exists a constant vector (α, β, γ) 6= 0, which is orthogonal to the
set V :

αa+ βb+ γc = 0. (7)

This means that the function W (ρ, ρ̇) satisfies the equation

(α+ γ)ρ̇Wρ̇ρ̇ρ̇ + αρWρρ̇ρ̇ = −(α+ 2β)Wρ̇ρ̇. (8)

The characteristic system of this equation is

dρ̇

(α+ γ)ρ̇
=
dρ

αρ
=

dWρ̇ρ̇

−(α+ 2β)Wρ̇ρ̇
.

The general solution of equation (8) depends on the values of the constants α, β and γ.

Case α = 0. Because of equation (7) and the condition Wρ̇ρ̇ 6= 0, one has γ 6= 0. The general
solution of equation (8) is

Wρ̇ρ̇(ρ, ρ̇) = ϕ̃ρ̇k, (9)

where k = −2β/γ, and ϕ̃ is an arbitrary function of integration. Substitution of (9) into (6)
leads to

c15ρϕ̃
′ − ϕ̃(ρ) (2c1 − (k + 1)c15 + (k + 2)c7) = 0. (10)

If c15 6= 0, the dimension dim(Span(V )) = 1, which contradicts to the assumption. Hence,
c15 = 0 and from (10) one obtains c̃1 = −(k + 2)c7/2. The extension of the kernel in this case
is given by the generator

−pX1 + 2X7,

where p = k + 2.
If (k + 2)(k + 1) 6= 0, then integrating (9), one finds

W (ρ, ρ̇) = ϕ(ρ)ρ̇p + ϕ1(ρ)ρ̇+ ϕ2(ρ),

where ϕ1(ρ) and ϕ2(ρ) are arbitrary functions. Substituting this function W into (2)–(4) one
has ϕ′′2 = 0.

If k = −2, then

W (ρ, ρ̇) = ϕ(ρ) ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ),

and ϕ′′2 = 0, similar to the previous case.
If k = −1, then

W (ρ, ρ̇) = ϕ(ρ)ρ̇ ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ),

and also ϕ′′2 = 0.
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Case α 6= 0. The general solution of equation (9) is

Wρ̇ρ̇(ρ, ρ̇) = ϕ(ρ̇ρk)ρλ, (11)

where k = −(1 + γ/α), λ = −(1 + 2β/α) and ϕ is an arbitrary function. Substitution of this
function into (6) leads to

k0ϕ
′z + k1ϕ = 0,

where

z = ρ̇ρk, k0 = c7 − c15(k + 1), k1 = 2c1 − c15(λ+ 1) + 2c7.

Since dim(Span(V )) = 2, one obtains that k0 = 0 and k1 = 0 or

c7 = c15(k + 1), c1 = c15(p− 1)/2,

where p = λ− 2k. Integrating (11), one finds

W (ρ, ρ̇) = ρpϕ(ρ̇ρk) + ρ̇ϕ1(ρ) + ϕ2(ρ). (12)

Substitution of (12) into (2)–(4) gives

ρϕ′′′2 + (2k − λ+ 2)ϕ′′2 = 0.

Solving this equation, one has

ϕ′′2 = C2ρ
p−2,

where C2 is an arbitrary constant. The extension of the kernel is given by the generator

(p− 1)X1 + 2(k + 1)X7 + 2X14.

3.2.2 Case dim(Span(V )) = 1

Let dim(Span(V )) = 1. There exists a constant vector (α, β, k) 6= 0 such that

(a, b, c) = (α, β, k)B

with some function B(ρ, ρ̇) 6= 0. Because Wρ̇ρ̇ 6= 0, one has that β 6= 0. Hence, the function
W (ρ, ρ̇) satisfies the equations

ρ̇Wρ̇ρ̇ρ̇ + ρWρρ̇ρ̇ + (1− 2α̃)Wρ̇ρ̇ = 0, ρ̇Wρ̇ρ̇ρ̇ − 2γWρ̇ρ̇ = 0.

The general solution of the latter equation is

Wρ̇ρ̇(ρ, ρ̇) = ϕ(ρ)ρ̇k

with arbitrary function ϕ(ρ). Substituting this solution into the first equation, one obtains

ρϕ′(ρ) + (1− 2α̃+ k)ϕ(ρ) = 0, α̃ = α/β.

Thus,

Wρ̇ρ̇ = −q0ρ̇kρλ, (13)



8 S.V. Meleshko and P. Siriwat

where λ = −(1 − 2α̃ + k), q0 is an arbitrary constant. Since dim(Span(V )) = 1, then q0 6= 0,
λ and k are such that λ2 + k2 6= 0.

Substituting (13) into (6), it becomes

−c15(k + λ+ 1) + c7(k + 2) + 2c1 = 0.

Integration of (13) depends on the quantity of k.
If (k + 2)(k + 1) 6= 0, then integrating (13), one obtains

W (ρ, ρ̇) = −q0ρλρ̇p + ρ̇ϕ1(ρ) + ϕ2(ρ), p(p− 1) 6= 0,

where p = k + 2. Substituting this W into equations (2)–(4), one obtains

c1 = (c15(p+ λ− 1)− c7p)) /2,

with the function ϕ2(ρ) satisfying the condition

c15ρϕ
′′′
2 + ϕ′′2(−c15(p+ λ− 2) + c7p) = 0.

If ϕ′′2 = C2ρ
−µ 6= 0, the extension of the kernel is given by the generator

(1− µ)X1 + 2(X14 + φX7),

where φ = (µ+ λ+ p− 2)/p. If ϕ′′2 = 0, the extension is given by the generators

pX1 − 2X7, (p+ λ− 1)X1 + 2X14.

If k = −2, then integrating (13), one obtains

W (ρ, ρ̇) = −q0ρλ ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ), q0 6= 0.

Substituting this into equations (2)–(4), we obtain

c1 = c15(λ− 1)/2,

and the condition

c15(ρϕ′′′2 − ϕ′′2(λ+ 2)) + q0λ(λ− 1)(c15 − c7)ρλ−2 = 0.

If λ(λ− 1) = 0 and ϕ2 is arbitrary, then the extension is given only by the generator

X7.

If λ(λ− 1) = 0 and ϕ′′2 = C2ρ
λ+2, then the extension of the kernel consists of the generators

(λ− 1)X1 + 2X14, X7.

If λ(λ− 1) 6= 0 and ϕ′′2 = C2ρ
λ+2 − q0

4 λ(λ− 1)µρλ−2, then the extension is

(λ− 1)X1 + 2(X14 + (µ+ 1)X7),

where c7 = (µ+ 1)c15.
If k = −1, then integrating (13), one obtains

W (ρ, ρ̇) = −q0ρλρ̇ ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ),
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and substituting it into equations (2)–(4), we obtain

c1 = (c15λ− c7)/2,

and the condition

c15ρϕ
′′′
2 + ϕ′′2(−c15λ+ c15 + c7) = 0.

One needs to study two cases. If ϕ′′2 6= 0, then the extension is possible only for ϕ2 = C2ρ
−µ 6= 0,

where µ = −λ+ 1 + c7/c15. The extension of the kernel is given by the generator

(1− µ)X1 + 2(µ+ λ− 1)X7 + 2X14.

If ϕ′′2 = 0, then the extension of the kernel consists of the generators

X1 − 2X7, X14 + λX7.

3.2.3 Case dim(Span(V )) = 0

Let dim(Span(V )) = 0. The vector (a, b, c) is constant:

(a, b, c) = (α, β, k)

with some constant values α, β and k. This leads to

Wρ̇ρ̇ = −2q0,

where q0 6= 0 is constant. Integrating this equation, one obtains

W (ρ, ρ̇) = −q0ρ̇2 + ρ̇ϕ1(ρ) + ϕ2(ρ). (14)

Substituting (14) into equation (2)–(4), we obtain

c1 = (c15 − 2c7)/2,

and the condition

c15ρϕ
′′′
2 + 2c7ϕ′′2 = 0.

If ϕ′′2 6= 0, then ϕ2 = C2ρ
−µ, where µ = 2c7/c15. The extension of the kernel consists of the

generator

(1− µ)X1 + 2X14 + µX7.

If ϕ′′2 = 0, then the extension of the kernel is given by the generators

X1 + 2X14, X1 −X7.

The result of group classification of equations (1) is summarized in Table 1. The linear part
with respect to ρ̇ of the function W (ρ, ρ̇) is omitted. Notice also that the change t→ −t has to
conserve the potential function W , this leads to ϕ1(ρ) = 0.

Remark 1. The Green–Naghdi model belongs to the class M7 in Table 1 with λ = 1, p = 2
and µ = 0. Invariant solutions of the one-dimensional Green–Naghdi model completely studied
in [21].

Remark 2. The one-velocity dissipation-free Iordanski–Kogarko–Wijngaarden model has an
extension of the kernel of admitted Lie algebras only for a special internal energy of the gas phase
(class M3 (p = 2) in Table 1), which corresponds to a Chaplygin gas ε20 (ρ20) = γ1/ρ20 + γ0,
where γ1 and γ0 are constants.
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Table 1. Group classification of equations (1).

W (ρ, ρ̇) Extensions Remarks

M1 −q0ρ−5/3ρ̇2 + ϕ2(ρ) X6, X1 − 2X7 + 3X14 ϕ′′2 = C2ρ
−3 6= 0

M2 X6, X1 − 3X14, X7 − 3X14 ϕ′′2 = 0

M3 ϕ(ρ)ρ̇p + ϕ2 −pX1 + 2X7 ϕ′′2 = 0

M4 ϕ(ρ) ln ρ̇+ ϕ2 X7 ϕ′′2 = 0

M5 ρ̇ϕ(ρ) ln ρ̇+ ϕ2 X1 − 2X7 ϕ′′2 = 0

M6 ρpϕ(ρ̇ρk) + ϕ2 (p− 1)X1 + 2(X7(k + 1) +X14) ϕ′′2 = C2ρ
p−2

M7 −q0ρλρ̇p + ϕ2 (1− µ)X1 + 2(X14 + φX7) ϕ′′2 = C2ρ
−µ 6= 0,

p(p− 1) 6= 0,
φ = (µ+ λ+ p− 2)/p

M8 pX1 − 2X7, ϕ′′2 = 0,
(p+ λ− 1)X1 + 2X14 p(p− 1) 6= 0

M9 −q0ρλ ln ρ̇+ ϕ2 X7 ϕ2(ρ) arbitrary,
λ(λ− 1) = 0

M10 (λ− 1)X1 + 2X14, ϕ′′2 = C2ρ
λ+2,

X7 λ(λ− 1) = 0

M11 (λ− 1)X1 + 2(X14 + (µ+ 1)X7) ϕ′′2 = C2ρ
λ+2

− q0

4 λ(λ− 1)µρλ−2,
λ(λ− 1) 6= 0

M12 −q0ρλρ̇ ln ρ̇+ ϕ2 (1− µ)X1 + 2(µ+ λ− 1)X7 + 2X14 ϕ2 = C2ρ
−µ 6= 0

M13 X1 − 2X7, X14 + λX7 ϕ′′2 = 0

M14 −q0ρ̇2 + ϕ2 (1− µ)X1 + 2X14 + µX7 ϕ2 = C2ρ
−µ 6= 0

M15 X1 + 2X14, X1 −X7 ϕ′′2 = 0

4 Special vortex

In this section a special vortex solution is considered. With the spherical coordinates [12]:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,
U = u sin θ cosϕ+ v sin θ sinϕ+ w cos θ,
U2 = u cos θ cosϕ+ v cos θ sinϕ− w sin θ,
U3 = −u sinϕ+ v cosϕ,

the generators X7, X8, X9 are

X7 = − sinϕ∂θ − cosϕ cot θ∂ϕ + cosϕ(sin θ)−1(U2∂U3 − U3∂U2),

X8 = − cosϕ∂θ − sinϕ cot θ∂ϕ + sinϕ(sin θ)−1(U2∂U3 − U3∂U2), X9 = ∂ϕ.

Introducing cylindrical coordinates (H,ω) into the two-dimensional space of vectors (U2, U3)

U2 = H cosω, U3 = H sinω,

the first two generators become

X7 = − sinϕ∂θ − cosϕ cot θ∂ϕ + cosϕ(sin θ)−1∂ω,
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X8 = − cosϕ∂θ − sinϕ cot θ∂ϕ + sinϕ(sin θ)−1∂ω.

The singular vortex solution [12] is defined by the representation

U = U(t, r), H = H(t, r), ρ = ρ(t, r), ω = ω(t, r, θ, ϕ).

The function ω(t, r, θ, ϕ) is “superfluous”: it depends on all independent variables. If H = 0,
then the tangent component of the velocity vector is equal to zero. This corresponds to the
spherically symmetric flows. For a singular vortex, it is assumed that H 6= 0.

In a manner similar to [12] one finds that for system (1), the invariant functions U(t, r),
H(t, r) and ρ(t, r) have to satisfy the system of partial differential equations with the two
independent variables t and r:

r2D0ρ+ ρ(r2U)r = ραh, D0U + ρ−1pr = r−3α2,

D0h = r−2α(h2 + 1), D0α = 0,
p = ρ(Wρ − ρ̇Wρρ̇ −Wρ̇ρ̇D0ρ̇) +Wρ̇ρ̇−W, (15)

where α = rH, D0 = ∂t +U∂r, and the function h(t, r) is introduced for convenience during the
compatibility analysis.

The equivalence Lie group of equations (15) corresponds to the generators

Xe
0 = ∂t, Xe

2 = ρ∂W , Xe
3 = 2t∂t − U∂U − 3ρ∂ρ − 5ρ̇∂ρ̇ − 3W∂W ,

Xe
4 = ρ̇∂ρ̇ + ρ∂ρ +W∂W , Xe

5 = x∂x + U∂U + 2α∂α + 2W∂W .

Calculations yield that the kernel of admitted Lie algebras consists of the generator

X0 = ∂t,

extensions of the kernel can only be operators of the form

k1X1 + k2X2 + k3X3 + k4X4,

where

X1 = t∂t − U∂U − α∂α + ρ̇∂ρ̇, X2 = t(t∂t + r∂r − U∂U − 3ρ∂ρ − 5ρ̇∂ρ̇) + r∂U − 3ρ∂ρ̇,

X3 = 2t∂t + r∂r − U∂U − 3ρ∂ρ − 5ρ̇∂ρ̇, X4 = ρ̇∂ρ̇ + ρ∂ρ.

The constants ki (i = 1, 2, 3, 4) depend on the function W (ρ, ρ̇). These extensions are presented
in Table 2.

4.1 Steady-state special vortex

Let us consider the invariant solution corresponding to the kernel {X0}. This type of solution
for the gas dynamics equations was studied in [14]. The representation of the solution is

ρ = ρ(r), U = U(r), h = h(r), α = α(r).

Equations (15) become

Uρ′ + ρ(r2U)′ = ραh, UU ′ + ρ−1p′ = r−3α2,

Uh′ = r−2α(h2 + 1), Uα′ = 0,
p = ρ(Wρ − Uρ′Wρρ̇ −Wρ̇ρ̇U(Uρ′)′) +Wρ̇Uρ

′ −W, ρ̇ = Uρ′. (16)
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Table 2. Group classification of equations (15).

W (ρ, ρ̇) Extensions Remarks

M1 −q0ρ̇2ρ−5/3 + βρ5/3 X2, X3 q0β 6= 0

M2 −q0ρ̇2ρ−5/3 X2, X1, X3 q0 6= 0

M3 ϕ(ρ)ρ̇p X1 + (2− p)X3 p(p− 1) 6= 0

M4 −(q0ρ+ γ) ln(ρ̇) + ϕ2(ρ) X1 +X3 ϕ2 arbitrary

M5 ϕ(ρ)ρ̇ ln(ρ̇) 2X1 +X3

M6 ρλϕ(ρ̇ρk) + ϕ2(ρ) 2X1 − (λ− 2)X3, X4 − kX3 ϕ′′2 = C2ρ
λ−2

M7 −q0ρλρ̇p + ϕ2(ρ) 2(µX1 + 2(2µ+ p(λ− µ))X3 ϕ′′2 = C2ρ
µ

+(2− λ)(2X1 + (2− p)X3) p(p− 1) 6= 0

M8 −q0ρλρ̇p −2X1 + (2− λ)X3, p(p− 1) 6= 0
(p− 2)X3 − 2X6

M9 −q0ρλ ln(ρ̇) + ϕ2(ρ) X1 +X3 ϕ2 arbitrary
λ(λ− 1) = 0

M10 X3 +X6, 2X1 + (λ− 1)X3 ϕ′′2 = C2ρ
λ−2

λ(λ− 1) = 0

M11 X1 + λ−1
2 X3 +X6 ϕ′′2 = ρλ−2(q0 ln(ρ) + β)

+ α
Cλ(λ−1) (X3 +X6) λ(λ− 1) 6= 0

M12 −q0ρλρ̇ ln(ρ̇) + ϕ2(ρ) 2X1 + λX3 ϕ′′2 = C2ρ
µ 6= 0

+(λ− µ− 1)(X3 + 2X6)

M13 −q0ρλρ̇ ln(ρ̇) 2X1 +X3, X4

M14 −q0ρ̇2 + ϕ2(ρ) 2X1 +X3 − µX6 ϕ′′2 = C2ρ
µ 6= 0

M15 −q0ρ̇2 X1, X4

In [14] it is shown that for the gas dynamics equations all dependent variables can be represented
through the function h(r), which satisfies a first-order ordinary differential equation. Here also
all dependent variables can be defined through the function h(r), but the equation for h(r) is
a fourth-order ordinary differential equation. In fact, since H 6= 0, from (16) one obtains that
U 6= 0. Hence, α = α0, where α0 is constant. From the first and third equations of (16), one
finds

ρ = R0
h′√
h2 + 1

, U =
α0(h2 + 1)

h′
.

In this case

ρ̇ = −α0R0h
′

(√
h2 + 1
h′

)′

and after substituting ρ and ρ̇ into the formula for the pressure, one has

p = F (h, h′, h′′, h′′′),

where the function F is defined by the potential function W . Substituting representations
of ρ, U and p into the second equation of (15), one obtains the fourth-order ordinary differential
equation for the function h(r).
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4.2 Invariant solutions of (15) with W = −q0ρ̇
2ρ−5/3 + βρ5/3

System of equations (15) with the potential function

W = −q0ρ̇2ρ−5/3 + βρ5/3

admit the Lie group corresponding to the Lie algebra L3 = {X0, X2, X3}.
If β = 0, then there is one more admitted generator X1. The four-dimensional Lie algebra

with the generators {X0, X1, X2, X3} is denoted by L4.
The structural constants of the Lie algebra L4 are defined by the table of commutators:

X0 X1 X2 X3

X0 0 X0 X3 2X0

X1 0 X2 0
X2 0 −2X2

X3 0

Solving the Lie equations for the automorphisms, one obtains:

A0 :
{
x̃0 = x0 + a0(x1 + 2x3) + a2

0x2,
x̃3 = x3 + a0x2,

A1 :
{
x̃0 = x0e

−a1 ,
x̃2 = x2e

a1 ,

A2 :
{
x̃2 = x2 + a2(x1 + 2x3) + a2

2x0,
x̃3 = x3 + a2x0,

A3 :
{
x̃0 = x0e

a3 ,
x̃2 = x2e

a3 .

Construction of the optimal system of one-dimensional admitted subalgebras consists of using
the automorphisms Ai (i = 0, 1, 2, 3) for simplifications of the coordinates (x0, x1, x2, x3) of the
generator

X =
3∑

j=0

xjXj .

Here k is the dimension of the Lie algebra Lk (k = 3, 4). In the case L3 one has to assume that
the coordinate x1 = 0.

Beside automorphisms for constructing optimal system of subalgebras one can use involutions.
Equations (15) posses the involutions E, corresponding to the change t→ −t. The involution E
acts on the generator

X =
3∑

j=0

xjXj .

by transforming the generator X into the generator X̃ with the changed coordinates:

E :
{
x̃0 = −x0,
x̃2 = −x2.

Here only the changed coordinates are presented.

4.3 One-dimensional subalgebras

One can decompose the Lie algebra L4 as L4 = I ⊕N , where I = L3 is an ideal and N = {X1}
is a subalgebra of L4. Classification of the subalgebra N = {X1} is simple: it consists of the
subalgebras:

N1 = {0}, N2 = {X1}.
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According to the algorithm [22] for construction of an optimal system of one-dimensional
subalgebras one has to consider two types of generators: (a) X = x0X0 + x2X2 + x3X3,
(b) X = X1 + x0X0 + x2X2 + x3X3. Notice that case (a) corresponds to the Lie algebra L3.
Hence, classifying the Lie algebra L4, one also obtains classification of the Lie algebra L3.

4.3.1 Case (a)

Assuming that x0 6= 0, choosing a2 = −x3/x0, one maps x3 into zero. This means that x̃3 = 0.
For simplicity of explanation, we write it as x3(A2) → 0. In this case x2(A2) → x̃2 = x2−x3

2/x0.
If x̃2 6= 0, then applying x2(A1) → ±1, hence, the generator X becomes

X2 + αX0, α = ±1.

If x̃2 = 0, then one has the subalgebra: {X0}.
In the case x0 = 0, if x3 6= 0 or x2 6= 0, then, applying A0, one can obtain x0 6= 0, which leads

to the previous case. Hence, without loss of generality one also assumes that x3 = 0, x2 = 0.
Thus, the optimal system of one-dimensional subalgebras in case (a) consists of the subalgebras

{X2 ±X0}, {X0}. (17)

This set of subalgebras also composes an optimal system of one-dimensional subalgebras of the
algebra L3.

4.3.2 Case (b)

Assuming that x0 6= 0, choosing a2 = −x3/x0, one maps x3 into zero. In this case x2(A2) →
x̃2 = x2 − x3(1 − x3)/x0. If x̃2 6= 0, then applying A1, and E2 (if necessary), one maps the
generator X into

X1 +X2 + γX0,

where γ 6= 0 is an arbitrary constant. If x̃2 = 0, then x0(A0) → 0, and the generator X
becomes X1.

In the case x0 = 0, if 2x3 + 1 6= 0 or x2 6= 0, then, applying A0, one can obtain x0 6= 0, which
leads to the previous case. Hence, without loss of generality one also assumes that x3 = −1/2,
x2 = 0, and the generator X becomes X3 − 2X1.

Thus, the optimal system of one-dimensional subalgebras of the Lie algebra L4 consists of
the subalgebras

{X2 ±X0}, {X0}, {X1 +X2 + γX0}, {X3 − 2X1}, {X1},

where γ 6= 0 is an arbitrary constant.

Remark 3. An optimal system of subalgebras for W = −q0ρ−3ρ̇2+βρ3 with arbitrary β consists
of the subalgebras (17).

Remark 4. The subalgebra {X2 −X0} is equivalent to the subalgebra: {X3}.

4.4 Invariant solutions of X1 + X2 + γX0

The generator of this Lie group is

X = γX0 +X1 +X2 = (t2 + t+ γ)∂t + tr∂r − 3tρ∂ρ + (r − U(t+ 1))∂U − α∂α.
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To find invariants, one needs to solve the equation

XJ = 0,

where J = J(t, r, ρ, U, α, h). A solution of this equation depends on the value of γ.
Let γ = µ2 + 1/4. In this case invariants of the Lie group are

y = rs, V = s(((t+ 1/2)2 + µ2)U − rt), R = ρs−3, Λ = αe
1
µ

arctan( 2t+1
2µ

)
, h,

where

s =
(
(t+ 1/2)2 + µ2

)−1/2
e

1
2µ

arctan( 2t+1
2µ

)
.

The representation of an invariant solution is

s
((

(t+ 1/2)2 + µ2
)
U − rt

)
= V (y), ρ = s3R(y), α = Λe−

1
µ

arctan( 2t+1
2µ

)
, h = h(y).

Substituting the representation of a solution into (15), one obtains the system of four ordinary
differential equations

V ′ = −R
′

R
V + (Λh− 8V y)/(4y2), h′ =

Λ
V

(h2 + 1)
4y2

, Λ′ =
Λ
V
,

R′′′ =
(
− ((8((3(4(44V + 5y)y − 19Λh)R+ 308R′V y2)R′2

− 3(88R′V y2 − 9ΛhR+ 12(6V + y)Ry)R′′R)V q0y − 9R2/3(4(4(2V + y)V

− (4µ2 + 1)y2)y2 + (Λ− 4hV y)Λ)R3)y − 18(8(R2/3V y3 + 4Λhq0)V y

− (2h2 + 1)Λ2q0 − 4(8(5V + y)V − (4µ2 + 1)y2)q0y2)R′R2)
)
/(288R2V 2q0y

4).

Let γ = −µ2 + 1/4. A representation of a solution is

s(((t+ 1/2)2 − µ2)U − rt) = V (y), α(t+ 1/2− µ)
1
2µ (t+ 1/2 + µ)−

1
2µ = Λ(y),

ρ(t+ 1/2− µ)3α1(t+ 1/2 + µ)3α2 = R(y), h = h(y),

where

y = rs, s = (t+ 1/2− µ)−α1(t+ 1/2 + µ)−α2 , α1 =
2µ− 1

4µ
, α2 =

2µ+ 1
4µ

.

In this case

V ′ = −V R
′

R
+

Λh− 2V y)
y2

, h′ = Λ
(h2 + 1)
V y2

, Λ′ =
Λ
V
,

R′′′ = (528R′′R′RV 2q0y
4 + 72R′′R2V q0y

2(−3Λh+ 6V y + y2)− 616R′ 3V 2q0y
4

+ 24R′2RV q0y
2(19Λh− 44V y − 5y2) + 18R′R2(2R2/3V 2y4 − 8Λ2h2q0

− 4Λ2q0 + 32ΛhV q0y − 40V 2q0y
2 − 8V q0y3 − 4µ2q0y

4 + q0y
4)

+ 9R2/3R3y(4Λ2 − 4ΛhV y + 8V 2y2 + 4V y3 + 4µ2y4 − y4))/(72R2V 2q0y
4).

Let γ = 1/4. A representation of an invariant solution is

s((t+ 1/2)2U − rt) = V (y), ρ = s3R(y), α = e2/(2t+1)Λ(y), h = h(y),

where

y = rs, s =
1

(t+ 1/2)
e−1/(2t+1).
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In this case

V ′ = −V R
′

R
+

(Λh− 2V y)
y2

, h′ =
Λ
V

(h2 + 1)
y2

, Λ′ =
Λ
V
,

R′′′ = (528R′′R′RV 2q0y
4 + 72R′′R2V q0y

2(−3Λh+ 6V y + y2)− 616R′3V 2q0y
4

+ 24R′2RV q0y
2(19Λh− 44V y − 5y2) + 18R′R2(2R2/3V 2y4 − 8Λ2h2q0 − 4Λ2q0

+ 32ΛhV q0y − 40V 2q0y
2 − 8V q0y3 + q0y

4) + 9R2/3R3y(4Λ2 − 4ΛhV y + 8V 2y2

+ 4V y3 − y4))/(72R2V 2q0y
4).

These equations were obtained assuming that V 6= 0. The case V = 0 leads to

Λ = 0, 2q0R′ − yR5/3 = 0.

4.5 Invariant solutions of X3 − 2X1

Invariants of the generator

X3 − 2X1 = r∂r − 3ρ∂ρ + U∂U + 2α∂α

are

U = rV (y), ρ = r−3R(y), α = r2Λ(y), h = h(y),

where y = t. Substitution into equations (15) gives that the functions V (y), R(y), Λ(y) and h(y)
have to satisfy the equations

h′ = Λ(h2 + 1), Λ′ = −2ΛV, R′ = ΛhR,

3(R2/3 + 6q0)(V ′ + V 2) = Λ2
(
4q0(h2 − 3) + 3(R2/3 + 6q0)

)
.

4.6 Invariant solutions of X1

Invariants of the generator X1

X1 = t∂t − U∂U − α∂α

are

x, Ut, ρ, h, αt.

An invariant solution has the representation

U = t−1V (y), ρ = R(y), α = t−1α(y), h = h(y),

where y = x. Substituting into equations (15), one obtains

V ′ = −V R
′

R
+

Λh− 2V y
y2

, h′ =
Λ
V

(h2 + 1)
y2

, Λ′ =
Λ
V
,

R′′′ = (132R′′R′RV 2q0y
4 + 18R′′R2V q0y

2(−3αh+ 6V y + y2)− 154R′3V 2q0y
4

+ 6R′2RV q0y
2(19αh− 44V y − 5y2) + 9R′R2(R2/3V 2y4 − 4α2h2q0 − 2α2q0

+ 16αhV q0y − 20V 2q0y
2 − 4V q0y3) + 9R2/3R3y(α2 − αhV y

+ 2V 2y2 + V y3))/(18R2V 2q0y
4).

Here it is assumed that V 6= 0. The case V = 0 only leads to the condition Λ = 0.
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4.7 Invariant solutions of X2 + X0

X2 = t(t∂t + r∂r − U∂U − 3ρ∂ρ) + r∂U .

Invariants of the generator

X2 +X0 = (t2 + 1)∂t + tr∂r − 3tρ∂ρ + (r − tU)∂U

are

r(t2 + 1)−1/2, U(t2 + 1)1/2 − rt(t2 + 1)−1/2, ρ(t2 + 1)3/2, α, h.

An invariant solution has the representation

U(t2 + 1)1/2− rt(t2 + 1)−1/2 = V (y), ρ = (t2 + 1)−3/2R(y), α = α(y), h = h(y).

where y = r(t2+1)−1/2. Substituting into equations (15), one has to study two cases: (a) V = 0,
and (b) V 6= 0.

Assuming V = 0, one obtains that Λ = 0, and the function R satisfies the equation

2(5βR4/3 − 9q0)R′ + 9yR5/3 = 0.

If V 6= 0, then one obtains

V ′ = −V R
′

R
+

(Λh− 2V y)
y2

, h′ =
Λ
V

(h2 + 1)
y2

, Λ′ = 0,

R′′′ = (132R′′R′RV 2q0y
4 + 54R′′R2V q0y

2(−Λh+ 2V y)− 154R′3V 2q0y
4

+ 6R′2RV q0y
2(19Λh− 44V y)− 10R1/3R′R3βy4 + 9R′R2(R2/3V 2y4 − 4Λ2h2q0

− 2Λ2q0 + 16ΛhV q0y − 20V 2q0y
2 + 2q0y4) + 9R2/3R3y(Λ2 − ΛhV y + 2V 2y2

− y4))/(18R2V 2q0y
4).

4.8 Invariant solutions of X2 − X0

Since the Lie algebra {X2 −X0} is equivalent to the Lie algebra with the generator {X3}, then
for the sake of simplicity an invariant solution with respect to

X3 = 2t∂t + r∂r − U∂U − 3ρ∂ρ

is considered here. Invariants of the generator X3 are

rt−1/2, Ut1/2, ρt3/2, h, α.

An invariant solution has the representation

U = t−1/2V (y), ρ = t−3/2R(y), α = α(y), h = h(y),

where y = rt−1/2.
Substituting into equations (15), one has to study two cases: (a) V − y/2 = 0, and

(b) V − y/2 6= 0.
Assuming V − y/2 = 0, one obtains that Λ = 0, and the function R satisfies the equation

2(20βR4/3 + 9q0)R′ − 9yR5/3 = 0.
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If V − y/2 6= 0, then one obtains

V ′ = (y/2− V )
R′

R
+

2Λh− (4V − 3y)y
2y2

, h′ =
Λ

(V − y/2)
(h2 + 1)
y2

, Λ′ = 0,

R′′′ = (2(y − 2V )2q0y3(66R′′R′Ry + 54R′′R2 − 77R′3y − 132R′2R)

+ 9(y − 2V )2y2R2(R′R2/3y2 − 20R′q0 + 2R5/3y)− 18R′R2y4q0

+ 6(y − 2V )αhy(18R′′R2q0y − 38R′2Rq0y − 48R′R2q0 + 3R2/3R3y)

− 72R′α2R2q0(2h2 + 1)− 40R10/3R′βy4 + 36R2/3α2R3y

+ 9R11/3y5)/(18R2q0y
4(y − 2V )2).

5 Conclusion

In this paper the complete group classification of the three-dimensional equations describing
a motion of fluids with internal inertia (1) is given. The classification is considered with respect
to the potential function W (ρ, ρ̇). Detailed study of one class of partially invariant solutions (the
Ovsyannikov vortex) for a particular potential function is presented. This solution is essentially
three-dimensional.
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