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Abstract. To explain the acceleration of the cosmological expansion researchers have con-
sidered an unusual form of mass-energy generically called dark energy. Dark energy has
a ratio of pressure over mass density which obeys w = p/ρ < −1/3. This form of mass-
energy leads to accelerated expansion. An extreme form of dark energy, called phantom
energy, has been proposed which has w = p/ρ < −1. This possibility is favored by the
observational data. The simplest model for phantom energy involves the introduction of
a scalar field with a negative kinetic energy term. Here we show that theories based on
graded Lie algebras naturally have such a negative kinetic energy and thus give a model
for phantom energy in a less ad hoc manner. We find that the model also contains ordi-
nary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two
component dark matter. Thus from a gauge theory based on a graded algebra we naturally
obtained both phantom energy and dark matter.
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1 Introduction

Graded Lie algebras or Lie superalgebras (i.e. algebras having commuting and anti-commuting
generators) were at one time considered as models for a more complete unified electroweak
theory [1] as well as Grand Unified Theories [2]. Such graded algebras had many attractive
features: vector and scalar bosons were contained within the same theory, the Weinberg angle
was fixed; in some formulations the mass of the Higgs was fixed. However these graded algebras
generically [3] gave rise to negative kinetic energy terms for some of the gauge fields when the
graded trace or supertrace was used.

Here we show that this negative kinetic energy of the original graded algebras can be used to
construct a model for phantom energy [4, 5]. In addition to the phantom field there are other
fields which come from this model which act as dark matter. The advantage of the combined
phantom energy/dark matter model presented here is that it is derived from a modified gauge
principle (i.e. the gauge principle applied to graded algebras) rather than being introduced by
hand. This feature fixes the parameters, such as the coupling between the phantom energy and
dark matter, that are free in more phenomenological models.

Phantom energy is a form of dark energy which has a ratio of pressure over density given by
w = p/ρ < −1. Dark energy in general is a cosmological “fluid” with w < −1/3, which gives rise
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to an accelerated cosmological expansion. Dark energy was proposed to explain the accelerated
expansion observed in studies of distant type Ia supernova [6, 7]. There are various proposals
as to the nature of dark energy: a small, positive cosmological constant, quintessence [8], brane
world models [9, 10], Chaplyin gas [11], k-essense [12], axionic tensor fields [13] and others.
A good review can be found in [14]. Phantom energy is an extreme form of dark energy. The
simplest model for phantom energy involves a scalar field with a negative kinetic energy term [4]

Lp = −1
2
(∂µφ)(∂µφ)− V (φ). (1)

The negative sign in front of the kinetic energy term makes this an unusual field theory. Theories
with negative kinetic energies have been investigated theoretically starting with [15]. Other
papers considering scalar fields with negative kinetic energies can be found in [16]. The main
objection to these negative kinetic energy theories is that quantum mechanically they violate
either conservation of probability or they have no stable vacuum state due to an unbounded,
negative energy density. Although such unusual field theories are not ruled out [4], one can
place constraints on them [17]. Despite the theoretical problems of a scalar field with a negative
kinetic energy term the reason to consider such a strange field theory is that recent observations
give −1.48 < w < −0.72 [18] and thus favor w < −1. A recent comparison of data from various
sources can be found in [19].

The result w < −1 coming from the Lagrangian in (1) depends not only on the negative
kinetic energy term, but also requires that the potential, V (φ), be present and satisfy some
conditions. One can calculate p and ρ from (1). Assuming that the scalar field is spatially
homogeneous enough so that only the time variation is important one finds

w =
p

ρ
=
−1

2 φ̇2 − V (φ)

−1
2 φ̇2 + V (φ)

. (2)

In order to have w < −1 the potential must satisfy
√

2V (φ) > |φ̇| ≥ 0. We will show that it is
possible, using graded algebras, to construct a field theory that satisfies these conditions and so
gives rises to phantom energy. Unlike other models, the negative kinetic term comes from the
structure of the graded algebras rather than being put in by hand. In addition there are other
fields which play the role of dark matter.

2 Review of SU(2/1) algebra

Here we briefly review the graded algebra SU(2/1). The basic idea of using graded algebras to
give phantom energy works for larger graded algebras like SU(N/1) with N > 2. We have taken
SU(2/1) for simplicity.

We use the representation for SU(2/1) which consists of the following eight 3× 3 matrices

even: T1 =
1
2

 0 1 0
1 0 0
0 0 0

 , T2 =
1
2

 0 −i 0
i 0 0
0 0 0

 ,

T3 =
1
2

 1 0 0
0 −1 0
0 0 0

 , T8 =
1
2

 1 0 0
0 1 0
0 0 2

 ,

odd: T4 =
1
2

 0 0 1
0 0 0
1 0 0

 , T5 =
1
2

 0 0 −i
0 0 0
i 0 0

 ,
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T6 =
1
2

 0 0 0
0 0 1
0 1 0

 , T7 =
1
2

 0 0 0
0 0 −i
0 i 0

 .

Except for T8 this is the standard, fundamental representation of SU(3). The matrices on the
first line above (i.e. T1, T2, T3, T8) are the even generators, and those on the second line (i.e. T4,
T5, T6, T7) are odd generators. The even generators satisfy commutation relationships among
themselves which can be written symbolically as [even, even] = even. Mixtures of even and
odd generators satisfy commutators of the form [even, odd] = odd. Finally the odd generators
satisfy anti-commutation relationships of the form {odd, odd} = even. The further details of the
SU(2/1) graded algebra can be found in the paper by Dondi and Jarvis [1] or in Ecclestone [3].
The odd generators above are different than those usually taken in the literature. The connection
of the odd generators above with those in [1] is given by Q̄1, Q1 = T4±iT5 and Q̄2, Q2 = T6±iT7.
In the rest of the article we will use the convention that generators with indices from the middle
of the alphabet (i, j, k) are the even generators, T1, T2, T3, T8, while indices from the beginning
of the alphabet (a, b, c) are the odd generators T4, T5, T6, T7.

For the graded algebra one replaces the concept of the trace by the supertrace. For SU(2/1)
this means that one writes some general element of the group as

M =
(

A2×2 B2×1

C1×2 d1×1

)
.

The subscripts indicate the size of the sub-matrix. The supertrace is now defined as

str(M) = tr[A]− tr[d] (3)

which differs from the regular trace due to the minus sign in front of d.
Later we will need the supertraces of the various products of the eight generators (Ti, Ta).

We collect these results here. For products of even generators we have

str(TiTj) = δij
1
2

except str(T8T8) = −1
2

(4)

for the odd generators we have

str(T4T5) = −str(T5T4) =
i

2
, str(T6T7) = −str(T7T6) =

i

2
. (5)

All other supertraces of the product of two matrices are zero.

3 Phantom energy and dark matter
from an SU(2/1) graded algebra

In [1] vector fields were associated with the even generators and scalar fields with the odd
generators as

Aµ = igAi
µT even

i , φ = −gϕaT odd
a . (6)

The fields Ai
µ are regular commuting fields while ϕa are Grassmann fields. In block form one

can write (6) as

AM =

 A3
µ + A8

µ A1
µ − iA2

µ ϕ4 − iϕ5

A1
µ + iA2

µ −A3
µ + A8

µ ϕ6 − iϕ7

ϕ4 + iϕ5 ϕ6 + iϕ7 2A8
µ

 .
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In this fashion, and by using the regular trace, Dondi and Jarvis [1] showed that the Lagrangian

L =
1

2g2
tr(FMNFMN ), FMN = ∂MAN − ∂NAM + [AM , AN ], (7)

reduced to an SU(2) × U(1) Yang–Mills Lagrangian for Aµ and a Higgs-like Lagrangian for φ.
In (7) we use a different overall sign for the Lagrangian as compared to [1]. This comes because
we have chosen different factors of i in the vector potentials defined below in (8). Using such
an SU(2/1) algebra gave a more unified electroweak theory. The theory based on the graded
SU(2/1) algebra was more unified in two ways: (i) There was only one coupling constant g rather
than two separate coupling constant in the usual Standard Model based on SU(2)×U(1). Thus
in the Standard Model based on the graded SU(2/1) algebra the Weinberg angle was predicted
rather than being an input parameter. (ii) Second the theory based on the graded SU(2/1)
algebra automatically had a scalar field coming from the odd terms in (6).

However on further investigation [3] there were problems with using of the graded SU(2/1)
algebra to construct an electroweak theory. If in (7) one used the correct SU(2/1) invariant
supertrace then the Yang–Mills part of the reduced Lagrangian would have the wrong sign for
the kinetic term for the U(1) gauge field and the kinetic energy term for the scalar field would
be lost.

Here we use these apparent negative features to construct a model for phantom energy.
Instead of making the association between even/odd generators and vector/scalar fields made
in (6) we take the opposite choice [20]

Aµ = igAa
µT odd

a , φ = −gϕiT even
i . (8)

Because of the reversal of roles relative to (6) the fields Aa
µ are Grassmann fields while ϕi are

regular, commuting fields. Then taking the correct, SU(2/1) invariant, supertrace we find that
one of the scalar fields develops a negative kinetic energy term in addition to having a potential
term which is positive definite. Thus the graded algebra gives rise to a phantom field.

With the choice in (8) the Lagrangian in (7) reduces as follows [20]

L =
1

2g2
str(FMNFMN ) =

1
2g2

str
[(

∂[µAν] + [Aµ, Aν ]
)2

]
+

1
g2

str
[
(∂µφ + [Aµ, φ])2

]
. (9)

We have introduced the notation ∂[µAν] = ∂µAν − ∂νAµ. Note that in comparison to other
works such as [1] and [3] we have not introduced extra Grassmann coordinates, ζα in addition to
the normal Minkowski coordinates xµ. Thus in [1] and [3] coordinates and indices ran over six
values – four Minkowski and two Grassmann. The final result in (9) can be obtained from [1]
by dropping the Grassmann coordinates.

We first focus on the scalar term in (9). Inserting φ and Aµ from (8) into the last term in (9)
we find [20]

LS =
1
g2

str
[
(∂µφ + [Aµ, φ])2

]
= str

[(
∂µϕ8T8 + igAa

µϕ8[Ta, T8]
)2

]
+ str

[(
∂µϕiTi + igAa

µϕi[Ta, Ti]
)2

]
. (10)

The first term in (10) takes the form of a phantom energy field. Expanding the first term in (10)
gives

LPhantom = str
[(

∂µϕ8T8 − gA4
µϕ8T5/2 + gA5

µϕ8T4/2− gA6
µϕ8T7/2 + gA7

µϕ8T6/2
)2

]
. (11)

We have used the representation of the SU(2/1) matrices from the previous section to evaluate
the commutators. Using the supertrace results from (4) and (5) the expression in (11) yields

LPhantom = −1
2
(∂µϕ8)2 − 1

16
g2(ϕ8)2

(
A+

µ A−µ −A−
µ A+µ + B+

µ B−µ −B−
µ B+µ

)
(12)
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with A±
µ = A4

µ ± iA5
µ and B±

µ = A6
µ ± iA7

µ. Both A±
µ and B±

µ are Grassmann so the last line
in (12) can be written

LPhantom = −1
2
(∂µϕ8)2 − 1

8
g2(ϕ8)2

(
A+

µ A−µ + B+
µ B−µ

)
. (13)

This is of the form of the phantom energy Lagrangian in (1) but with the potential involving
not only the scalar field, ϕ8, but Grassmann vector fields, A±

µ and B±
µ . We will discuss these

shortly. The minus sign in front of the kinetic energy term comes from taking the SU(2/1)
invariant supertrace rather than the ordinary trace (see the second supertrace result in (4)).

We next focus on the other scalar fields, ϕi, i = 1, 2, 3 which come from the second term
in (10). The calculation proceeds as in equations (11), (12) but with ϕ8 replaced by ϕi, i = 1, 2, 3.
For example for ϕ1 (11) becomes

Lϕ1 = str
[(

∂µϕ1T1 + gA4
µϕ1T7/2− gA5

µϕ1T6/2− gA6
µϕ1T5/2 + gA7

µϕ1T4/2
)2

]
(14)

and (12) becomes

Lϕ1 =
1
2
(∂µϕ1)2 − 1

8
g2(ϕ1)2

(
A+

µ A−µ + B+
µ B−µ

)
. (15)

There are two keys points: the kinetic term for ϕ1 is positive since str(T1T1) = +1/2, and the
potential term is the same as for ϕ8. The other two even scalar fields follow the same pattern
so that in total one can write

LDM =
1
2
(∂µϕi)2 − 1

8
g2(ϕi)2

(
A+

µ A−µ + B+
µ B−µ

)
, (16)

where i is summed from 1 to 3. Thus the total scalar field Lagrangian resulting from (10) is the
sum of (13) and (16). The scalar field in (13) has the “wrong” sign for the kinetic term and acts
as a phantom field. The scalar fields in (16) are ordinary scalar field which we will interpret as
a dark matter candidate. The phantom field and dark matter fields are coupled through the A±

µ

and B±
µ fields. Thus our model provides a coupling between phantom energy and dark matter.

Other models have been considered [21] where there is coupling between dark/phantom energy
and dark matter.

We will now examine the Grassmann vector fields, A4
µ, A5

µ, A6
µ, A7

µ. The final Lagrangian for
these fields will have a nonlinear interaction between the A±

µ and B±
µ fields. In analogy with QCD

we argue that these fields form permanently confined condensates like 〈A4
µA5

µ〉 or 〈A+
µ A−

µ 〉. These
then supply potential (mass-like) terms for the phantom energy and scalar fields of (13) and (16).
This also avoids violation of the spin-statistics theorem since these condensates have bosonic
statistics (they are composed of two Grassmann fields) and integer spin (they are composed
of two integer spin fields). Having a potential term is crucial for the interpretation of ϕ8 as
a phantom energy field, since for a massless, non-interacting scalar field reversing the sign of
the kinetic energy term does not lead a phantom field with w < −1 as can be seen from (2) if
V (φ) = 0. From (9) the vector part of the Lagrangian can be expanded as

LV = −1
2
str

[(
∂[µAa

ν]Ta

)2
]

+
g2

2
str

[(
Aa

µAb
ν{Ta, Tb}

)2
]

= LV 1 + LV 2. (17)

The commutator has become an anticommutator due to the Grassmann nature of the Aa
µ’s.

Also note that there is no cubic cross term between the derivative and anticommutator part.
This comes about since the anticommutator, {Ta, Tb} results in even generators, and the super-
trace between odd and even generators vanishes. LV 1 is a kinetic term for the fields and LV 2

a potential term. We will now consider each of these in turn.
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The kinetic part can be written explicitly as

LV 1 = −1
2

str
[(

∂[µA4
ν]T4 + ∂[µA5

ν]T5 + ∂[µA6
ν]T6 + ∂[µA7

ν]T7

)2
]

. (18)

Due to the property of the supertrace of the odd generators given in (5) it is only the cross
terms between T4, T5 and T6, T7 which survive.

LV 1 = − i

2

(
∂[µA4

ν]∂[µA5
ν] + ∂[µA6

ν]∂[µA7
ν]

)
= −1

4

(
∂[µA−

ν]∂[µA+
ν] + ∂[µB−

ν]∂[µB+
ν]

)
, (19)

where we have used the anticommutating properties of the Aa
µ’s. In the last step we have replaced

the Aa
µ by A±

µ and B±
µ . This kinetic part is reminiscent of the kinetic terms for a charged (i.e.

complex) vector field.
Next we work out the form of the interaction terms coming from LV 2. We do this explicitly

for A4
µ; the results for the other vectors fields can be obtained in a similar manner. The Aa

µ = A4
µ

part of LV 2 expands like

LV 2 =
g2

2
str

[(
A4

µA4
ν{T4, T4}+ A4

µA5
ν{T4, T5}+ A4

µA6
ν{T4, T6}+ A4

µA7
ν{T4, T7}

)2
]
. (20)

Using the explicit representations of the odd matrices we have {T4, T4} = (T3+T8)/2, {T4, T5} =
0, {T4, T6} = T1/2, {T4, T7} = −T2/2. Squaring and using the supertrace results of (4) one finds
that (20) becomes

LV 2 =
g2

16
(
A4

µA6
νA

4µA6ν + A4
µA7

νA
4µA7ν

)
. (21)

Note that there is no quartic term in A4
µ since the contributions from T3 and T8 cancel. The

contribution from A5
µ looks the same as (21) but with A4

µ → A5
µ. The A6

µ and A7
µ terms can be

obtained by making the exchange A4
µ ↔ A6

µ and A5
µ ↔ A7

µ. Using the Grassmann character of
the Aa

µ’s one can see that the A4
µ and A6

µ contributions, and also the A5
µ and A7

µ contributions
are the same. In total the interaction part of the vector Lagrangian can be written as

LV 2 =
g2

16
(
A+

µ B+
ν A−µB−ν + A+

µ B−
µ A−νB+ν

)
. (22)

In the last line we have written the interaction in terms of A±
µ , B±

µ .
The total Lagrangian for the vector Grassmann fields is, LV 1 + LV 2, where LV 1 is a ki-

netic term and LV 2 gives a nonlinear interaction term between A±
µ and B±

µ . We assume that
the interaction is strong enough that the fields, A±

µ and B±
µ are permanently confined into

condensates

〈A+
µ A−µ〉 = 〈B+

µ B−µ〉 = v. (23)

From the symmetry between the A±
µ and B±

µ fields we have set their vacuum expectation value
to be equal. This conjectured condensation is similar to the gauge variant, mass dimension 2
condensate, in regular Yang–Mills theory, 〈Aa

µAaµ〉. Despite being gauge variant this quantity
has been shown [22] to have real physical consequences in QCD. Here Aa

µ is a normal SU(N)
Yang–Mills field. In [23] a BRST-invariant mass dimension 2 condensate was constructed which
was a combination of the quadratic gauge field term – 〈Aa

µAaµ〉 – plus a quadratic Fadeev–
Popov [24] ghost field term – iα〈CaC̄a〉 – where α was a gauge parameter. In the Landau
gauge, α = 0, this reduced to a pure quadratic gauge field condensate 〈Aa

µAaµ〉. Note that the
ghost fields, Ca, C̄a, are bosonic, Grassman fields. This mass dimension 2 condensate gives the
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gluon a mass [26]. Estimates have been made for
√
〈Aa

µAaµ〉 using lattice methods [22, 25],
analytical techniques [27] or some mixture. All these methods give a condensate value in the
range

√
〈Aa

µAaµ〉 ≈ 1 GeV. From the similarities between the regular gauge field condensate
of [22, 23] and that on the left hand side of (23) we estimate the vacuum expectation value as
v ≈ 1 GeV2.

Inserting these vacuum expectation values into (13) yields

LPhantom = −1
2
(∂µϕ8)2 − v

4
g2(ϕ8)2. (24)

This is of the form (1) with V (ϕ8) = v
4g2(ϕ8)2. This will give phantom energy with w < −1 if

g
2 |ϕ

8|
√

2v > |ϕ̇8|. If the vacuum expectation value, v, changes over time it is possible to cross
into (out of) the phantom regime if v increases (decreases). Thus whether one has phantom
energy or not would depend on the dynamical evolution of v. Such models, where one crosses
the “phantom divide”, have been considered in [28]. In such models it is usually the sign in front
of the kinetic energy term that is modified, whereas in the present case it is a modification of
the potential which causes the transition between phantom and non-phantom phases. Further
extensions of these “quintom” models can be found in [29].

Inserting the vacuum expectation values into the Lagrangian for the scalar fields ϕ1, ϕ2, ϕ3,
equation (16) becomes

LDM =
1
2
(∂µϕi)2 − v

4
g2(ϕi)2. (25)

The Lagrangian for these fields is for a standard, non-interacting scalar with mass m = g
2

√
2v.

These massive scalar fields could be cold dark matter if m (i.e. v) is chosen appropriately. For
example, using the similarity between the condensate of (23) and the mass dimension condensate
of [22, 23] one might set v ≈ 1 GeV2. This would given m ≈ 1 GeV making ϕa a viable, cold
dark matter candidate.

The original Lagrangian (9) has no coupling to the usual Standard Model fields except
through gravity. This would explain why these phantom energy and dark matter fields have not
been seen since they could only be detected through their gravitational influence. However if this
is the path nature chooses it would be hard, if not impossible, to get any kind of experimental
signal of these phantom energy/dark matter candidates. One could introduce some effective
coupling between the phantom energy/dark matter fields of (9) and the usual Standard Model
fields. More rigorously one might try to use some larger SU(N/1) group, but with some of the
vector fields associated with the even generators and some associated with the odd generators
and similarly for the scalar fields. In this way it might be possible to have a new kind of “Grand
Unified Theory”: from a single Lagrangian one could have Standard Model gauge fields as well
as new fields that would be phantom energy and dark matter candidates, instead of extra Grand
Unified gauge bosons.

The Grassmann vector fields are an odd feature of this model since they would violate
the spin-statistics theorem. These Grassmann vector fields are similar to the Fadeev–Popov
ghosts [24]: scalar fields with Fermi–Dirac statistics. The Fadeev–Popov ghosts do not violate
the spin-statistics since they never appear as asymptotic states. In order to avoid having the
Grassmann vector fields violate the spin-statistics theorem, we have postulated that the com-
posite states, A+

µ A−µ and B+
µ B−µ are permanently confined so that the particles associated

with A±
µ and B±

µ never appear as asymptotic states. Since the composites are ordinary fields
(integer spin with bosonic statistics) violation of the spin-statistics theorem is avoided. These
vectors fields act as a second dark matter component in addition to the three scalar fields ϕi.
There have been other recent proposals for dark matter candidates with non-standard relation-
ships between spin and mass dimension. In [30] a spin 1/2 dark matter candidate was proposed
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which has mass dimension 1. In the present case our vector fields, A±
µ , B±

µ , have the same mass
dimension (i.e. 1) and statistics (fermionic) as the dark matter candidate in [30], and only differ
in the value of spin – 1 versus 1/2.

4 Conclusions

We have given a model for phantom energy using a modification of the graded Lie algebras
models which attempted to give a more unified electroweak theory, or Grand Unified theories.
Despite interesting features of the original graded Lie algebra models (e.g. prediction of the
Weinberg angle and having both vectors and scalars coming from the same Lagrangian) they
had shortcomings. Chief among these was that if one used the correct SU(N/1) invariant su-
pertrace then some of the vector fields had the wrong sign for the kinetic energy term in the
Lagrangian. In the original models the vector fields were associated with the even generators
of the algebra and the scalars fields were associated with the odd generators. Here we took the
reverse identification (scalar field → even generators and vector field → odd generators) which
led to the wrong sign kinetic energy term coming from a scalar field rather than from a vector
field. The wrong sign scalar field, ϕ8, gives a model of phantom energy, while the other scalar
fields, ϕi, and the vector fields, Aa

µ, act as dark matter components. In the way our model is
formulated here all the fields are truly dark in that they have no coupling to any of the Standard
Model fields and would thus only be detectable via their gravitational interaction. This would
make the experimental detection of these dark fields impossible through non-gravitational inter-
actions. However the above is intended only as a toy model of how a phantom energy field can
emerge naturally from a gauge theory with a graded Lie algebra. A more experimentally testable
variation of the above toy model could have some coupling between the scalar and vector fields of
the present model and the Standard Model fields. Such a coupling could be introduced in a phe-
nomenological fashion via some ad hoc coupling. A more interesting option would be to consider
some larger graded algebra, such as SU(N/1). Some of the fields could be given the standard
assignment of even or odd generators (i.e. as in (6)) while others could be given the assignment
in (8). The fields given the standard assignment would give standard gauge fields, while fields
given the non-standard assignment would give phantom energy and dark matter fields. This
would give a new type of “Grand Unified Theory” with the phantom energy and dark matter
fields replacing the extra gauge bosons of ordinary Grand Unified Theories. Other authors [31]
have used non-standard gauge groups such as SO(1, 1) to give models of phantom energy.

An important feature of the above model is the assumption that the Grassmann vector fields
form permanently confined condensates. This was a crucial to our phantom energy model since
it leads to a condensate of the A±

µ and B±
µ fields. This in turn gave a potential V (ϕ8) = v

4g2(ϕ8)2

for the ϕ8 field which was of the correct form to allow ϕ8 to act as phantom energy. Aside from
the present application to phantom energy one might try to use the above mechanism to generate
standard symmetry break by starting with a graded Lie algebra but using all vector fields rather
than mixing vector and scalar. In this way some of the vector fields would be standard vector
fields, while other would be Grassmann vector fields. By the above mechanism the Grassmann
vector fields would form condensates which would then give masses to the standard vector fields
i.e. one would have a Higgs mechanism with only vector fields).

An additional avenue for future investigation is to see if one could have a phantom energy
model with the original graded Lie algebra models (i.e. with vector fields assigned to even
generators and scalars to odd) but using the supertrace. One would then have the problem of
some of the vector fields having the wrong sign in the kinetic term, but this might then give
a phantom energy model with a vector rather than scalar field.

As a final note the dark energy fields (those connected with the even generators) considered
here violate all the known energy conditions which are normally required of quantum fields.
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The reason for taking this drastic step is that it gives a model for phantom dark energy which is
thought to drive the observed expansion of the Universe. If it turns out that the indications for
w < −1 are not correct (i.e. if −1 < w < −1/3) then there would be no need for phantom dark
energy; “ordinary” dark energy would do. Recently, [32] there has been a proposal that dark
energy effects can be entirely explained by non-localized gravitational energy or rather gradients
in gravitational energy. If this proposal is correct then there would be no need that we can see
for dark energy in any form – phantom or otherwise.

Acknowledgments

DS acknowledges the CSU Fresno College of Science and Mathematics for a sabbatical leave
during the period when this work was completed, and a CSM 2007 Professional Development
Grant to attend Symmetry–2007.

References

[1] Dondi P.H., Jarvis P.D., A supersymmetric Weinberg–Salam model, Phys. Lett. B 84 (1979), 75–78, Erra-
tum, Phys. Lett. B 87 (1979), 403–406.
Ne’eman Y., Irreducible gauge theory of a consolidated Weinberg–Salam model, Phys. Lett. B 81 (1979),
190–194.
Fairlie D.B., Higgs’ fields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979), 97–100.
Squires E.J., On a derivation of the Weinberg–Salam model, Phys. Lett. B 82 (1979), 395–397.
Taylor J.G., Electroweak theory in SU(2/1), Phys. Lett B 83 (1979), 331–334.

[2] Taylor J.G., Superunification in SU(5/1), Phys. Rev. Lett. 43 (1979), 824–826.

[3] Eccelstone R.E., A critique of supersymmetric Weinberg–Salam models, J. Phys. A: Math. Gen. 13 (1980),
1395–1408.
Eccelstone R.E., The Weinberg angle in the supersymmetric Weinberg–Salam model, Phys. Lett. B 116
(1982), 21–22.

[4] Caldwell R.R., A phantom menace?, Phys. Lett. B 545 (2002), 23–29, astro-ph/9908168.
Caldwell R.R., Kamionkowski M., Weinberg N.N., Phantom energy and cosmic doomsday, Phys. Rev. Lett.
91 (2003), 071301, 4 pages, astro-ph/0302506.

[5] Carroll S.M., Hoffman M., Trodden M., Can the dark energy equation-of-state parameter w be less than −1?,
Phys. Rev. D 68 (2003), 023509, 11 pages, astro-ph/0301273.

[6] Riess A.G. et al., Observational evidence from supernovae for an accelerating universe and a cosmological
constant, Astronom. J. 116 (1998), 1009–1038, astro-ph/9805201.
Riess A.G. et al., The case for an accelerating universe from supernovae, Publ. Astronom. Soc. Pacific 112
(2000), 1284–1299, astro-ph/0005229.

[7] Perlmutter S. et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999),
565–586, astro-ph/9812133.

[8] Zlatev I., Wang L., Steinhart P.J., Quintessence, cosmic coincidence, and the cosmological constant, Phys.
Rev. Lett. 82 (1999), 896–899, astro-ph/9807002.

[9] Deffayet C., Dvali G., Gabadadze G., Accelerated universe from gravity leaking to extra dimensions, Phys.
Rev. D 65 (2002), 044023, 9 pages, astro-ph/0105068.

[10] Deffayet C., Landau S.J., Raux J., Zaldarriaga M., Astier P., Supernovae, CMB, and gravitational leakage
into extra dimensions, Phys. Rev. D 66 (2002), 024019, 10 pages, astro-ph/0201164.

[11] Kamenshchik A., Moschella U., Pasquier V., An alternative to quintessence, Phys. Lett. B 511 (2001),
265–268, gr-qc/0103004.

[12] Gonzalez-Diaz P.F., k-essential phantom energy: doomsday around the corner?, Phys. Lett. B 586 (2004),
1–4, astro-ph/0312579.

[13] Gonzalez-Diaz P.F., Axion phantom energy, Phys. Rev. D 69 (2004), 063522, 6 pages, hep-th/0401082.

[14] Sahni V., Dark matter and dark energy, Lect. Notes Phys. 653 (2004), 141–180, astro-ph/0403324.

http://arxiv.org/abs/astro-ph/9908168
http://arxiv.org/abs/astro-ph/0302506
http://arxiv.org/abs/astro-ph/0301273
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/0005229
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/9807002
http://arxiv.org/abs/astro-ph/0105068
http://arxiv.org/abs/astro-ph/0201164
http://arxiv.org/abs/gr-qc/0103004
http://arxiv.org/abs/astro-ph/0312579
http://arxiv.org/abs/hep-th/0401082
http://arxiv.org/abs/astro-ph/0403324


10 M. Chaves and D. Singleton

[15] Bronnikov K., Scalar-tensor theory and scalar charge, Acta. Phys. Pol. B 4 (1973), 251–266.
Ellis H., Ether flow through a drainhole – a particle model in general relativity, J. Math. Phys. 14 (1973),
104–118.

[16] Kodama T., General relativistic nonlinear field: a kink solution in a generalized geometry, Phys. Rev. D 18
(1978), 3529–3534.
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