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Abstract. The (2k)-th Gauss–Bonnet curvature is a generalization to higher dimensions of
the (2k)-dimensional Gauss–Bonnet integrand, it coincides with the usual scalar curvature
for k = 1. The Gauss–Bonnet curvatures are used in theoretical physics to describe gravity in
higher dimensional space times where they are known as the Lagrangian of Lovelock gravity,
Gauss–Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these
curvature invariants and review their variational properties. In particular, we discuss natural
generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.

Key words: Gauss–Bonnet curvatures; Gauss–Bonnet gravity; lovelock gravity; generalized
Einstein metrics; generalized minimal submanifolds; generalized Yamabe problem

2000 Mathematics Subject Classification: 53C20; 53C25

1 An introduction to Gauss–Bonnet curvatures

We shall present in this section several approaches to the Gauss–Bonnet curvatures. For precise
definitions and examples the reader is encouraged to consult [17, 18, 20].

1.1 Gauss–Bonnet curvatures vs. curvature invariants
of Weyl’s tube formula

In a celebrated paper [38] published in 1939, Hermann Weyl proved that the volume of a tube of
radius r around an embedded compact p-submanifold M of the n-dimensional Euclidean space
is a polynomial in the radius of the tube as follows:

Vol(tube(r)) =
[p/2]∑
i=0

C(n, p, i)H2ir
2i,

where C(n, p, i) are constants which only depend on the dimension and the codimension of the
submanifold M , and H2i are integrals of intrinsic scalar curvatures of the submanifold (Gauss–
Bonnet curvatures). A good and complete reference about Weyl’s tube formula and related
topics is the book of A. Gray [13].

It turns out that H0 is the volume of the submanifold, H2 is the integral of the usual scalar
curvature of the submanifold, the integrand in H4 is quadratic in the Riemann tensor and
was introduced by Lanczos in 1932 as a possible substitute to Hilbert’s Lagrangian in general
relativity. The top Hp is up to a constant the Euler–Poincaré characteristic of the submanifold
if p is even.

All the (total Gauss–Bonnet) curvatures H2i have important applications in theoretical
physics, particularly in (brane world) cosmology. They are by nowadays the subject of in-
tensive studies, where they are known as the Lagrangian of Lovelock gravities or Gauss–Bonnet
gravities, see [8, 10, 26] and the references therein.
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1.2 Gauss–Bonnet curvatures vs. Gauss–Bonnet integrands

1.2.1 From Gaussian curvature to the scalar curvature

Recall that for a compact 2-dimensional Riemannian manifold (M, g) (a surface) the classical
Gauss–Bonnet formula states that the Euler-Poincaré characteristic of M (which is a topological
invariant) is determined by the geometry of (M, g) as an integral of the Gaussian curvature of
the metric: the 2-dimensional Gauss–Bonnet integrand. It is a scalar function defined on the
surface and can be naturally generalized to higher dimensional Riemannian manifolds in the
following way:

Let (M, g) be a Riemannian manifold of dimension n ≥ 2. For m ∈ M and for a tangent
2-plane P to M at m we define K(P ), the sectional curvature at P , to be the Gaussian curvature
at m of the surface expm(V ), where expm is the exponential map and V is a small neighborhood
of 0 in V . Recall that the so-obtained surface is totally geodesic at m. In this way, we obtain
a function K defined on the 2-Grassmannian bundle over M . The function K determines
a unique symmetric (2, 2)-double form R that satisfies the first Bianchi identity and having K
as its sectional curvature, that is nothing but the standard Riemann curvature tensor. Recall
that a symmetric (2, 2)-double form is a (0, 4) tensor which is skew symmetric in the first two
arguments and in the last two, and that it is symmetric with respect to the interchange of the
first two variables with the last two.

Then one can define the scalar curvature of M by taking the Ricci contraction of R twice.
In this sense one can say that the usual scalar curvature is a natural generalization of the two
dimensional Gauss–Bonnet integrand to higher dimensions.

1.2.2 From higher Gauss–Bonnet integrands to Gauss–Bonnet curvatures

For a compact (2p)-dimensional Riemannian manifold (M, g) the generalized Gauss–Bonnet
theorem states that the Euler–Poincaré characteristic of M (which is a topological invariant) is
determined by the geometry of (M, g) as an integral of a certain curvature of the metric:

χ(M) = c(p)
∫

M
h2p dvol,

where c(p) is a constant and h2p is a scalar function on the manifold defined using the Riemann
curvature tensor of (M, g): the (2p)-th Gauss–Bonnet integrand, called also the Lipschitz–Killing
curvature [11].

Using the same idea as above, we generalize the (2p)-th Gauss–Bonnet integrand (or the
(2p)-th Killing–Lipschitz curvature) to dimensions higher than (2p) as follows.

Let (M, g) be a Riemannian manifold of dimension n ≥ 2p. For m ∈ M and for a tangent
(2p)-plane P to M at m we define K2p, called Thorpe’s (2p)-th sectional curvature at P [35], to
be the Gauss–Bonnet integrand at m of the (2p)-dimensional submanifold expm(V ), where expm

and V are as above. Thorpe’s tensor R2p of order (2p) is then defined to be the unique symmetric
(p, p)-double form that satisfies the first Bianchi identity and with sectional curvature K2p.

Then one can get scalar curvatures (Gauss–Bonnet curvatures) after taking (2p)-times the
Ricci contraction of R2p.

The tensors R2p are determined by the Riemann curvature tensor R in the following way [36]:
For ui, vj tangent vectors at m ∈ M , we have

(2p)!
2p

R2p(u1, . . . , u2p, v1, . . . , v2p)

=
∑

α,β∈S2p

ε(α)ε(β)R(uα(1), uα(2), vβ(1), vβ(2)) · · ·R(uα(2p−1), uα(2p), vβ(2p−1), vβ(2p)).
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This complicated expression can be considerably simplified using the exterior product of double
forms, see the following subsection.

1.3 Double forms

A (p, q)-double form ω(x1, x2, . . . , xp, y1, y2, . . . , yq) on M is at each point of the manifold a mul-
tilinear form that is skew symmetric with respect to the interchange of any two among the first
p-arguments (tangent vectors) or the last q. If p = q and ω is invariant with the respect to the
interchange of the first p-variables with the last p, we say that ω is a symmetric (p, p)-double
form.

For example, the covariant Riemann curvature tensor is a symmetric (2, 2)-double form, and
Thorpe’s tensor R2p is a symmetric (2p, 2p)-double form.

Double forms were introduced first by De Rham and then developed in the seventies of the
last century by Thorpe [36], Kulkarni [16], Nomizu [29], Gray [12], Kowalski [15], Nasu [28] etc.

Double forms and the more general multi-forms are recently studied in theoretical physics,
see [33] and the references therein.

1.3.1 Algebraic operations on double forms

A (p, q)-double form can be seen alternatively as a section of the tensor product of the bundle
of p-forms with the one of q-forms.

1. The exterior product of double forms is the natural generalization to double forms of the
usual exterior product of differential forms:

(θ1 ⊗ θ2) · (θ3 ⊗ θ4) = (θ1 ∧ θ3)⊗ (θ2 ∧ θ4),

where we denoted the exterior product of double forms following Kulkarni [16] by a dot.
In the following the dot shall be omitted whenever possible. The well known Kulkarni–
Nomizu product of symmetric bilinear forms is a special case of the exterior product, see
[6, p. 47].

2. The generalized Hodge star operator [17] is the natural extension to double forms of the
usual Hodge star operator on differential forms:

∗(θ1 ⊗ θ2) = (∗θ1)⊗ (∗θ2).

Senovilla [33] considered other interesting extensions of the Hodge star operator to double-
forms and multi-forms by keeping it acting on different factors of the tensor product.

3. The inner product of double forms [17] is defined by declaring

〈θ1 ⊗ θ2, θ3 ⊗ θ4〉 = 〈θ1, θ3〉〈θ2, θ4〉.

The exterior product of double forms has the advantage that it makes easier many complicated
expressions of Riemannian geometry, as illustrated by the examples below. In the following let
(M, g) denote a Riemannian manifold of dimension n and R its Riemann curvature tensor seen
as a (2, 2)-double form.

• Thorpe tensors are just given by [16, 28]

R2p =
2p

(2p)!
Rp,

where of course Rp is the exterior product of the Riemann curvature tensor R seen as
a (2, 2)-double form. In particular, Rn/2 determines the Gauss–Bonnet integrand if the
dimension n of the manifold is even.



4 M.L. Labbi

• The (2k)-th Gauss–Bonnet curvature of (M, g) can be alternatively defined by [17]:

h2p = ∗ 1
(n− 2p)!

(gn−2pRp). (1)

• The curvature operator of the classical Weitzenböck formula acting on p-forms is deter-
mined by the following double form [7, 21].{

gRic
(p− 1)

− 2R

}
gp−2

(p− 2)!
,

where Ric denotes the Ricci curvature of (M, g).

• The exterior product gk = g · · · g determines the canonical inner product of differential
k-forms over M .

• Gauss equation for a hypersurface of the Euclidean space which relates the curvature
tensor R of the hypersurface to its second fundamental form B can be just written as [13]

R =
1
2
B2.

1.4 Gauss–Bonnet curvatures vs. symmetric functions in the eigenvalues
of the shape operator of a hypersurface of the Euclidean space

Let g and B denote respectively the first and second fundamental forms of a hypersurface of the
Euclidean space. The symmetric functions in the eigenvalues of the operator corresponding to B
can be nicely re-formulated using the exterior product and the generalized Hodge star operator
as follows [23]

sk =
1

k!(n− k)!
∗ (gn−kBk).

In particular, if k = 2p is even, Gauss equation shows that R = 1
2B2. Therefore, all the even

powers of B are then intrinsic and consequently s2p is also intrinsic and coincides up to a constant
with the Gauss–Bonnet curvature of the hypersurface as follows:

s2p =
2p

(2p)!(n− 2p)!
∗ (gn−2pRp) =

2k

(2k)!
h2k.

Note that if k = 2p + 1 is odd then s2p+1 is no longer intrinsic:

s2p+1 = ∗ gn−2p−1B2p+1

(n− 2p− 1)!(2p + 1)!
= ∗ 2pgn−2p−1RpB

(n− 2p− 1)!(2p + 1)!
.

The previous formula allows one to define the Gauss–Bonnet curvatures of odd order for an ar-
bitrary submanifold as follows:

Definition 1 ([23]). Let (M, g) be an arbitrary n-submanifold of a Riemannian manifold (M̃, g̃)
and N a normal vector to M . For 1 ≤ 2p + 1 ≤ n, we define the (2p + 1)-th Gauss–Bonnet
curvature of (M, g) at N by

h2p+1(N) = ∗
(

gn−2p−1

(n− 2p− 1)!
RpBN

)
, (2)

where B denotes the vector valued second fundamental form of M , BN (u, v) = g̃(B(u, v), N)
and R is the Riemann curvature tensor of (M, g).
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The (2p + 1)-th Gauss–Bonnet curvature is a generalization of the usual mean curvature as
for p = 0 we recover the trace of B:

h1(N) = ∗
(

gn−1

(n− 1)!
BN

)
= cBN .

Furthermore, for a submanifold of the Euclidean space, h2p+1 coincides with the higher (2p+1)-
th mean curvature defined by Reilly [32].

1.5 Other aspects of Gauss–Bonnet curvatures and terminology

The Gauss–Bonnet curvatures, or more precisely closely related invariants, appear naturally in
the mathematics and physics literature under different names. For instance, in the context of
convex sets they (more precisely their integrals) are known as Minkowski’s Quermassintegrale,
intrinsic volumes or Steiner functionals. They are called Lipschitz–Killing curvatures (measures)
in the case of sets of positive reach, piecewise linear spaces and subanalytic sets. A good compte-
rendu of these different aspects is the review paper of Bernig [5]. These invariants appear also in
the study of the “expected Euler characteristic” in the probability literature [1] and in extensions
of the Gauss–Bonnet theorem [2].

In theoretical physics Gauss–Bonnet curvatures are known as a Lagrangian of pure Lovelock
gravity, Gauss–Bonnet gravity or Lanczos gravity. Precisely, in dimensions higher than four the
Lagrangian of Lovelock gravity is [8]

L =
m∑

k=0

c2kh2k, (3)

where h0 = 1, c0 is the cosmological constant, the higher ck are arbitrary constants and h2k

(resp. m) is the (2k)-th Gauss–Bonnet curvature (resp. the integer part of one half the dimension
of) the (pseudo) Riemannian manifold under consideration.

Physicists consider the Lovelock gravity as a fascinating extension of general relativity for
dimensions higher than four, see for instance [8] and the references therein. The Lagrangian of
the so-called pure Lovelock gravity is the Gauss–Bonnet curvature (that is just one term in the
summation in (3)). The Lagrangian of the Gauss–Bonnet gravity (called also Lanczos gravity)
is extensively studied in theoretical physics, it is obtained by taking only the first three terms
in the summation (3), see [26, 8] and the references therein.

Finally we make the following comments about terminology. Some authors name all the
previous invariants as Killing–Lipschitz curvatures in all categories. In the smooth Riemannian
case Killing–Lipschitz curvatures refer originally to the Gauss–Bonnet integrands [11]. On the
other hand, there is no standard terminology for the scalar curvatures (that are the Gauss–
Bonnet curvatures under study here) generalizing the previous integrands. For instance, in [5,
9, 24] they are still called Lipschitz–Killing curvatures, in [3, 14] they are H. Weyl’s invariants, in
[13, 32] they are called higher mean curvatures, physicists call them dimensionally continued (or
extended) Euler densities or Gauss–Bonnet integrands. It was a subtle suggestion made to us by
an anonymous referee of the Pacific J. Math. to rather call these higher order scalar curvatures
in the smooth (Riemannian) case as the Gauss–Bonnet or Gauss–Bonnet–Weyl curvatures.

2 Einstein–Lovelock tensors

The usual Ricci curvature tensor cR is the first Ricci-contraction of the Riemann curvature
tensor R. The Einstein tensor is the simplest linear combination of the the Ricci tensor and the
metric tensor to be divergence free, that is 1

2c2Rg − cR. It is the gradient of the total scalar
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curvature seen as a functional on the space of all Riemannian metrics on the manifold under
consideration.

In a similar way, we define a generalized Ricci curvature tensor c2p−1Rp of order (2p) to be
the (2p − 1)-th Ricci contraction of Thorpe’s tensor Rp. The Einstein–Lovelock tensor T2p is
a linear combination of the (2p)-th Ricci tensor c2p−1Rp and the metric tensor that is divergence
free. Precisely, we define the Einstein–Lovelock tensor T2p of order 2p by

T2p = h2pg −
1

(2p− 1)!
c2p−1Rp. (4)

For p = 0, we set T0 = g. For p = 1, T2 coincides with the usual Einstein tensor. Furthermore,
the tensor T2k is the gradient of the total (2k)-th Gauss–Bonnet curvature seen as a functional
on the space of all Riemannian metrics on a given compact manifold, see the next section.

David Lovelock [25] proved that any divergence-free symmetric (0, 2) tensor built from the
metric and its first two covariant derivatives are linear combinations of the tensors T2k.

3 A variational property of the Gauss–Bonnet curvatures

On a compact manifold, we have the classical total scalar curvature functional:

S(g) =
∫

M
scal(g)µg.

The gradient of this Riemannian functional is the Einstein tensor: 1
2scalg − Ric. The critical

metrics of S once restricted to metrics with unit volume, are the Einstein metrics.
Similar properties hold for the total Gauss–Bonnet curvature functional:

H2k(g) =
∫

M
h2k(g)µg,

as shown by the following theorem:

Theorem 1. Let (M, g) be a compact Riemannian manifold of dimension n. For each k, such
that 2 ≤ 2k ≤ n, the functional H2k is differentiable, and at g we have

H ′
2kh =

1
2
〈h2kg −

1
(2k − 1)!

c2k−1Rk, h〉.

In particular, the gradient of 2H2k is T2k = h2kg − 1
(2k−1)!c

2k−1Rk.

The previous theorem were first proved by Lovelock [25] using classical tensor analysis,
Berger [3] in the case k = 2, Patterson [30] as a special case of a more general variational
formula due to Muto [27] and Bernig [4] proved a more general variational formula for the
Lipschitz–Killing curvatures of subanalytic sets. The proof of [19] sketched below is coordinate
free and it uses the the formalism of double forms.

Proof. We sketch the proof of the theorem, for more details see [19]. First, the directional
derivative of the Riemann curvature tensor R, seen as a symmetric double form has the form:

R′h = Exact double form + a linear term inR,

precisely,

R′h = −1
4
(DD̃ + D̃D)(h) +

1
4
Fh(R).
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Next, we derive the directional derivative of the Gauss–Bonnet curvature h2k at g:

h′2kh = −1
2
〈 c2k−1

(2k − 1)!
Rk, h〉 − k

4
(δδ̃ + δ̃δ)

(
∗

(
gn−2k

(n− 2k)!
Rk−1h

))
,

where (δδ̃ + δ̃δ) is the formal adjoint of the Hessian type operator (DD̃ + D̃D).
Finally, using Stoke’s theorem we conclude that:

H ′
2k · h =

∫
M

(
h′2k · h +

h2k

2
trgh

)
µg = −1

2
〈 c2k−1

(2k − 1)!
Rk, h〉+

h2k

2
〈g, h〉

=
1
2
〈h2kg −

c2k−1

(2k − 1)!
Rk, h〉 =

1
2
〈T2k, h〉. �

4 Applications

4.1 A generalized Yamabe problem [19]

It results from the previous theorem (see [19]) that for a compact Riemannian n-manifold (M, g)
with n > 2k, the Gauss–Bonnet curvature h2k is constant if and only if the metric g is a critical
point of the functional H2k when restricted to the set Conf0(g) of metrics pointwise conformal
to g and having the same total volume.

The previous result makes the following Yamabe-type problem plausible: In each conformal
class of a fixed Riemannian metric on a smooth compact manifold with dimension n > 2k there
exists a metric with h2k constant.

The previous problem is closely related to the recent σk-Yamabe problem of Viaclovsky
involving the symmetric functions of the Schouten tensor, see [37, 34] and the references therein.

4.2 Generalized Einstein manifolds [30, 19, 22]

Einstein metrics are the critical metrics of the total scalar curvature functional once restricted to
metrics of unit volume. Equivalently, a metric g is Einstein if its Ricci tensor cR is proportional
to g: cR = λg.

In a similar way, the critical metrics of the total Gauss–Bonnet curvature functional H2k

once restricted to metrics with unit volume shall be called (2k)-Einstein metrics. The 2-Einstein
metrics are nothing but the usual Einstein metrics.

These critical metrics were studied first by Patterson [30] who proved that a locally irreducible
symmetric Riemannian metric is (2k)-Einstein for any positive integer k, and that harmonic
Riemannian metrics are 2 and 4-Einstein.

The previous (2k)-Einstein metrics are characterized by the condition that the contraction
of order (2k − 1) of Thorpe’s tensor Rk is proportional to the metric, that is

c2k−1Rk = λg.

More generally, for 0 < p < 2q < n, we shall say that a Riemannian n-manifold is (p, q)-
Einstein [22] if the p-th contraction of Thorpe’s tensor Rq is proportional to the metric g2k−p,
that is

cpRq = λg2q−p.

We recover the usual Einstein manifolds for p = q = 1 and the previous (2q)-Einstein condi-
tion for p = 2q−1. The (p, q)-Einstein metrics are all critical metrics for the total Gauss–Bonnet
curvature functional H2q.
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For all p ≥ 1, (p, q)-Einstein implies (p + 1, q)-Einstein. In particular, the metrics with
constant q-sectional curvature (that is the sectional curvature of Rq is constant) are (p, q)-
Einstein for all p.

On the other hand, the (p, q)-Einstein condition neither implies nor is implied by the (p, q+1)-
condition as shown by the following examples.

Let M be a 3-dimensional non-Einstein Riemannian manifold and T k be the k-dimensional
flat torus, k ≥ 1, then the Riemann curvature tensor R of the Riemannian product N = M×T k

satisfies Rq = 0 for q ≥ 2. In particular N is (p, q)-Einstein for all p ≥ 0 and q ≥ 2 but it is not
(1, 1)-Einstein.

On the other hand, let M be a 4-dimensional Ricci-flat but not flat manifold (for example
a K3 surface endowed with the Calabi–Yau metric), then the Riemannian product N = M ×T k

is (1, 1)-Einstein but not (q, 2)-Einstein for any q with 0 ≤ q ≤ 3.
The (2q)-Einstein condition, or equivalently the (2q − 1, q)-Einstein condition, seems to be

so weak to imply any topological restrictions on the manifold. However, for lower values of p we
have the following obstruction result:

Theorem 2 ([22]). Let k ≥ 1 and (M, g) be a (1, k)-Einstein manifold (i.e. cRq = λg2q−1) of di-
mension n ≥ 4k. Then the Gauss–Bonnet curvature h4k of (M, g) is nonnegative. Furthermore,
h4k ≡ 0 if and only if (M, g) is k-flat.

In particular, a compact (1, k)-Einstein manifold of dimension n = 4k has its Euler–Poincaré
characteristic nonnegative. Furthermore, it is zero if and only if the metric is k-flat.

The previous theorem generalizes a similar result of Berger about usual four dimensional
Einstein manifolds.

4.3 (2k)-minimal submanifolds [23]

Let (M̃, g̃) be an (n + p)-dimensional Riemannian manifold, and let M be an n-dimensional
submanifold of M̃ .

We shall characterize those submanifolds (endowed with the induced metric) that are critical
points of the total Gauss–Bonnet curvature function.

Let F be a local variation of M , that is a smooth map

F : M × (−ε, ε) → M̃,

such that F (x, 0) = x for all x ∈ M and with compact support suppF .
The implicit function theorem implies that there exists ε > 0 such that for all t with |t| < ε,

the map φt = F (·, t) : M → M̃ is a diffeomorphism onto a submanifold Mt of M̃ .
Let gt = φ∗t (g̃). Note that g1 = g.

Theorem 3 ([23]). Let ξ = d
dt |t=0

φt denotes the variation vector field relative to a local varia-
tion F of M with compact support as above.

1. If H2k(t) =
∫
M h2k(gt)µgt denotes the total (2k)-th Gauss–Bonnet curvature of φt(M),

then

H ′
2k(0) =

∫
M

h2k+1(ξ⊥)µg,

where h2k+1 is the (2k + 1)-th Gauss–Bonnet curvature of M defined by (2).

2. The submanifold M is a critical point for the total (2k)-th Gauss–Bonnet curvature func-
tion for all local variations of M if and only if the (2k + 1)-Gauss–Bonnet curvature
h2k+1(N) of M vanishes for all normal directions N .
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With reference to the previous variational formula and by analogy to the case of usual minimal
submanifolds we set the following definition:

Definition 2. For 0 ≤ 2k ≤ n, an n-submanifold M of a Riemannian manifold (M̃, g̃) is said
to be (2k)-minimal if h2k+1 ≡ 0.

Note that since h2k+1(N) = 〈T2k, BN 〉, a submanifold is (2k)-minimal if and only if T2k is
orthogonal to BN for all normal directions N . Note the analogy with usual minimal submanifolds
(T0 = g).

We list below some examples:

1. A flat submanifold is always (2k)-minimal for all k > 0. In fact R ≡ 0 ⇒ h2k+1 ≡ 0. This
shows that (2k)-minimal does not imply the usual minimality condition.

2. A totally geodesic submanifold is always (2k)-minimal for all k ≥ 0. In fact B ≡ 0 ⇒
h2k+1 ≡ 0.

3. If M is a hypersurface of the Euclidean space then (2k)-minimality coincides with Reilly’s
(2k)-minimality, [31]. On the other hand, if M is a hypersurface of a space form (M̃, g̃) of
constant λ then M is (2k)-minimal if and only if

k∑
i=0

(2k − 2i + 1)!(n− 2k − 1 + 2i)!λi

i!(k − i)!
s2k−2i+1 = 0.

In particular, M is 2-minimal if and only if 6s3 + (n − 1)(n − 2)s1λ = 0. Notice the
difference with Reilly’s r-minimality.

4. A complex submanifold M of a Kahlerian manifold (M̃, g̃) is (2k)-minimal for any k.

Let now f be a smooth function on (M, g). We define the `2k-Laplacian [23] operator of
(M, g) as

`2k(f) = −〈T2k,Hess(f)〉, (5)

where T2k denotes the (2k)-th Einstein–Lovelock tensor (4) of (M, g) and 0 ≤ 2k < n, Hess(f)
is the Hessian of f .

For k = 0 we have T0 = g and then `0 = ∆ is the usual Laplacian.
For a compact manifold, the generalized Laplacian `2k satisfies the following interesting

properties:
For each k ≥ 0, `2k(f) is a divergence hence

∫
M `2k(f)dv ≡ 0. Furthermore, the operator `2k

is self adjoint with respect to the integral scalar product.
If for some k with 0 ≤ 2k < n, the Einstein–Lovelock tensor T2k is positive definite (or

negative definite), then the operator `2k is elliptic and positive definite (resp. negative definite).
We shall say that the function f is `2k-harmonic if `2k(f) = 0. In [23] we proved the following

maximum principle:

Theorem 4 ([23]). Let (M, g) be a compact manifold of positive definite (or negative definite)
Einstein–Lovelock tensor T2k then every smooth and `2k-harmonic function on M is constant.

As a consequence of the previous result we proved the following about (2k)-minimal submani-
folds of the Euclidean space:

Theorem 5. A submanifold M of the Euclidean space is (2k)-minimal if and only if the coor-
dinate functions restricted to M are `2k-harmonic functions on M .
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Corollary 1. Let 0 ≤ 2k < n and let (M, g) be a compact Riemannian n-manifold with posi-
tive definite (or negative definite) Einstein–Lovelock tensor T2k. Then there is no non trivial
isometric (2k)-minimal immersion of M into the Euclidean space.

Note that the condition of positive (or negative) definiteness of T2k in the previous corollary
is necessary, as the flat torus admits (non trivial) (2k)-minimal isometric immersions into the
Euclidean space.
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