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Abstract. This is a survey paper of our current research on the theory of partial differen-
tial equations in conformal geometry. Our intention is to describe some of our current
works in a rather brief and expository fashion. We are not giving a comprehensive survey
on the subject and references cited here are not intended to be complete. We introduce
a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat
manifolds satisfying some global conformal bounds on compact manifolds of dimension 4.
As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type
for this class, and diameter bound of the σ2-metrics in a class of conformal 4-manifolds. For
conformally compact Einstein metrics we introduce an eigenfunction compactification. As
a consequence we obtain some topological constraints in terms of renormalized volumes.
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1 Conformal gap and finiteness theorem
for a class of closed 4-manifolds

1.1 Introduction

Suppose that (M4, g) is a closed 4-manifold. It follows from the positive mass theorem that, for
a 4-manifold with positive Yamabe constant,∫

M
σ2dv ≤ 16π2

and equality holds if and only if (M4, g) is conformally equivalent to the standard 4-sphere,
where

σ2[g] =
1
24
R2 − 1

2
|E|2,

R is the scalar curvature of g and E is the traceless Ricci curvature of g. This is an interesting
fact in conformal geometry because the above integral is a conformal invariant like the Yamabe
constant.
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One may ask, whether there is a constant ε0 > 0 such that a closed 4-manifold M4 has to be
diffeomorphic to S4 if it admits a metric g with positive Yamabe constant and∫

M
σ2[g]dvg ≥ (1− ε)16π2.

for some ε < ε0? Notice that here the Yamabe invariant for such [g] is automatically close to
that for the round 4-sphere. There is an analogous gap theorem of Bray and Neves for Yamabe
invariant in dimension 3 [4]. One cannot expect the Yamabe invariant alone to isolate the sphere,
and it is more plausible to consider the integral of σ2. We will answer the question affirmatively
in the class of Bach flat 4-manifolds.

Recall that Riemann curvature tensor decomposes into

Rijkl = Wijkl + (Aikgjl −Ailgjk −Ajkgil +Ajlgik),

in dimension 4, where Wijkl is the Weyl curvature,

Aij =
1
2

(
Rij −

1
6
Rgij

)
is Weyl–Schouten curvature tensor and Rij is the Ricci curvature tensor. Also recall that the
Bach tensor is

Bij = Wkijl,lk +
1
2
RklWkijl.

We say that a metric g is Bach flat if Bij = 0. Bach flat metrics are critical metrics for the
functional

∫
M |W |2dv. Bach flatness is conformally invariant in dimension 4. It follows from

Chern–Gauss–Bonnet,

8π2χ(M4) =
∫

M
(σ2 + |W |2)dv,

that
∫
M σ2dv is conformally invariant.

The gap theorem is as follows:

Theorem 1. Suppose that (M4, [g]) is a Bach flat closed 4-manifold with positive Yamabe con-
stant and that∫

M
(|W |2dv)[g] ≤ Λ0

for some fixed positive number Λ0. Then there is a positive number ε0 > 0 such that, if∫
M
σ2[g]dvg ≥ (1− ε)16π2

holds for some constant ε < ε0, then (M4, [g]) is conformally equivalent to the standard 4-sphere.

Our approach is based on the recent work on the compactness of Bach flat metrics on 4-
manifolds of Tian and Viaclovsky [14, 15], and of Anderson [1]. Indeed our work relies on
a more precise understanding of the bubbling process near points of curvature concentration.
For that purpose we develop the bubble tree structure in a sequence of metrics that describes
precisely the concentration of curvature. Our method to develop bubble tree structure is inspired
by the work of Anderson and Cheeger [2] on the bubble tree configurations of the degenerations
of metrics of bounded Ricci curvature. Our construction is modeled after this work but differs
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in the way that our bubble tree is built from the bubbles at points with the smallest scale
of concentration to bubbles with larger scale; while the bubble tree in [2] is constructed from
bubbles of large scale to bubbles with smaller scales. The inductive method of construction
of our bubble tree is modeled on earlier work of [3, 11, 13] on the study of concentrations of
energies in harmonic maps and the scalar curvature equations.

As a consequence of the bubble tree construction we are able to obtain the following finite
diffeomorphism theorem:

Theorem 2. Suppose that A is a collection of Bach flat Riemannian manifolds (M4, g) with
positive Yamabe constant, satisfying∫

M
(|W |2dv)[g] ≤ Λ0,

for some fixed positive number Λ0, and∫
M

(σ2dv)[g] ≥ σ0,

for some fixed positive number σ0. Then there are only finite many diffeomorphism types in A.

It is known that in each conformal class of metrics belonging to the family A, there is a metric
ḡ = e2wg such that σ2(Aḡ) = 1, which we shall call the σ2 metric. The bubble tree structure
in the degeneration of Yamabe metrics in A is also helpful to understand the behavior of the
σ2-metrics in A. For example:

Theorem 3. For the conformal classes [g0] ∈ A the conformal metrics g = e2wg0 satisfying the
equation σ2(g) = 1 has a uniform bound for the diameter.

The detailed version of this work has appeared in our paper [5].

1.2 The neck theorem

The main tool we need to develop the bubble tree picture is the neck theorem which should
be compared with the neck theorem in the work of Anderson and Cheeger [2]. Due to the
lack of point-wise bounds on Ricci curvature, our version of the neck theorem will have weaker
conclusion. But it is sufficient to allow us to construct the bubble tree at each point of curvature
concentration.

Let (M4, g) be a Riemannian manifold. For a point p ∈ M , denote by Br(p) the geodesic
ball with radius r centered at p, Sr(p) the geodesic sphere of radius r centered at p. Consider
the geodesic annulus centered at p:

Ār1,r2(p) = {q ∈M : r1 ≤ dist(q, p) ≤ r2}.

In general, Ār1,r2(p) may have more than one connected components. We will consider any one
component

Ar1,r2(p) ⊂ Ār1, r2(p)

that meets the geodesic sphere of radius r2:

Ar1,r2(p)
⋂
Sr2(p) 6= ∅.

Let H3(Sr(p)) be the 3D-Hausdorff measure of the geodesic sphere Sr(p).
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Theorem 4. Suppose (M4, g) is a Bach flat and simply connected 4-manifold with a Yamabe
metric of positive Yamabe constant. Let p ∈M , α ∈ (0, 1), ε > 0, v1 > 0, and a < dist(p, ∂M).
Then there exist positive numbers δ0, c2, n depending on ε, α, Cs, v1, a such that the following
holds. Let Ar1,r2(p) be a connected component of the geodesic annulus in M such that

r2 ≤ c2a, r1 ≤ δ0r2,

H3(Sr(p)) ≤ v1r
3, ∀ r ∈ [r1, 100r1],

and ∫
Ar1,r2 (p)

|Rm|2dv ≤ δ0.

Then Ar1,r2(p) is the only such component. In addition, for the only component

A
(δ
− 1

4
0 −ε)r1,(δ

1
4
0 +ε)r2

(p),

which intersects with S
(δ

1
4
0 +ε)r2

(p), there exist some Γ ⊂ O(4), acting freely on S3, with |Γ| ≤ n,

and an quasi isometry ψ, with

A
(δ
− 1

4
0 +ε)r1,(δ

1
4
0 −ε)r2

(p) ⊂ Ψ(C
δ
− 1

4
0 r1,δ

1
4
0 r2

(S3/Γ)) ⊂ A
(δ
− 1

4
0 −ε)r1,(δ

1
4
0 +ε)r2

(p)

such that for all C 1
2
r,r(S

3/Γ) ⊂ C
δ
− 1

4
0 r1,δ

1
4
0 r2

(S3/Γ), in the cone coordinates, one has

|(Ψ∗(r−2g))ij − δij |C1,α ≤ ε.

The first step in the proof is to use the Sobolev inequality to show the uniqueness of the
connected annulus Ar1,r2(p). The second step is to establish the growth of volume of geodesic
spheres

H3(Sr(p) ≤ Cr3

for all r ∈ [r1, 1
2r2]. Here we rely on the work of Tian and Viaclovsky [14, 15] where they analyzed

the end structure of a Bach-flat, scalar flat manifolds with finite L2 total curvature. The last
step is to use the Gromov and Cheeger compactness argument as in the work of Anderson and
Cheeger [2] to get the cone structure of the neck.

1.3 Bubble tree construction

In this section we attempt to give a clear picture about what happen at curvature concentration
points. We will detect and extract bubbles by locating the centers and scales of curvature
concentration.

We will assume here that (Mi, gi) are Bach flat 4-manifolds with positive scalar curvature
Yamabe metrics, vanishing first homology, and finite L2 total curvature. Choose δ small enough
according to the ε-estimates and the neck theorem in the previous section. Suppose thatXi ⊂Mi

contains a geodesic ball of a fixed radius r0 and∫
Tη0 (∂Xi)

|Rmi|2dvi ≤ δ

2
,

where

Tη0(∂Xi) = {p ∈Mi : dist(p, ∂Xi) < η0},
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for some fixed positive number 4η0 < r0. Define, for p ∈ Xi,

s1i (p) = r such that
∫

Bi
r(p)

|Rmi|2dvi =
δ

2
.

Let

p1
i = p such that s1i (p) = inf

Bi
t0

(pi)
s1i (p).

We may assume λ1
i = s1i (p

1
i ) → 0, for otherwise there would be no curvature concentration

in Xi. We then conclude that (Mi, (λ1
i )
−2gi, p

1
i ) converges to (M1

∞, g
1
∞, p

1
∞), which is a Bach

flat, scalar flat, complete 4-manifold satisfying the Sobolev inequality, having finite L2 total
curvature, and one single end.

Definition 1. We call a Bach flat, scalar flat, complete 4-manifold with the Sobolev inequality,
finite L2 total curvature, and a single ALE end a leaf bubble, while we will call such space with
finitely many isolated irreducible orbifold points an intermediate bubble.

Now, we define, for p ∈ Xi \Bi
K1λ1

i
(p1

i ),

s2i (p) = r

such that∫
Bi

r(p)\Bi
K1λ1

i

(p1
i )
|Rmi|2dvi =

δ

2
.

Let

p2
i = p

such that

s2i (p) = inf
Bi

r(p)\Bi
K1λ1

i

(p1
i )
s2i (p).

Again let λ2
i = s2i (p

2
i ) → 0. Otherwise there would be no more curvature concentration. Then

Lemma 1.

λ2
i

λ1
i

+
dist(p1

i , p
2
i )

λ1
i

→∞.

There are two possibilities:

Case 1.
dist(p1

i , p
2
i )

λ2
i

→∞;

Case 2.
dist(p1

i , p
2
i )

λ2
i

≤M1.

In Case 1, we certainly also have

dist(p1
i , p

2
i )

λ1
i

→∞.

Therefore, in the convergence of the sequence (Mi, (λ2
i )
−2gi, p

2
i ) the concentration which pro-

duces the bubble (M1
∞, g

1
∞) eventually escapes to infinity of M2

∞ and hence is not visible to the
bubble (M2

∞, g
2
∞), likewise, in the converging sequence (Mi, (λ1

i )
−2gi, p

1
i ) one does not see the

concentration which produces (M2
∞, g

2
∞). There are at most finite number of such leaf bubbles.
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Definition 2. We say two bubbles (M j1
∞, g

j1
∞) and (M j2

∞, g
j2
∞) associated with (pj1

i , λ
j1
i ) and

(pj2
i , λ

j2
i ) are separable if

dist(pj1
i , p

j2
i )

λj1
i

→∞ and
dist(pj1

i , p
j2
i )

λj2
i

→∞.

In Case 2, one starts to trace intermediate bubbles which will be called parents of some
bubbles. We would like to emphasize a very important point here. One needs the neck theorem
to take limit in Goromov–Hausdorff topology to produce the intermediate bubbles. The neck
Theorem is used to prove the limit space has only isolated point singularities, which are then
proven to be orbifold points.

Lemma 2. Suppose that there are several separable bubbles {(M j
∞, g

j
∞)}j∈J associated with

{(pj
i , λ

j
i )}j∈J . Suppose that there is a concentration detected as (pk

i , λ
k
i ) after {(pj

i , λ
j
i )}j∈J such

that

dist(pk
i , p

j
i )

λk
i

≤M j ,

therefore

λk
i

λj
i

→∞

for each j ∈ J . In addition, suppose that {(pj
i , λ

j
i )}j∈J is the maximal collection of such. Then

(Mi, (λk
i )
−2gi, p

k
i ) converges in Gromov–Hausdorff topology to an intermediate bubble (Mk

∞, g
k
∞).

(Mk
∞, g

k
∞) is either a parent or a grandparent of all the given bubbles {(M j

∞, g
j
∞)}j∈J .

We remark that it is necessary to create some strange intermediate bubbles to handle the
inseparable bubbles. This situation does not arise in the degeneration of Einstein metrics. In
that case there is a gap theorem for Ricci flat complete orbifolds and there is no curvature
concentration at the smooth points due to a simple volume comparison argument, both of which
are not yet available in our current situation. We will call those intermediate bubbles exotic
bubbles.

Definition 3. A bubble tree T is defined to be a tree whose vertices are bubbles and whose edges
are necks from neck Theorem. At each vertex (M j

∞, g
j
∞), its ALE end is connected, via a neck,

to its parent towards the root bubble of T , while at finitely many isolated possible orbifold points
of (M j

∞, g
j
∞), it is connected, via necks, to its children towards leaf bubbles of T . We say two

bubble trees T1 and T2 are separable if their root bubbles are separable.

To finish this process we just iterate the process of extracting bubbles the construction has
to end at some finite steps. In summary we have

Theorem 5. Suppose that (Mi, gi) are Bach flat 4-manifolds with positive scalar curvature
Yamabe metrics, vanishing first homology, and finite L2 total curvature. Then (Mi, gi) converges
to Bach-flat 4-manifold (M∞, g∞) with finitely orbifold singularities S. The convergence is strong
in C∞ away from a finite number of points B ⊃ S. At each point b in B there is a bubble tree
attached to b.
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2 Conformally compact Einstein manifolds

2.1 Conformally compact Einstein manifolds

Suppose that Xn+1 is a smooth manifold of dimension n+ 1 with smooth boundary ∂X = Mn.
A defining function for the boundary Mn in Xn+1 is a smooth function x on X̄n+1 such that

x > 0 in X;
x = 0 on M ;
dx 6= 0 on M.

A Riemannian metric g on Xn+1 is conformally compact if (X̄n+1, x2g) is a compact Riemannian
manifold with boundary Mn for a defining function x. Conformally compact manifold (Xn+1, g)
carries a well-defined conformal structure on the boundary Mn, where each metric ĝ in the class
is the restriction of ḡ = x2g to the boundary Mn for a defining function x. We call (Mn, [ĝ]) the
conformal infinity of the conformally compact manifold (Xn+1, g). A short computation yields
that, given a defining function x,

Rijkl[g] = |dx|2ḡ(gikgjl − gilgjk) +O(x3)

in a coordinate (0, ε) × Mn ⊂ Xn+1. Therefore, if we assume that g is also asymptotically
hyperbolic, then

|dx|2ḡ|M = 1

for any defining function x. If (Xn+1, g) is a conformally compact manifold and Ric[g] = −ng,
then we call (Xn+1, g) a conformally compact Einstein manifold.

Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g) and a represen-
tative ĝ in [ĝ] on the conformal infinity Mn, there is a uniquely determined defining function x
such that, on M × (0, ε) in X, g has the normal form

g = x−2(dx2 + gx), (1)

where gx is a 1-parameter family of metrics on M . This is because

Lemma 3. Suppose that (Xn+1, g) is a conformally compact, asymptotically hyperbolic manifold
with the conformal infinity (M, [ĝ]). Then, for any ĝ ∈ [ĝ], there exists a unique defining
function x such that

|dx|2r2g = 1

in a neighborhood of the boundary [0, ε)×M and

r2g|M = ĝ.

Given a conformally compact Einstein manifold (Xn+1, g), in the local product coordinates
(0, ε)×Mn near the boundary where the metric takes the normal form (1), the Einstein equations
split and display some similarity to a second order ordinary differential equations with a regular
singular point.

Lemma 4. Suppose that (Xn+1, g) is a conformally compact Einstein manifold with the con-
formal infinity (Mn, [ĝ]) and that x is the defining function associated with a metric ĝ ∈ [ĝ].
Then

gx = ĝ + g(2)x2 + (even powers of x) + g(n−1)xn−1 + g(n)xn + · · · ,
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when n is odd, and

gx = ĝ + g(2)x2 + (even powers of x) + g(n)xn + hxn log x+ · · · ,

when n is even, where:
a) g(2i) are determined by ĝ for 2i < n;
b) g(n) is traceless when n is odd;
c) the trace part of g(n) is determined by ĝ and h is traceless and determined by ĝ;
d) the traceless part of g(n) is divergence free.

Readers are referred to [9] for more details about the above two lemmas.

2.2 Examples of conformally compact Einstein manifolds

Let us look at some examples.

a) The hyperbolic spaces(
Rn+1,

(d|x|)2

1 + |x|2
+ |x|2dσ

)
,

where dσ is the standard metric on the n-sphere. We may write

gH = s−2

(
ds2 +

(
1− s2

4

)2

dσ

)
,

where

s =
2√

1 + |x|2 + |x|

is a defining function. Hence the conformal infinity is the standard round sphere (Sn, dσ).

b) The hyperbolic manifolds(
S1(λ)×Rn, (1 + r2)dt2 +

dr2

1 + r2
+ r2dσ

)
.

Let

r =
1− s2

4

s
= sinh log

2
s

for a defining function s. Then

g0
H = s−2

(
ds2 +

(
1 +

s2

4

)2

dt2 +
(

1− s2

4

)2

dσ

)
.

Thus the conformal infinity is standard (S1(λ)× Sn−1, dt2 + dσ).

c) AdS-Schwarzchild(
R2 × S2, gm

+1

)
,

where

gm
+1 = V dt2 + V −1dr2 + r2gS2 , V = 1 + r2 − 2m

r
,
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m is any positive number, r ∈ [rh,+∞), t ∈ S1(λ) and (θ, φ) ∈ S2, and rh is the positive root
for 1 + r2 − 2m

r = 0. In order for the metric to be smooth at each point where S1 collapses we
need V dt2 + V −1dr2 to be smooth at r = rh, i.e.

V
1
2
d(V

1
2 2πλ)
dr

∣∣∣
r=rh

= 2π.

Note that its conformal infinity is (S1(λ) × S2, [dt2 + dθ2 + sinθ dφ2]) and S1 collapses at the
totally geodesic S2, which is the so-called horizon. Interestingly, λ is does not vary monotonically
in rh, while rh monotonically depends on m. In fact, for each 0 < λ < 1/

√
3, there are two

different m1 and m2 which share the same λ. Thus, for the same conformal infinity S1(λ)× S2

when 0 < λ < 1/
√

3, there are two non-isometric AdS-Schwarzschild space with metric g+
m1

and g+
m2

on R2×S2. These are the interesting simple examples of non-uniqueness for conformally
compact Einstein metrics.

d) AdS-Kerr spaces(
CP 2 \ {p}, gα

)
,

where p is a point on CP 2,

gα = Eα((r2 − 1)F−1
α dr2 + (r2 − 1)−1Fα(dt+ cos θdφ)2 + (r2 − 1)(dθ2 + sin2 θdφ2)),

Eα =
2
3
α− 2
α2 − 1

, Fα = (r − α)((r3 − 6r + 3α−1)Eα + 4(r − α−1)),

r ≥ α, t ∈ S1(λ), and (θ, φ) ∈ S2. For the metric to be smooth at the horizon, the totally
geodesic S2, we need to require√

F

E(r2 − 1)
d

dr

(
2πλ

√
EF

r2 − 1

)
= 2π.

Here (t, θ, φ) is the coordinates for S3 through the Hopf fiberation. The conformal infinity
is the Berger sphere with the Hopf fibre of length πEα and the S2 of area 4πEα. For every
0 < λ < (2 −

√
3)/3 there are exactly two α, hence two AdS-Kerr metrics gα. It is interesting

to note that (2−
√

3)/3 < 1, so the standard S3(1) is not included in this family.
One may ask, given a conformal manifold (Mn, [ĝ]), is there a conformally compact Einstein

manifold (Xn+1, g) such that (Mn, [ĝ]) is the conformal infinity? This in general is a difficult
open problem. Graham and Lee in [10] showed that for any conformal structure that is a per-
turbation of the round one on the sphere Sn there exists a conformally compact Einstein metric
on the ball Bn+1.

2.3 Conformal compactifications

Given a conformally compact Einstein manifold (Xn+1, g), what is a good conformal com-
pactification? Let us consider the hyperbolic space. The hyperbolic space (Hn+1, gH) is the
hyperboloid{

(t, x) ∈ R×Rn+1 : −t2 + |x|2 = −1, t > 0
}

in the Minkowski space-time R1,n+1. The stereographic projection via the imaginary south pole
gives the Poincaré ball model(

Bn+1,

(
2

1− |y|2

)2

|dy|2
)
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and replacing the x-hyperplane by z-hyperplane tangent to the light cone gives the half-space
model(

Rn+1
+ ,

|dz|2

z2
n+1

)
,

where

1 + |y|2

1− |y|2
= t,

1
zn+1

= t− xn+1.

Therefore

(Hn+1, t−2gH) = (Sn+1
+ , gSn+1),

(Hn+1, (t+ 1)−2gH) = (Bn+1, |dy|2),
(Hn+1, (t− xn+1)−2gH) = (Rn+1

+ , |dz|2).

The interesting fact here is that all coordinate functions {t, x1, x2, . . . , xn+1} of the Minkowski
space-time are eigenfunctions on the hyperboloid. Thus positive eigenfunctions on a conformally
compact Einstein manifold are expected to be candidates for good conformal compactifications.
This is first observed in [12].

Lemma 5. Suppose that (Xn+1, g) is a conformally compact Einstein manifold and that x is
a special defining function associated with a representative ĝ ∈ [ĝ]. Then there always exists
a unique positive eigenfunction u such that

∆u = (n+ 1)u in X

and

u =
1
x

+
R[ĝ]

4n(n− 1)
x+O(x2)

near the infinity.

We remark here that, for the hyperbolic space Hn+1 and the standard round metric in the
infinity, we have

t =
1
x

+
1
4
x.

As we expect, positive eigenfunctions indeed give a preferable conformal compactification.

Theorem 6. Suppose that (Xn+1, g) is a conformally compact Einstein manifold, and that u
is the eigenfunction obtained for a Yamabe metric ĝ of the conformal infinity (M, [ĝ]) in the
previous lemma. Then (Xn+1, u−2g) is a compact manifold with totally geodesic boundary M
and

R[u−2g] ≥ n+ 1
n− 1

R[ĝ].

As a consequence

Corollary 1. Suppose that (Xn+1, g) is a conformally compact Einstein manifold and its confor-
mal infinity is of positive Yamabe constant. Suppose that u is the positive eigenfunction associa-
ted with the Yamabe metric on the conformal infinity obtained in Lemma 1. Then (Xn+1, u−2g)
is a compact manifold with positive scalar curvature and totally geodesic boundary.
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The work of Schoen–Yau and Gromov–Lawson then give some topological obstruction for
a conformally compact Einstein manifold to have its conformal infinity of positive Yamabe
constant. A surprising consequence of the eigenfunction compactifications is the rigidity of the
hyperbolic space without assuming the spin structure.

Theorem 7. Suppose that (Xn+1, g) is a conformally compact Einstein manifold with the round
sphere as its conformal infinity. Then (Xn+1, g) is isometric to the hyperbolic space.

2.4 Renormalized volume

We will introduce the renormalized volume, which was first noticed by physicists in their inves-
tigations of the holography principles in AdS/CFT. Take a defining function x associated with
a choice of the metric ĝ ∈ [ĝ] on the conformal infinity, then compute, when n is odd,

Vol({x > ε} = c0ε
−n + odd powers of ε+ V + o(1), (2)

when n is even,

Vol({s > ε}) = c0ε
−n + even powers of ε+ L log

1
ε

+ V + o(1). (3)

It turns out the numbers V in odd dimension and L in even dimension are independent of the
choice of the metrics in the class. We will see that V in even dimension is in fact a conformal
anomaly.

Lemma 6. Suppose that (Xn+1, g) is a conformally compact Einstein manifold and that x̄ and x
are two defining functions associated with two representatives in [ĝ] on the conformal infinity
(Mn, [ĝ]). Then

x̄ = xew

for a function w on a neighborhood of the boundary [0, ε)×M whose expansion at x = 0 consists
of only even powers of x up through and including xn+1 term.

Theorem 8. Suppose that (Xn+1, g) is a conformally compact Einstein manifold. The V in (2)
when n is odd and L in (3) when nn is even are independent of the choice of representative
ĝ ∈ [ĝ] on the conformal infinity (Mn, [ĝ]).

Let us calculate the renormalized volume for the examples in Section 2.2.

a) The hyperbolic space: We recall

(H4, gH) =

(
B4,

(
2

1− |y|2

)2

|dy|2
)
,

where

gH = s−2

(
ds2 +

(
1− s2

4

)2

h0

)

and h0 is the round metric on S3. Then

vol({s > ε}) =
∫ 2

ε

∫
S3

s−4

(
1− s2

4

)3

dσ0ds
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where dσ0 is the volume element for the round unit sphere

vol({s > ε}) = 2π2

∫ 2

ε
s−4

(
1− 3s2

4
+

3s4

16
− s6

64

)
ds

= 2π2

(
−1

3
s−3
∣∣∣2
ε
+

3
4
s−1
∣∣∣2
ε
+

3
16

(2− ε)− 1
3× 64

s3
∣∣∣2
ε

)
=

2π2

3
ε−3 − 3π2

2
ε−1 + 2π2

(
− 1

3× 8
+

3
8

+
3
8
− 1

3× 8

)
+O(ε)

=
2π2

3
ε−3 − 3π2

2
ε−1 +

4π2

3
+O(ε).

Thus

V (H4, gH) =
4π2

3
.

b) The hyperbolic manifold: We recall(
S1(λ)×R3, (1 + r2)dt2 +

dr2

1 + r2
+ r2gS2

)
and

g0
H = s−2

(
ds2 +

(
1− s2

4

)2

(dθ2 + sin2 θdφ2) +
(

1 +
s2

4

)2

dt2

)
.

Then

vol({s > ε}) =
∫ 2

ε

∫
S2

∫
S1

s−4

(
1− s2

4

)2(
1 +

s2

4

)
dω0dtds

where dω0 stands for the volume element for the round unit sphere S2

vol({s > ε}) = 8π2

∫ 2

ε
s−4

(
1− s2

2
+
s4

16

)(
1 +

s2

4

)
ds

= 8π2λ

∫ 2

ε
s−4

(
1− s2

4
− s4

16
+
s6

64

)
ds

=
8π2

3
λε−3 − 2π2λε−1 + 8π2λ

(
− 1

3× 8
+

1
8
− 1

8
+

1
3× 8

)
+O(ε)

=
8π2

3
λε−3 − 2π2λε−1 +O(ε).

Thus

V (S1 ×R3, g0
H) = 0.

c) AdS-Schwarzschild spaces: We recall on S2 ×R2

gm
+1 =

(
1 + r2 − 2m

r

)
dt2 +

dr2

1 + r2 − 2m
r

+ r2(dθ2 + sin2 θdφ2).

First let us find the special defining function, i.e. to have

1
1 + r2 − 2m

r

dr2 = s−2ds2
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that is, if denote by r = ρ/s, where ρ = ρ(s),

ρ− sρ′ =
√
ρ2 + s2 − 2ms3/ρ,

and ρ(0) = 1. One may solve it in power series

ρ = 1− 1
4
s2 +

m

3
s3 + · · · .

Then

gm
+1 = s−2

(
ds2 +

(
ρ2 + s2 − 2ms3

ρ

)
dt2 + ρ2(dθ2 + sin2 θdφ2)

)
.

Note that s ∈ [ε, sh] for r ∈ [rh,Mε],

log sh = log ε+
∫ Mε

rh

1√
1 + r2 − 2m

r

dr < +∞,

and

Mε = ε−1ρ(ε) = ε−1

(
1− 1

4
ε2 +

m

3
s3 + · · ·

)
.

Therefore

vol({s > ε}) =
∫ sh

ε

∫
S1(λ)

∫
S2

s−4

√
ρ2 + s2 − 2ms2

ρ
ρ2dtdσ0ds

= 8π2λ

∫ sh

ε
s−4

√
ρ2 + s2 − 2ms3

ρ
ρ2ds

= 8π2λ

∫ M

rh

s−1

√
1 + r2 − 2m

r
r2
(
−ds
dr

)
dr

= 8π2λ

∫ M

rh

r2dr =
8π2λ

3
(M3 − r3h).

Thus the renormalized volume

V (R2 × S2, gm
+1) =

8π2

3
r2h(1− r2h)
3r2h + 1

,

where V (R2 × S2, gm
+1) < 0 when rh > 1; V (R2 × S2, gm

+1) = 0 only when rh = 1 or 0; and it
achieves its maximum value at rh = 1/

√
3

V (R2 × S2, gm
+1)max =

1
9
· 4π2

3
χ(R2 × S2).

d) AdS-Kerr spaces: We will omit the calculation here. The renormalized volume

V (CP2 \ {p}, gα) = 4π2Eα

(
−1

6
Eα(α3 + 3α−1) +

2
3
(α+ α−1)

)
.

Clearly, V (CP2 \{p}, gα) goes to zero when α goes to 2, and V (CP2 \{p}, gα) goes to −∞ when
α goes to ∞. One may find the maximum value for the renormalized volume is achieved at
α = 2 +

√
3. Therefore

V (CP2 \ {p}, gα)max =
4π2

3
· 2(4−

√
3)

9
<

1
2
· 4π2

3
χ(CP2 \ {p}).
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2.5 Renormalized volume and Chern–Gauss–Bonnet formula

We start with the Gauss–Bonnet formula on a surface (M2, g)

4πχ(M2) =
∫

M
Kdvg,

where K is the Gaussian curvature of (M2, g). The transformation of the Gaussian curvature
under a conformal change of metrics gw = e2wg is governed by the Laplacian as follows:

−∆gw +K[g] = K[e2wg]e2w.

The Gauss–Bonnet formula for a compact surface with boundary (M2g) is

4πχ(M) =
∫

M
KdVg + 2

∫
∂M

kdσg,

where k is the geodesic curvature for ∂M in (M, g). The transformation of the geodesic curvature
under a conformal change of metric gw = e2wg is

−∂nw + k[g] = k[e2wg]ew,

where ∂n is the inward normal derivative. Notice that

−∆[e2wg] = e−2w(−∆[g]), −∂n[e2wg] = e−w(−∂n[g]),

for which we say they are conformally covariant. In four dimension there is a rather complete
analogue. We may write the Chern–Gauss–Bonnet formula in the form

8π2χ(M4) =
∫

M
(|W |2 +Q)dVg

for closed 4-manifold and

8π2χ(M4) =
∫

M
(|W |2 +Q)dVg + 2

∫
∂M

(L+ T )dσg,

where W is the Weyl curvature, L is a point-wise conformal invariant curvature of ∂M in (M, g).

Q =
1
6
(R2 − 3|Ric|2 −∆R),

T = − 1
12
∂nR+

1
6
RH −RαnβnLαβ +

1
9
H3 − 1

3
TrL3 − 1

3
∆̃H,

R is the scalar curvature, Ric is the Ricci curvature, L is the second fundamental form of ∂M
in (M, g). We know the transformation of Q under a conformal change metric gw = e2wg is

P4[g]w +Q[g] = Q[e2wg]e4w,

where

P4 = (−∆)2 + δ

{
2
3
Rg − 2Ric

}
d

is the so-called Paneitz operator, and the transformation of T is

P3[g]w + T [g] = T [e2w]e3w,
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where

P3 =
1
2
∂n∆g − ∆̃∂n +

2
3
H∆̃ + Lαβ∇̃α∇̃β +

1
3
∇̃αH · ∇̃α +

(
F − 1

3
R

)
∂n.

We also have

P4[e2wg] = e−4wP4[g], P3[e2wg] = e−3wP3[g].

On the other hand, to calculate the renormalized volume in general, for odd n, upon a choice
of a special defining function x, one may solve

−∆v = n in Xn+1

for

v = log x+A+Bxn,

A, B are even in x, and A|x=0 = 0. Let

Bn[g, ĝ] = B|x=0.

Fefferman and Graham observed

Lemma 7.

V (Xn+1, g) =
∫

M
Bn[g, ĝ]dv[ĝ].

We observe that the function v in the above is also good in conformal compactifications.
For example, given a conformally compact Einstein 4-manifold (X4, g), let us consider the com-
pactification (X4, e2vg). Then

Q4[e2vg] = 0

and its boundary is totally geodesic in (X4, e2vg). Moreover

T [e2vg] = 3B3[g, ĝ].

Therefore we obtain easily the following generalized Chern–Gauss–Bonnet formula.

Proposition 1. Suppose that (X4, g) is a conformally compact Einstein manifold. Then

8π2χ(X4) =
∫

X4

(|W |2dv)[g] + 6V (X4, g).

2.6 Topology of conformally compact Einstein 4-manifolds

In the following let us summarize some of our works appeared in [6]. From the generalized
Chern–Gauss–Bonnet formula, obviously

V ≤ 4π2

3
χ(X)

and the equality holds if and only if (X4, g) is hyperbolic. Comparing with Chern–Gauss–Bonnet
formula for a closed 4-manifold

1
8π2

∫
M4

(|W |2 + σ2)dv = χ(M4)



16 S.-Y.A. Chang, J. Qing and P. Yang

one sees that the renormalized volume replaces the role of the integral of σ2. In the following
we will report some results on the topology of a conformally compact Einstein 4-manifold in
terms of the size of the renormalized volume relative to the Euler number, which is analogous to
the results of Chang–Gursky–Yang [7, 8] on a closed 4-manifold with positive scalar curvature
and large integral of σ2 relative to the Euler number. The proofs mainly rely on the conformal
compactifications discussed earlier, a simple doubling argument and applications of the above
mentioned results of Chang–Gursky–Yang [7, 8].

Theorem 9. Suppose (X4, g) is a conformally compact Einstein 4-manifold with its confor-
mal infinity of positive Yamabe constant and the renormalized volume V is positive. Then
H1(X,R) = 0.

Theorem 10. Suppose (X4, g) is a conformally compact Einstein 4-manifold with conformal
infinity of positive Yamabe constant. Then

V >
1
3

4π2

3
χ(X)

implies that H2(X,R) vanishes.

A nice way to illustrate the above argument is the following. We may consider the modified
Yamabe constant

Y λ(M, [g]) = inf
g∈[g]

∫
M (R[g] + λ|W+|g)dvg

(
∫
M dvg)

n−2
n

.

Then, one knows that (M, [g]) is of positive Y λ(M, [g]) if and only if there is a metric g ∈ [g]
with R+ λ|W+| > 0. As a consequence of the following Bochner formula

∆
1
2
|ω|2 = |∇ω|2 − 2W+(ω, ω) +

1
3
R|ω|2 ≥ |∇ω|2 + (R− 2

√
6|W+|)|ω|2

for any self-dual harmonic 2-form ω, one easily sees that a closed oriented 4-manifold with
Y −2

√
6 > 0 has its b+2 = 0. We also observe

Theorem 11. Suppose (X4, g) is a conformally compact Einstein 4-manifold with its conformal
infinity of positive Yamabe constant and that

V >
1
2

4π2

3
χ(X).

Then X is diffeomorphic to B4 and more interestingly M is diffeomorphic to S3.

The detailed proofs of the above theorems are in our paper [6]. One may recall

a) V (H4, gH) =
4π2

3
,

b) V (S1 ×R3, gH) = 0,

c) V (S2 ×R2, gm
+ ) =

8π2

3
r2h(1− r2h)
3r2h + 1

≤ 1
9

4π2

3
χ(S2 ×R2),

d) V (CP 2 \B, gK) ≤ 4π2

3
2(4−

√
3)

9
<

1
3

4π2

3
χ(CP 2 \B).

Theorem 10 is rather sharp, in cases (c) and (d) the second homology is nontrivial while the
renormalized volume is very close to one-third of the maximum.
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