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Abstract. Quantum gravity was born as that branch of modern theoretical physics that
tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays
it is providing new insight into the unification of all fundamental interactions, while giving
rise to new developments in modern mathematics. It is however unclear whether it will ever
become a falsifiable physical theory, since it deals with Planck-scale physics. Reviewing
a wide range of spectral geometry from index theory to spectral triples, we hope to dismiss
the general opinion that the mere mathematical complexity of the unification programme
will obstruct that programme.
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1 Introduction

Lorentzian spacetime and gravity

In modern physics, thanks to the work of Einstein [39], space and time are unified into the
spacetime manifold (M, g), where the metric g is a real-valued symmetric bilinear map

g : Tp(M)× Tp(M) → R

of Lorentzian signature. The latter feature gives rise to the light-cone structure of spacetime,
with vectors being divided into timelike, null or spacelike depending on whether g(X,X) is
negative, vanishing or positive, respectively. The classical laws of nature are written in tensor
language, and gravity is the curvature of spacetime. In the theory of general relativity, gravity
couples to the energy-momentum tensor of matter through the Einstein equations

Rab −
1
2
gabR =

8πG
c4

Tab. (1.1)

?This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of
Thomas P. Branson. The full collection is available at http://www.emis.de/journals/SIGMA/MGC2007.html

mailto:booss@ruc.dk
http://imfufa.ruc.dk/~Booss
mailto:giampiero.esposito@na.infn.it
http://www.dsf.unina.it/Theor/gruppoiv/gesposit.htm
mailto:lesch@math.uni-bonn.de
http://www.math.uni-bonn.de/people/lesch
http://www.emis.de/journals/SIGMA/2007/098/
http://www.emis.de/journals/SIGMA/MGC2007.html


2 B. Booß-Bavnbek, G. Esposito and M. Lesch

The Einstein–Hilbert action functional for gravity, giving rise to equation (1.1), is diffeomor-
phism-invariant, and hence general relativity belongs actually to the general set of theories ruled
by an infinite-dimensional [28] invariance group (or pseudo-group). With hindsight, following
DeWitt [31], one can say that general relativity was actually the first example of a non-Abelian
gauge theory (about 38 years before Yang–Mills theory [98]).

From Schrödinger to Feynman

Quantum mechanics deals instead, mainly, with a description of the world on atomic or sub-
atomic scale. It tells us that, on such scales, the world can be described by a Hilbert space
structure, or suitable generalizations. Even in the relatively simple case of the hydrogen atom,
the appropriate Hilbert space is infinite-dimensional, but finite-dimensional Hilbert spaces play
a role as well. For example, the space of spin-states of a spin-s particle is C2s+1 and is therefore
finite-dimensional. Various pictures or formulations of quantum mechanics have been developed
over the years, and their key elements can be summarized as follows:

(i) In the Schrödinger picture, one deals with wave functions evolving in time according to
a first-order equation. More precisely, in an abstract Hilbert space H, one studies the
Schrödinger equation

i~
dψ

dt
= Ĥψ,

where the state vector ψ belongs to H, while Ĥ is the Hamiltonian operator. In wave
mechanics, the emphasis is more immediately put on partial differential equations, with
the wave function viewed as a complex-valued map ψ : (x, t) → C obeying the equation

i~
∂ψ

∂t
=

(
− ~2

2m
4+V

)
ψ,

where −4 is the Laplacian in Cartesian coordinates on R3 (with this sign convention, its
symbol is positive-definite).

(ii) In the Heisenberg picture, what evolves in time are instead the operators, according to the
first-order equation

i~
dÂ

dt
= [Â, Ĥ].

Heisenberg performed a quantum mechanical re-interpretation of kinematic and mechani-
cal relations [65] because he wanted to formulate quantum theory in terms of observables
only.

(iii) In the Dirac quantization, from an assessment of the Heisenberg approach and of Poisson
brackets [32], one discovers that quantum mechanics can be made to rely upon the basic
commutation relations involving position and momentum operators:

[q̂j , q̂k] = [p̂j , p̂k] = 0, (1.2)

[q̂j , p̂k] = i~δj
k. (1.3)

For generic operators depending on q̂, p̂ variables, their formal Taylor series, jointly with
application of (1.2) and (1.3), should yield their commutator.
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(iv) Weyl quantization. The operators satisfying the canonical commutation relations (1.3)
cannot be both bounded, whereas it would be nice to have quantization rules not involv-
ing unbounded operators and domain problems. For this purpose, one can consider the
strongly continuous one-parameter unitary groups having position and momentum as their
infinitesimal generators. These read as U(s) ≡ eisP , V (t) ≡ eitQ, and satisfy the Weyl
form of canonical commutation relations, which is given by

U(s)V (t) = eistV (t)U(s).

Here the emphasis was, for the first time, on group-theoretical methods, with a substan-
tial departure from the historical development, that relied instead heavily on quantum
commutators and their relation with classical Poisson brackets.

(v) Feynman quantization (i.e., Lagrangian approach). The Weyl approach is very elegant
and far-sighted, with several modern applications [47], but still has to do with a more
rigorous way of doing canonical quantization, which is not suitable for an inclusion of
relativity. A spacetime approach to ordinary quantum mechanics was instead devised by
Feynman [49] (and partly Dirac himself [33]), who proposed to express the Green kernel
of the Schrödinger equation in the form

G[xf , tf ;xi, ti] =
∫

all paths
eiS/~dµ,

where dµ is a suitable (putative) measure on the set of all space-time paths (including
continuous, piecewise continuous, or even discontinuous paths) matching the initial and
final conditions. This point of view has enormous potentialities in the quantization of field
theories, since it preserves manifest covariance and the full symmetry group, being derived
from a Lagrangian.

It should be stressed that quantum mechanics regards wave functions only as a technical tool
to study bound states (corresponding to the discrete spectrum of the Hamiltonian operator Ĥ),
scattering states (corresponding instead to the continuous spectrum of Ĥ), and to evaluate
probabilities (of finding the values taken by the observables of the theory). Moreover, it is
meaningless to talk about an elementary phenomenon on atomic (or sub-atomic) scale unless
it is registered, and quantum mechanics in the laboratory needs also an external observer and
assumes the so-called reduction of the wave packet (see [47] and references therein).

Spacetime singularities

Now we revert to the geometric side. In Riemannian or pseudo-Riemannian geometry, geodesics
are curves whose tangent vector X moves by parallel transport, so that eventually

dXa

ds
+ Γa

bcX
bXc = 0,

where s is the affine parameter and Γa
bc are the connection coefficients. In general relativi-

ty, timelike geodesics correspond to the trajectories of freely moving observers, while null
geodesics describe the trajectories of zero-rest-mass particles [63, Section 8.1]. Moreover, a space-
time (M, g) is said to be singularity-free if all timelike and null geodesics can be extended to
arbitrary values of their affine parameter. At a spacetime singularity in general relativity, all
laws of classical physics would break down, because one would witness very pathological events
such as the sudden disappearance of freely moving observers, and one would be completely un-
able to predict what came out of the singularity. In the sixties, Penrose [82] proved first an
important theorem on the occurrence of singularities in gravitational collapse (e.g. formation of
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black holes). Subsequent work by Hawking [57, 58, 59, 60, 61], Geroch [50], Ellis and Hawking
[62, 40], Hawking and Penrose [64] proved that spacetime singularities are generic properties of
general relativity, provided that physically realistic energy conditions hold. Very little analytic
use of the Einstein equations is made, whereas the key role emerges of topological and global
methods in general relativity (jointly with Morse theory for Lorentzian manifolds).

Unification of all fundamental interactions

The fully established unifications of modern physics are as follows.

(i) Maxwell: electricity and magnetism are unified into electromagnetism. All related phe-
nomena can be described by an antisymmetric rank-two tensor field, and derived from
a one-form, called the potential.

(ii) Einstein: space and time are unified into the spacetime manifold. Moreover, inertial and
gravitational mass, conceptually different, are actually unified as well.

(iii) Standard model of particle physics: electromagnetic, weak and strong forces are unified by
a non-Abelian gauge theory, normally considered in Minkowski spacetime (this being the
base space in fibre-bundle language).

The physics community is now familiar with a picture relying upon four fundamental interac-
tions: electromagnetic, weak, strong and gravitational. The large-scale structure of the universe,
however, is ruled by gravity only. All unifications beyond Maxwell involve non-Abelian gauge
groups (either Yang–Mills or diffeomorphism group). Three extreme views have been developed
along the years, i.e.,

(i) Gravity arose first, temporally, in the very early Universe, then all other fundamental
interactions.

(ii) Gravity might result from Quantum Field Theory (this was the Sakharov idea [90]).

(iii) The vacuum of particle physics is regarded as a cold quantum liquid in equilibrium. Pro-
tons, gravitons and gluons are viewed as collective excitations of this liquid [95].

2 From old to new unification

Here we outline how the space-of-histories formulation provides a common ground for describing
the ‘old’ and ‘new’ unifications of fundamental theories.

Old unification

Quantum field theory begins once an action functional S is given, since the first and most
fundamental assumption of quantum theory is that every isolated dynamical system can be
described by a characteristic action functional [28]. The Feynman approach makes it necessary
to consider an infinite-dimensional manifold such as the space Φ of all field histories ϕi. On this
space there exist (in the case of gauge theories) vector fields

Qα = Qi
α

δ

δϕi

that leave the action invariant, i.e., [31]

QαS = 0. (2.1)

The Lie brackets of these vector fields lead to a classification of all gauge theories known so far.
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Type-I gauge theories

The peculiar property of type-I gauge theories is that these Lie brackets are equal to linear
combinations of the vector fields themselves, with structure constants, i.e., [30]

[Qα, Qβ ] = Cγ
αβ Qγ , (2.2)

where Cγ
αβ,i = 0. The Maxwell, Yang–Mills, Einstein theories are all examples of type-I theories

(this is the ‘unifying feature’). All of them, being gauge theories, need supplementary conditions,
since the second functional derivative of S is not an invertible operator. After imposing such
conditions, the theories are ruled by a differential operator of d’Alembert type (or Laplace type,
if one deals instead with Euclidean field theory), or a non-minimal operator at the very worst
(for arbitrary choices of gauge parameters). For example, when Maxwell theory is quantized via
functional integrals in the Lorenz [74] gauge, one deals with a gauge-fixing functional

Φ(A) = ∇bAb,

and the second-order differential operator acting on the potential reads as

P b
a = −δ b

a +R b
a +

(
1− 1

α

)
∇a∇b,

where α is an arbitrary gauge parameter. The Feynman choice α = 1 leads to the minimal
operator

P̃ b
a = −δ b

a +R b
a ,

which is the standard wave operator on vectors in curved spacetime. Such operators play
a leading role in the one-loop expansion of the Euclidean effective action, i.e., the quadratic
order in ~ in the asymptotic expansion of the functional ruling the quantum theory with positive-
definite metrics (see Section 6).

Type-II gauge theories

For type-II gauge theories, Lie brackets of vector fields Qα are as in equation (2.2) for type-I
theories, but the structure constants are promoted to structure functions. An example is given
by simple supergravity (a supersymmetric [53, 96] gauge theory of gravity, with a symmetry
relating bosonic and fermionic fields) in four spacetime dimensions, with auxiliary fields [78].

Type-III gauge theories

In this case, the Lie bracket (2.2) is generalized by

[Qα, Qβ ] = Cγ
αβ Qγ + U i

αβ S,i,

and it therefore reduces to (2.2) only on the mass-shell, i.e., for those field configurations
satisfying the Euler–Lagrange equations. An example is given by theories with gravitons and
gravitinos such as Bose–Fermi supermultiplets of both simple and extended supergravity in any
number of spacetime dimensions, without auxiliary fields [78].
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From supergravity to general relativity

It should be stressed that general relativity is naturally related to supersymmetry, since the
requirement of gauge-invariant Rarita–Schwinger equations [87] implies Ricci-flatness in four
dimensions [27], which is then equivalent to vacuum Einstein equations. The Dirac operator [44]
is more fundamental in this framework, since the m-dimensional spacetime metric is entirely
re-constructed from the γ-matrices, in that

gab =
1

2m
tr(γaγb + γbγa).

New unification

In modern high energy physics, the emphasis is no longer on fields (sections of vector bundles
in classical field theory, operator-valued distributions in quantum field theory), but rather on
extended objects such as strings [26]. In string theory, particles are not described as points,
but instead as strings, i.e., one-dimensional extended objects. While a point particle sweeps
out a one-dimensional worldline, the string sweeps out a worldsheet, i.e., a two-dimensional real
surface. For a free string, the topology of the worldsheet is a cylinder in the case of a closed
string, or a sheet for an open string. It is assumed that different elementary particles correspond
to different vibration modes of the string, in much the same way as different minimal notes
correspond to different vibrational modes of musical string instruments [26]. The five different
string theories [1] are different aspects of a more fundamental theory, called M -theory [9]. In
the latest developments, one deals with ‘branes’, which are classical solutions of the equations of
motion of the low-energy string effective action, that correspond to new non-perturbative states
of string theory, break half of the supersymmetry, and are required by T-duality in theories with
open strings. They have the peculiar property that open strings have their end-points attached
to them [34, 35]. With the language of pseudo-Riemannian geometry, branes are timelike surfaces
embedded into bulk spacetime [7, 6]. According to this picture, gravity lives on the bulk, while
standard-model gauge fields are confined on the brane. For branes, the normal vector N is
spacelike with respect to the bulk metric GAB, i.e.,

GABN
ANB = NCN

C > 0.

The action functional S splits into the sum [6] (gαβ(x) being the brane metric)

S = S4[gαβ(x)] + S5[GAB(X)],

while the effective action [30] Γ is formally given by

eiΓ =
∫
DGAB(X) eiS × g.f. term.

In the functional integral, the gauge-fixed action reads as (here there is summation as well as
integration over repeated indices [28, 30, 6])

Sg.f. = S4 + S5 + 1
2F

AΩABF
B + 1

2χ
µωµνχ

ν ,

where FA and χµ are bulk and brane gauge-fixing functionals, respectively, while ΩAB and ωµν

are non-singular ‘matrices’ of gauge parameters. The gauge-invariance properties of bulk and
brane action functionals can be expressed by saying that there exist vector fields on the space
of histories such that (cf. equation (2.1))

RBS5 = 0, RνS4 = 0,
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whose Lie brackets obey a relation formally analogous to equation (2.2) for ordinary type-I
theories, i.e.,

[RB, RD] = CA
BD RA, [Rµ, Rν ] = Cλ

µν Rλ.

The bulk and brane ghost operators (see [29, 48] for the first time that ghost fields were con-
sidered in quantized gauge theories. When one studies how the gauge-fixing functional behaves
under infinitesimal gauge transformations, one discovers that one can then define a differential
operator acting on fields χβ of the opposite statistics with respect to the fields occurring in the
gauge-invariant action functional. Such fields χβ are the ghost fields. They arise entirely from
the fibre-bundle structure of the space of histories, from the Jacobian of the transformation
from fibre-adapted coordinates to the conventional local fields.) are therefore

QA
B = RBF

A = FA
,a R

a
B, Jµ

ν = Rνχ
µ = χµ

,i R
i
ν ,

respectively. The full bulk integration means integrating first with respect to all bulk met-
rics GAB inducing on the boundary ∂M the given brane metric gαβ(x), and then integrating
with respect to all brane metrics. Thus, one first evaluates the cosmological wave function of
the bulk spacetime [6], i.e.,

ψBulk =
∫

GAB [∂M ]=gαβ

µ(GAB, SC , T
D)eiS̃5 ,

where µ is taken to be a suitable measure, the SC , TD are ghost fields, and

S̃5 ≡ S5[GAB] + 1
2F

AΩABF
B + SAQ

A
BT

B.

Eventually, the effective action results from

eiΓ =
∫
µ̃(gαβ , ργ , σ

δ)eiS̃4ψBulk,

where µ̃ is another putative measure, ργ and σδ are brane ghost fields, and

S̃4 ≡ S4 + 1
2χ

µωµνχ
ν + ρµJ

µ
νσ

ν .

3 Open problems

Although string theory may provide a finite theory of quantum gravity that unifies all fun-
damental interactions at once, its impact on particle physics phenomenology and laboratory
experiments remains elusive. Some key issues are therefore in sight:

(i) What is the impact (if any) of Planck-scale physics on cosmological observations [99]?

(ii) Will general relativity retain its role of fundamental theory, or shall we have to accept that
it is only the low-energy limit of string or M-theory?

(iii) Are renormalization-group methods a viable way to do non-perturbative quantum gravity
[88, 11], after the recent discovery of a non-Gaussian ultraviolet fixed point [71, 89, 72] of
the renormalization-group flow?

(iv) Is there truly a singularity avoidance in quantum cosmology [45, 46] or string theory
[68, 66, 67]?

We are already facing unprecedented challenges, where the achievements of spacetime physics
and quantum field theory are called into question. The years to come will hopefully tell us
whether the new mathematical concepts considered in theoretical physics lead really to a better
understanding of the physical universe and its underlying structures.
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4 Mathematical promises and skepticism –
the case of spectral geometry

The base of mathematical skepticism and promises

When we write above of “unprecedented challenges, where the achievements of spacetime physics
and quantum field theory are called into question” we are aware that large segments of the
physics community actually are questioning the promised unified quantum gravity. We shall
not repeat the physicists’ skepticism which was skillfully gathered and elaborated, e.g., by Lee
Smolin in [92].

Here we shall only add a skeptical mathematical voice, i.e., a remark made by Yuri Manin in
a different context [76], elaborated in [77], and then try to draw a promising perspective out of
Manin’s remark.

The Closing round table of the International Congress of Mathematicians (Madrid, August
22–30, 2006) was devoted to the topic Are pure and applied mathematics drifting apart? As
panelist, Manin subdivided the mathematization, i.e., the way mathematics can tell us something
about the external world, into three modes of functioning (similarly Bohle, Booß and Jensen
1983, [10], see also [13]):

(i) An (ad-hoc, empirically based) mathematical model “describes a certain range of phenom-
ena, qualitatively or quantitatively, but feels uneasy pretending to be something more”.
Manin gives two examples for the predictive power of such models, Ptolemy’s model of
epicycles describing planetary motions of about 150 BCE, and the standard model of
around 1960 describing the interaction of elementary particles, besides legions of ad-hoc
models which hide lack of understanding behind a more or less elaborated mathematical
formalism of organizing available data.

(ii) A mathematically formulated theory is distinguished from an ad-hoc model primarily by
its “higher aspirations. A theory, so to speak, is an aristocratic model.” Theoretically
substantiated models, such as Newton’s mechanics, are not necessarily more precise than
ad-hoc models; the coding of experience in the form of a theory, however, allows a more
flexible use of the model, since its embedding in a theory universe permits a theoretical
check of at least some of its assumptions. A theoretical assessment of the precision and of
possible deviations of the model can be based on the underlying theory.

(iii) A mathematical metaphor postulates that “some complex range of phenomena might be
compared to a mathematical construction”. As an example, Manin mentions artificial
intelligence with its “very complex systems which are processing information because we
have constructed them, and we are trying to compare them with the human brain, which
we do not understand very well – we do not understand almost at all. So at the moment it
is a very interesting mathematical metaphor, and what it allows us to do mostly is to sort
of cut out our wrong assumptions. If we start comparing them with some very well-known
reality, it turns out that they would not work.”

Clearly, Manin noted the deceptive formal similarity of the three ways of mathematization
which are radically different with respect to their empirical foundation and scientific status.
He expressed concern about the lack of distinction and how that may “influence our value
systems”. In the words of [13, p. 73]: “Well founded applied mathematics generates prestige
which is inappropriately generalized to support these quite different applications. The clarity
and precision of the mathematical derivations here are in sharp contrast to the uncertainty of
the underlying relations assumed. In fact, similarity of the mathematical formalism involved
tends to mask the differences in the scientific extra-mathematical status, in the credibility of the
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conclusions and in appropriate ways of checking assumptions and results . . . Mathematization
can – and therein lays its success – make existing rationality transparent; mathematization
cannot introduce rationality to a system where it is absent . . . or compensate for a deficit of
knowledge.”

Asked whether the last 30 years of mathematics’ consolidation raise the chance of consoli-
dation also in phenomenologically and metaphorically expanding sciences, Manin hesitated to
use such simplistic terms. He recalled the notion of Kolmogorov complexity of a piece of infor-
mation, which is, roughly speaking, “the length of the shortest programme, which can be then
used to generate this piece of information . . . Classical laws of physics – such phantastic laws as
Newton’s law of gravity and Einstein’s equations – are extremely short programmes to generate
a lot of descriptions of real physical world situations. I am not at all sure that Kolmogorov’s
complexity of data that were uncovered by, say, genetics in the human genome project, or even
modern cosmology data . . . is sufficiently small that they can be really grasped by the human
mind.”

In spite of our admiration of and sympathy with Manin’s thoughtfulness, the authors of
this review shall reverse Manin’s argument and point to the astonishing shortness in the sense
of Kolmogorov complexity of main achievements in one exemplary field of mathematics, in
spectral geometry to encourage the new unification endeavor. Some of the great unifications in
physics were preceded by mature mathematical achievements (like John Bernoulli’s unification
of light and particle movement after Leibniz’ and Newton’s infinitesimals and Einstein’s general
relativity after Riemann’s and Minkowski’s geometries). Other great unifications in physics
were antecedent to comprehensive mathematical theory (like Maxwell’s equations for electro-
magnetism long before Hodge’s and de Rham’s vector analysis of differential forms). A few
great unifications in physics paralleled mathematical break-throughs (like Newton’s unification
of Kepler’s planetary movement with Galilei’s fall low paralleled calculus and Einstein’s 1905 heat
explanation via diffusion paralleled the final mathematical understanding of the heat equation
via Fourier analysis, Lebesgue integral and the emerging study of Brownian processes).

In this section, we shall argue for our curiosity about the new unification, nourished by the
remarkable shortness of basic achievements of spectral geometry and the surprisingly wide range
of induced (inner-mathematical) explanations.

The power of the index

The most fundamental eigenvalue is the zero, and perhaps the most fundamental spectral invari-
ant is the index of elliptic problems over compact manifolds without or with smooth boundary.
It is the difference between the multiplicity of the zero eigenvalue of the original problem and
of the adjoint problem. For a wide introduction to index theory we refer to [12] and [16], see
also the more recent [14] and [44].

In this subsection we shall summarize the functional analytic framework of index theory
(Fredholm pairs of subspaces, homotopy invariance of the index, classifying space), present sim-
ple formulations of the AS and APS theorems, recall how important geometric invariants can
be written as index of corresponding elliptic problems, emphasize simple consequences for parti-
tioned manifolds (cutting and pasting of the index) and delicate consequences for 4D geometry
(Donaldson).

The basic object of index theory is a Fredholm pair (M,N) ∈ F 2 of closed subspaces M,N
in a fixed Hilbert space H, i.e., dimM ∩N <∞, M+N closed in H, and dimH/(M+N) <∞.
We set

ind(M,N) := dimM ∩N − dimH/(M +N).

A bounded operator F : H → H, F ∈ B, is Fredholm, F ∈ F , if the pair
(
H × {0}, graphF

)
is a Fredholm pair in H ×H, i.e., if dim kerF < ∞ and dim(H/ imF ) < ∞ such that imF is
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closed and indF = dim kerF −dim cokerF . Note that then cokerF ≡ kerF ∗, where F ∗ denotes
the adjoint operator to F .

The definition generalizes to closed (not necessarily bounded) operators, typically arising with
elliptic differential operators, and to closed relations, typically arising in systems of differential
equations when the set of singularities does not have measure zero.

It seems that up to 1950, D. Hilbert’s and R. Courant’s dictum was generally believed, that
“linear problems of mathematical physics which are correctly posed” satisfy the so-called Fred-
holm alternative, i.e., their index vanishes. Then G. Hellwig and I. Vekua independently showed
that the Laplace operator on the disc with a boundary condition given by a vector field of
winding number p has index 2−2p, i.e., 6= 0 for p 6= 1. A the same time, F.V. Atkinson gave the
representation F → (B/K )× → 0, i.e., by the units of the quotient algebra of the bounded ope-
rators modulo the ideal K of compact operators (compact operators appear naturally with the
inclusion of Sobolev spaces into each other); a little earlier, J. Dieudonné proved the homotopy
invariance of the index, more precisely, that F decomposes in Z connected components, distin-
guished by the index. Later that was generalized by K. Jänich and M.F. Atiyah to a natural
exact sequence of semigroups

[X,B×] −→ [X,F ] ind−→ K(X) −→ 0 for any compact topological space X. (4.1)

Here, K(X) denotes the group of abstract difference classes of complex vector bundles over X
which was established by M.F. Atiyah and F. Hirzebruch as powerful cohomology theory satisfy-
ing Bott periodicity under suspension of X; [·, ·] denotes the semigroup of homotopy classes from
one space into another; and ind denotes the index bundle which, surprisingly, is well defined
even when the dimension of the kernel of the Fredholm operators parametrized by X varies.
Note that then N. Kuiper proved that B× is contractible, i.e., the vanishing of the left term
in (4.1) yielding an isomorphism between [X,F ] and K(X). One says that F is a classifying
space for the functor K. Setting X := {point} brings (4.1) back to Dieudonné.

Similar results were obtained by I.M. Singer and M.F. Atiyah for the topology of the space F sa

of self-adjoint bounded Fredholm operators: it consists of three connected components, two of
them are contractible and the interesting component (those operators which are neither essen-
tially positive nor essentially negative) is a classifying space for the functor K1. For X = S1,
the isomorphism with Z is given by the spectral flow, see below.

Some of the results can be extended with minor modifications to the spaces C RF of closed
Fredholm relations, C F (closed Fredholm operators) or C F sa (self-adjoint, not necessarily
bounded Fredholm operators).

The interest in the index was nourished by the question (I.M. Singer): “Why are so many
geometric invariants integer valued, like the Â genus of spin manifolds which is given a priori as
an integral?” The answer, Singer and Atiyah found in 1962, see [2], is that Â and many other
important geometric invariants like Euler characteristic and Thom–Hirzebruch signature can be
written as the index of an elliptic differential operator. This is the essence of the celebrated
Atiyah–Singer Index Theorem. We give a simplified version: Let M be a closed (i.e., compact,
without boundary), oriented, smooth Riemannian manifold of dimension n, which is “trivially”
embedded (i.e., with trivial normal bundle) in the Euclidean space Rn+m . Let E and F be
Hermitian vector bundles over M and A a linear elliptic operator of order k ∈ Z, mapping
sections of E to sections of F . Its leading symbol σ(A)1 is a bundle isomorphism from E to F
lifted to the cotangent sphere bundle S(M) and defines an element [σ(A)] in the abstract ring

1Recall that for a differential operator D =
∑

α∈Zn
+,α1+···+αn≤d

aα(x)∂α1
1 · · · ∂αn

n the leading symbol at the

cotangent vector ξidxi is given by
∑

α∈Zn
+,α1+···+αn=d

aα(x)ξα1
1 · · · ξαn

n . The leading symbol has an invariant meaning

as a section of the bundle Hom(E, F ) over T ∗M .
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K(T ∗M) of formal differences of vector bundles over the full cotangent bundle T ∗M of M . Then

indA = (−1)nβn+m
(
[σ(A)] � bm

)
, (4.2)

where b ∈ K(R2) denotes the Bott class (a generator of K(R2) ' Z) and βn+m :K
(
R2(n+m)

)
→Z

the iteration of the Bott isomorphism.
(4.2) comprises among numerous other applications Gauss–Bonnet’s expression of the Euler

characteristic by a curvature integral, Hirzebruch’s formula of the signature by L-polynomials,
and the celebrated Riemann–Roch–Hirzebruch Theorem for complex manifolds. A special fea-
ture of (4.2) is that we have on the left something which is globally defined, namely by the
multiplicity of the zero-eigenvalues, whereas on the right we have an expression which is defined
by the leading symbol of the operator A, i.e., in terms of the coefficients of the operator. Ac-
tually, the right hand side can conveniently be written as

∫
M α0(x) dx where α0(x) is the index

density. It is the constant term in the asymptotic expansion (as t→ 0) of the trace differences∑
µ∈spec AA∗

e−tµ|φµ(x)|2 −
∑

µ′∈spec A∗A

e−tµ′ |φ∗µ′(x)|2 , (4.3)

where µ, φµ denote the eigenvalues and eigenfunctions of AA∗ and µ′, φ∗µ′ the corresponding
objects of A∗A.

A simple model of the Index Theorem is provided by the winding number deg(f) of a conti-
nuous mapping f : S1 → C× of the circle to the punctured plane of non-zero complex numbers.

We approximate f by a differentiable g or by a finite Laurent series h(z) =
k∑

ν=−k

avz
ν on the

disk |z| < 1 yielding

deg(f) = N(h)− P (h) =
1

2πi

∫
dg

g
,

where N and P denote the number of zeros and poles in |z| < 1. A direct relation to (4.2)
is that deg(f) = − indTf where Tf denotes the Toeplitz operator2, assigned to f on the half-
space L2

+(S1) spanned by the functions z0, z1, z2, . . . .
Many quite different proofs of (4.2) have been given. At the short end of the scale, regarding

the length of proof, is reducing all cases to (elliptic) Dirac operators and simple manifolds by
cobordism (à la Hirzebruch) or reducing all cases to the winding number calculation plus Bott
periodicity by embedding in huge Euclidean space (à la Grothendieck). On the long end (cf. [3,
p. 281]) of the scale and promising more insight in the underlying geometry are the heat equation
proofs, inspired by (4.3) (à la Minakshisundaram and Pleijel).

To obtain a Fredholm operator from an elliptic operator A over a compact manifold M with
boundary Σ one has to impose suitable boundary conditions. They can be locally defined by
bundle homomorphisms or globally by pseudodifferential projections like the positive spectral
(Atiyah–Patodi–Singer–) projection P+

3 of the tangential operator B, if A is of Dirac type.
Then (4.2) generalizes to

indAP+ =
∫

M
α0(x) dx−

dim ker(B) + η(0)
2

, (4.4)

where η(0) denotes the η invariant of B, see below. Note that dim kerB can jump, e.g., under
continuous deformation of the Riemannian metric. Thus, indAP+ is not homotopy invariant

2In general a Toeplitz operator is the compression of a multiplication operator by a projection, i.e. PMfP .
Here Tf = P{multiplication by f}P , where P is the orthogonal projection onto L2

+(S1).
3i.e. the orthogonal projection onto the subspace spanned by the eigenvectors to nonnegative eigenvalues of B.
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(under homotopies of the metric) in spite of being the index of a Fredholm operator. Of course
this does not contradict Dieudonné’s theorem: P+ does not (necessarily) depend continuously
on the metric and hence so does not the operator AP+ . Consequently, a continuous change of the
coefficients or the underlying metric structures can result in a jump of the Fredholm operator
from one connected component into another one.

The Atiyah–Patodi–Singer boundary value problem is an example of a well-posed elliptic
boundary value problem. We elaborate a bit on such boundary value problems for a (total
hence formally self-adjoint) Dirac operator A. A boundary condition for A is given by a pseu-
dodifferential operator P of order 0. It is not a big loss of generality to assume that P is an
idempotent. The domain D(AP ) of the realization AP then consists of those sections u (of
Sobolev class 1) such that P (u|Σ) = 0. Looking at Green’s formula for A

〈Au, v〉 − 〈u,Av〉 = −
∫

Σ
〈γu, v〉d vol =: ω(u|Σ, v|Σ) = 〈γu|Σ, v|Σ〉, (4.5)

where γ is Clifford multiplication by the inward normal vector, we see that the right hand
side of (4.5) equips L2(S|Σ) with a natural Hermitian symplectic structure. It turns out that
a realization AP of a well-posed elliptic boundary value problem P is self-adjoint if and only if
the range of P is Lagrangian in (L2(S|Σ), ω). Well-posedness is originally a microlocal condition.
However, for Lagrangian P it is equivalent to the fact that the pair of subspaces (kerP, imP+)
is Fredholm [20].

On partitioned manifolds M = M− ∪Σ M+ one has the Bojarski Formula

indA = ind(H−(A),H+(A)), (4.6)

where (H−(A),H+(A)) denotes the Fredholm pair of Cauchy data spaces (=boundary values of
solutions to the equation Au = 0 on M+ respectively M−) along the separating hypersurface Σ.
Contrary to the precise Novikov additivity of Euler characteristic and signature under cutting
and pasting, decomposition formulas for all other indices contain non-vanishing corrections in
terms of the geometry of Σ and the gluing diffeomorphisms.

Novikov additivity of Euler characteristic and signature can be explained by the index theo-
rem, but, being combinatorial, is more easily obtained by purely topological arguments. Some
deep insight in the geometry of 3- and 4-dimensional differentiable manifolds, however, seems to
rely on the index theorem. Most famous is S. Donaldson’s theorem [36] that any closed smooth
simply-connected 4-manifold M with positive-definite intersection form sM can be written as
the boundary of a 5-manifold, is a connected sum of complex projective spaces and sM is trivial,
i.e., in standard diagonal form. The proof depends on the investigation of the moduli space of
solutions of the Yang–Mills equation of gauge-theoretic physics. Note that by a famous theo-
rem of M. Freedman any unimodular (integral) quadratic form can appear as sM for exactly
one or two simply-connected oriented topological 4-manifolds. By that Freedman confirmed
Poincaré’s Conjecture in dimension 4. Moreover, according to Freedman there exist 1051 mu-
tually non homeomorphic oriented simply-connected topological manifolds with 40-dimensional
2-homology (i.e., with 40 bubbles), but, according to Donaldson, only one (more precisely two)
permit a differentiable structure. Note that all piecewise linear 4-manifolds can be equipped
with a differentiable structure, i.e., the difference between differentiable and solely topological
cannot be perceived by appealing to piecewise linear constructions.

As another consequence of Donaldson’s theorem, R4 admits an exotic differentiable structure
which renders it not diffeomorphic to R4 with its usual differentiable structure.

Other spectral invariants

While the index, e.g., of the chiral Dirac operator A+ only measures the (chiral) asymmetry
of the zero eigenspaces, there are three other spectral invariants which can provide much more
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information about a geometry one may be interested in: the spectral flow, the η invariant and
the determinant.

The spectral flow sf measures the net sign change of the eigenvalues around zero for a curve
in C F sa (cf. the previous section). For fixed endpoints, it does not change under a homotopy
of the curve. For bounded self-adjoint (and neither essentially positive nor essentially negative)
Fredholm operators, the spectral flow yields an isomorphism of the fundamental group on the
integers. Only recently [69] it was shown that the same statement also holds for C F sa equipped
with the graph (=gap) topology. Surprisingly, the latter space is connected as was observed
first in [15].

Referring to (4.6) (which is for differential operators only meaningful on even-dimensional
manifolds), we consider a curve of (total) Dirac operators over a partitioned manifold. Then
the Cauchy data spaces along the separating hypersurface Σ are Fredholm pairs of Lagrangian
subspaces of the symplectic Hilbert space L2(Σ, S|Σ) (cf. (4.5)) and we have

sf{As}0≤s≤1 = Mas{(H−(As),H+(As))}0≤s≤1 , (4.7)

where Mas denotes the Maslov index, which adds the (finite and signed) intersection dimensions.
Note that the left side of (4.7) is defined by the spectrum (actually, a generalization of the Morse
index), while the right side is more “classical” and, in general, easier to calculate (actually,
a generalization of the number of conjugate points). Ongoing research shows that formula (4.7)
can be obtained in much greater generality.

Note also that we have ind( d
ds +Bs) = sf{Bs} for any curve of elliptic operators of first order

over a closed manifold Σ with unitarily equivalent ends, when the operator on the left side is
induced on the corresponding mapping torus.

It turns out, that not only the chiral and the dynamic asymmetry of the zero eigenspaces can
be measured, but also the asymmetry of the total spectrum of an operator A of Dirac type on
a closed manifold. Thus, roughly speaking, we have a formally self-adjoint operator with a real
discrete spectrum which is nicely spaced without finite accumulation points and with an infinite
number of eigenvalues on both sides of the real line. In close analogy with the definition of the
zeta function for essentially positive elliptic operators like the Laplacian, we set

η(z) :=
∑

λ∈spec(A)\{0}

sign(λ)λ−z =
1

Γ( z+1
2 )

∫ ∞

0
t

z−1
2 Tr

(
Ae−tA2)

dt. (4.8)

Clearly, the formal sum η(z) is well defined for complex z with Re(z) sufficiently large, and it
vanishes for a symmetric spectrum.

For comparison we give the corresponding formula for the zeta function of the (positive)
Dirac Laplacian A2:

ζA2(z) := Tr((A2)−z) =
1

Γ(z)

∫ ∞

0
tz−1 Tr

(
e−tA2)

dt. (4.9)

For the zeta function, we must assume that A has no vanishing eigenvalues (i.e., A2 is positive).
Otherwise the integral on the right side is divergent. (The situation, however, can be cured by
subtracting the orthogonal projection onto the kernel of A2 from the heat operator before taking
the trace.) For the eta function, on the contrary, it clearly does not matter whether there are
0-eigenvalues and whether the summation is over all or only over the nonvanishing eigenvalues.

The derivation of (4.8) and (4.9) is completely elementary for Re(z) > 1+dim M
2 , resp. Re(z) >

dim M
2 , whereM denotes the underlying manifold. Next, recall the heat trace expansion of elliptic

operators which holds in great generality:

Tr(Be−tT ) ∼t→0+

∞∑
j=0

aj(T,B)t(j−dim M−b)/2 +
∞∑

j=0

(bj(T,B) + cj(T,B) log t)tj , (4.10)
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b = order of B, for any (pseudo)differential operator B, and any positive definite self-adjoint
elliptic (pseudo)differential operator T (here for simplicity of order 2) [55].

Using (4.10), it follows at once that η(z) (and ζ(z)) admit a meromorphic extension to
the whole complex plane. However, a priori 0 is a pole. In general the residue at 0 (which
is a multiple of the coefficient of log t in (4.10)) of the generalized ζ-function Tr(BT−z) =

1
Γ(z)

∫∞
0 tz−1 Tr(Be−tT )dt turns out to be an invariant of B independently of T : it is the cele-

brated non-commutative residue [43, 41, 42, 21] discovered independently by V. Guillemin [56]
and M. Wodzicki [97]. The residue of Id is easily seen to vanish. Consequently the ζ-func-
tion (4.9) is always regular at 0. In fact Wodzicki proved that the residue of any (pseudo)diffe-
rential idempotent vanishes and from this one can conclude that also the η-function (4.8) is
always regular at 0.

In the decade or so following 1975, it was generally believed that the existence of a finite
eta invariant was a very special feature of operators of Dirac type on those closed manifolds
which are boundaries. Later Gilkey [52] proved that the eta-function is regular at 0 for any
self-adjoint elliptic operator on a closed manifold, cf. also Branson and Gilkey [17]. Only after
the seminal paper by Douglas and Wojciechowski [37] it was gradually realized that globally
elliptic self-adjoint boundary value problems for operators of Dirac type also have a finite eta
invariant. Today, there are quite different approaches to obtain that result.

Historically, the eta invariant appeared for the first time in the 1970s as an error term showing
up in the index formula for the APS spectral boundary value problem of a Dirac operator A on
a compact manifold M with smooth boundary Σ (see above (4.4)). More precisely, what arose
was the eta invariant of the tangential operator (i.e., the induced Dirac operator over the closed
manifold Σ). Even in that case it was hard to establish the existence and finiteness of the eta
invariant.

The eta-invariant and the spectral flow are intimately related: let As be a smooth family of
Dirac operators on a closed manifold. Then ξ(As) := 1

2(dim kerAs + η(As)) has only integer
jumps and hence the reduced eta-invariant η̃(As) := (1

2(dim kerAs + η(As)) mod Z) ∈ R/Z
varies smoothly. The variation of the reduced eta-invariant is known to be local:

d

ds
η̃(As) = − 1√

π
Pft→0+

√
tTr

(
Ȧse

−tA2
s
)

where Pf (partie finie) is a short hand for the coefficient of t0 in the asymptotic expansion.
Because of the integer jumps of ξ(As) the fundamental theorem of calculus now reads

η(A1)− η(A0) = 2 sf{As}+ 2
∫ 1

0

d

ds
η̃(As)ds.

It is a matter of convention how to count 0-modes of A0, A1 for the spectral flow and we ignore
it here.

Unlike the index and spectral flow on closed manifolds, we have neither an established func-
tional analytical nor a topological frame for discussing η(0), nor is it given by an integral of
a locally defined expression. On the circle, e.g., consider the operator

Da := −i
d

dx
+ a = e−ixaD0e

ixa,

so that Da and D0 are locally unitarily equivalent, but not globally. In particular, ηDa(0) = −2a
depends on a.

The reduced η-invariant depends, however, only on finitely many terms of the complete
symbol of A.

By the Cobordism Theorem, the index vanishes on any closed (odd-dimensional) manifold Σ
for any elliptic operator which is the chiral tangential operator of a Dirac type operator on
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a suitable (even-dimensional) manifold which has Σ as its boundary. This can be explained
by the vanishing of the induced symplectic form over Σ. Correspondingly, we have in even
dimensions, that the eta invariant vanishes on any closed manifold Σ for any elliptic operator
which is the tangential operator of a Dirac type operator on a suitable manifold which has Σ as
its boundary. This can be explained by the induced precise symmetry of the spectrum due to
the anti-commutativity of the tangential operator with Clifford multiplication.

To us, the eta invariant of a Dirac type operator can be best understood as the phase of
the zeta regularized determinant. But what is the determinant of an operator with an infinite
number of eigenvalues?

From the point of view of functional analysis, the only natural concept is the Fredholm
determinant of operators of the form eα or, more generally, Id+α where α is of trace class. We
recall the formulas

detFr e
α = eTr α and detFr(Id+α) =

∞∑
k=0

Tr∧kα.

The Fredholm determinant is notable for obeying the product rule, unlike other generalizations
of the determinant to infinite dimensions where the error of the product rule leads to new
invariants.

Clearly, the parametrix of a Dirac operator leads to operators for which the Fredholm deter-
minant can be defined, but the relevant information about the spectrum of the Dirac operator
does not seem sufficiently maintained. Note also that Quillen and Segal’s construction of the
determinant line bundle is based on the concept of the Fredholm determinant, though without
leading to a number when the bundle is non-trivial.

Another concept is the ζ-function regularized determinant, based on Ray and Singer’s obser-
vation that, formally,

detT =
∏

λj = exp
{∑

lnλje
−z ln λj |z=0

}
= e−

d
dz

ζT (z)|z=0 ,

where ζT (z) :=
∞∑

j=1
λ−z

j = 1
Γ(z)

∫∞
0 tz−1 Tr e−tT dt as in (4.9). As explained before, for a positive

definite self-adjoint elliptic operator T of second order, acting on sections of a Hermitian vector
bundle over a closed manifold M , the function ζT (z) is holomorphic for Re(z) sufficiently large
and can be extended meromorphically to the whole complex plane with z = 0 no pole.

The previous definition does not apply immediately to the Dirac operator A which has
infinitely many positive eigenvalues λj and negative eigenvalues −µj . As an example, consider
again the operator Da with specDa = {k + a}k∈Z.

On choosing the branch (−1)−z = eiπz, we find

ζA(z) =
∑

λ−z
j +

∑
(−1)−zµ−z

j =
1
2

{
ζA2

(z
2

)
+ ηA(z)

}
+

1
2
eiπz

{
ζA2

(z
2

)
− ηA(z)

}
,

where ηA(z) is defined as in (4.8). Thus:

ζ ′A(0) =
1
2
ζ ′A2(0) +

iπ
2
{ζA2(0)− ηA(0)} and detζA = e−ζ′A(0).

This relation between the phase of the ζ-determinant and the η-invariant does in fact hold in
great generality, at least for self-adjoint elliptic operators on closed manifolds.

There are a few classes of operators for which the ζ-determinant can be calculated quite
explicitly. The most satisfying theory is available for one-dimensional operators. Consider a one-
dimensional Schrödinger operator on the interval [0, 1] with, to make things a bit interesting,
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a regular singular potential

L := − d2

dx2
+ V (x), V (x) =

q(x)
x2(1− x)2

,

with some smooth function q(x), 0 ≤ x ≤ 1, q(0), q(1) ≥ −1/4. The last condition guarantees
that L is bounded below and thus we can consider the Friedrichs extension LF . Physically this
means that the potential walls at 0, 1 are infinitely high and hence the quantum-mechanical
particle is trapped in the interval [0, 1]. Then the ζ-determinant of LF can be expressed in
terms of the fundamental solutions of the homogeneous differential equation Lf = 0 (see [73],
also for a history of the problem). Indeed, choose solutions ϕ, ψ of this equation satisfying
ϕ(x) ∼x→0 x

ν0+1/2, ψ(x) ∼x→0 (1− x)ν1+1/2, νj =
√
a(j) + 1/4, j = 0, 1. Then

detζ(LF ) =
π(ψϕ′ − ϕψ′)

2ν0+ν1Γ(ν0 + 1)Γ(ν1 + 1)
.

Note that the Wronskian ψϕ′ − ϕψ′ is a constant.
This formula can to a certain extent be generalized to higher dimensions. Note that the

solutions of the homogeneous differential equation are determined by their Cauchy data at
the boundary. Therefore the Wronskian should be viewed as a Fredholm determinant4 on the
boundary.

For Dirac operators, S. Scott and K.P. Wojciechowski [91] found an exciting relation between
the Fredholm determinant and the zeta-regularized determinant: Let A be a Dirac operator over

a compact manifold M with boundary Σ and tangential operator
(

0 B−

B+ 0

)
. The decompo-

sition of the tangential operator is induced by the ±i-eigenbundle decomposition of the natural
symplectic structure (cf. (4.5)); in the odd-dimensional case this is the chiral decomposition
on the even-dimensional boundary. Let P be the APS or another suitable pseudodifferential
projection defining a regular elliptic boundary value problem for A. Then the Cauchy data
space H+(A) (i.e., the range of the Calderón projection C+) and the range of P can be written
as the graphs of unitary, elliptic operators of order 0, K, resp. T which differ from the operator
(B+B−)−1/2B+ : C∞(Σ;S+|Σ) → C∞(Σ;S−|Σ) by a smoothing operator. Then

detζAP = detζAC+ · detFr
1
2(I +KT−1).

This formula shows how the ζ-determinant depends on the choice of the boundary condition.
As in the one-dimensional case, the space of solutions of the homogeneous operator equation
Au = 0, through its Calderón projector, enters crucially.

Finally we mention another class of operators where relative ζ-determinants can be calculated:
let M be a closed oriented surface with a Riemannian metric g. Let h be a smooth function
on M and consider the conformally changed metric gh = e2hg. By ∆h we denote the (positive
definite) Laplacian with respect to the metric gh. Then the Polyakov formula reads

log
detζ ∆h

detζ ∆0
= − 1

12π

∫
M
|∇h|2 dvol0−

1
6π

∫
M
K0h dvol0 + log

vol(M, g0)
vol(M, gh)

. (4.11)

Here ∇ is the Levi-Civita connection and K0 is the Gaussian curvature of the metric g0. The
formula (4.11) goes back to Polyakov [83, 84]. It was used in the work of Osgood, Phillips,
and Sarnak [79] who showed that exactly the constant curvature metrics are the extremals
of the determinant in a conformal class. More interestingly, they did this without using the
Uniformization Theorem. Rather their method reproves this theorem.

4Here it is a finite-dimensional determinant, since the boundary is 0-dimensional and hence the space of
sections on the boundary is finite-dimensional.
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Formulas similar to (4.11) were obtained by T. Branson and B. Ørsted for the conformal
Laplacian in four dimensions [18].

Finally we would like to provide a glimpse at pasting formulas for η-invariants and ζ-
determinants since in the last decade substantial progress has been made. Compared to pasting
formulas for the index (cf. (4.6), Novikov additivity) this is technically much more involved.
The case which is most similar to the Euler characteristic is that of the analytic torsion. Using
the celebrated Cheeger–Müller theorem on the relation between analytic and combinatorial tor-
sion one obtains pasting formulas more or less by employing the doubling trick: on the double
M̃ = M

⋃
∂M M differential forms split naturally into a sum of forms obeying the relative resp.

absolute boundary conditions on ∂M [75]. A direct analytic approach is also possible but tech-
nically much more involved [94]. It was Vishik’s great idea to consider on a partitioned manifold
M1 ∪Σ M2 the following family of boundary conditions for differential forms

sinΘi∗1ω = cos Θi∗2ω,

where ij is the pullback to Σ from Mj . This family interpolates between the direct sum of the
absolute boundary condition on M1 and the relative boundary condition on M2 on the one hand
(Θ = 0) and the continuous transmission condition on Σ (Θ = π/4) on the other hand.

This motive was later adapted to Dirac operators and the η-invariant [19]. The final gluing
formula for the η-invariant of a Dirac operator on a partitioned manifold reads

η(D)− η(DP |M2)− η(DI−P |M1) = Mas(P1, P, I − P2).

Here, P is a well-posed Lagrangian boundary condition on M1 as explained after (4.5) and
Mas(P1, P, I − P2) is a Maslov type triple index involving the boundary condition P and the
Calderón projectors (projectors on the Cauchy data spaces) on M1, M2 [70].

In a titanic effort Park and Wojciechowski [80, 81] eventually succeeded to prove an analytic
surgery formula for the ζ-determinant. We refrain from giving a precise formulation, see loc. cit.

Spectral triples and other new ideas and results of noncommutative geometry

Noncommutative Geometry is an area of mathematics which has been dominated by the work of
Alain Connes over the last 20–25 years. The basic idea is that instead of point sets (e.g. mani-
folds) one studies the coordinate ring of (smooth) functions. This point of view has been around
in algebraic geometry for decades but it was Connes who showed that also manifolds and index
theory can be understood from this perspective.

The starting point of Noncommutative Topology is the well-known Gelfand-representation
theorem for commutative C∗-algebras: to any compact space X we can associate its ring C(X) of
continuous functions. This is a commutative C∗-algebra. Conversely, if A is a commutative C∗-
algebra then we can find X as the spectrum of A, i.e., the space of maximal ideals. X 7→ C(X)
and the Gelfand functor A 7→ specA are in fact mutually inverse category equivalences. Thus,
from this perspective the space X and the coordinate ring (ring of “position operators”) contain
the same information.

It was Connes’ fantastic discovery that this correspondence between space and algebra can be
pushed much further in the differentiable category. The basic object is now a (locally convex)
algebra A (playing the role of C∞(M)). Indispensable basic tools on differentiable manifolds
are differential forms and de Rham cohomology. The natural replacement for differential forms
is the Hochschild cohomology Hn(A ) which is the cohomology of the complex (Cn(A ), b) where
Cn(A ) are the (continuous) linear functionals on the (n+ 1)-fold tensor product A ⊗ · · · ⊗A
and b : Cn(A ) → Cn+1(A ) is the well-known Hochschild boundary map

bφ(a0, . . . , an+1) =
n∑

j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , an+1) + (−1)n+1φ(an+1a0, a1, . . . , an).
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Restricting b to the cyclic cochains Cn
λ (A )5 yields another complex whose cohomology is the

cyclic cohomology HCn(A ). The celebrated Hochschild–Kostant–Rosenberg–Connes Theorem
says that for a compact smooth manifold the map which sends a de Rham current C (i.e., an
element in the dual space of differential forms) to the linear form

ϕC(f0, . . . , fn) := 〈C, f0df1 ∧ · · · ∧ dfn〉

induces firstly an isomorphism between de Rham currents and the Hochschild cohomology
H•(C∞(M)) and secondly an isomorphism between (Z2-graded) de Rham homology and the
(periodic) cyclic cohomology of the algebra C∞(M). Under this correspondence the exterior
derivative (on currents) is sent to (a multiple of) Connes’ operator B : Cn(A ) → Cn−1(A ),

Bφ(a0, . . . , an−1) =
n−1∑
j=0

(−1)(n−1)jφ(1, aj , . . . , an−1, a0, . . . , an−1)

−
n−1∑
j=0

(−1)(n−1)jφ(aj , 1, aj+1, . . . , an, a0, . . . , aj−1).

B is important for a double complex realization of cyclic cohomology. In fact Bb = −bB, B2 = 0,
b2 = 0 and hence one obtains a double complex with entries Cn,m(A ) := Cn−m(A ) and the
total cohomology of this double complex is the periodic cyclic cohomology.

The story is getting even more interesting when it comes to index theory. Given a closed
(even-dimensional) spin manifold with its Dirac operator D, the Dirac operator determines
a spectral triple (A = C∞(M), L2(S), D) where L2(S) is the Hilbert space of L2-sections of the
spinor bundle (the space of spinor fields). The algebra A obviously acts by multiplication as
bounded operators on L2(S), and we have that [D, a] is bounded for all a ∈ A .

It should be noted first that the spectral triple (A , L2(S), D) is as good as the Riemannian
manifold (M, g): first the geodesic distance can easily be reconstructed from the spectral triple,
i.e. [24, p. 544]

d(p, q) = sup
{
|a(p)− a(q)|

∣∣ a ∈ A , ‖[D, a]‖ ≤ 1
}
.

Even more, Connes’ Spin Manifold Theorem [54, Chapter 11] in particular implies that the
Riemannian metric may be recovered from the spectral triple. If one assumes more structure
on the spectral triple (axioms of a noncommutative spin geometry) then even the manifold may
be reconstructed from a noncommutative spin geometry with commutative algebra A . The list
of axioms is a bit lengthy, though. The first attempt [85] to prove that Connes’ original list of
axioms suffices fell short of its goal as was observed by the reviewer of [85]. Quite recently, the
result was proved for a slightly stronger set of axioms [86].

An abstract spectral triple (A ,H,D)6 is therefore the natural noncommutative model of
a smooth Riemannian manifold. Spectral triples come in two flavors, even and odd. Not
surprisingly, the spectral triple of a spin manifold is even/odd if the dimension of the manifold
is even/odd. To explain the basic index theory in the noncommutative world let us restrict
ourselves to the even case. An even spectral triple comes with a chirality operator γ which
anticommutes with D. For any idempotent e (vector bundle, projective module) in the matrix
algebra Mk(A ) we then obtain a Fredholm operator eD+e : e(H+)k −→ e(H−)k. Its index is
given by the pairing between the K-homology class of (A ,H,D) and the K-theory class of e.
Taking Chern characters (in (entire) periodic cyclic (co)homology) we have

ind(eD+e) = 〈Ch•(D), ch•(e)〉. (4.12)

5ϕ(an, a0, . . . , an−1) = (−1)nϕ(a0, . . . , an)
6A an algebra represented as bounded operators on the Hilbert space H, D an unbounded self-adjoint operator

in H, [D, a] bounded for a ∈ A .
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Here,

ch•(e) := tr0(e) +
∞∑

j=1

(−1)j (2j)!
j!

tr2j

( (
e− 1

2

)
⊗ e⊗(2j)

)
,

is the Chern character in K-theory7. Ch•(D) is the JLO-Chern character, i.e.,

Chn(D)(a0, . . . , ak) =
∫

∆n

tr(γa0e
−σ0D2

[D, a1]e−σ1D2 · · · [D, an]e−σnD2
)dσ,

where ∆n :=
{
(σ0, . . . , σn) ∈ Rn+1

∣∣ σj ≥ 0, σ0 + · · ·+ σn = 1
}

is the standard n-simplex.
Replacing D by

√
tD, t > 0, does not change the left and right hand sides of (4.12). Under

the assumption that we do have short-time asymptotic expansions like (4.10) in our spectral
triple8 it was shown in [25] that also the JLO-cocycle Chn(

√
tD) has short time asymptotic

expansions.
The transgression formula

− d

dt
Chn(tD) = b /chn−1(tD,D) +B /chn+1(tD,D)

(the expression for /ch is explicitly known) then shows that the JLO-cocycle may be replaced
by a cohomologous cocycle consisting of “local data” which still computes the index (4.12).
The details of this are the content of the celebrated Local Index Theorem in noncommutative
geometry of Connes and Moscovici [25].

5 Noncommutative geometry
and the standard model with gravity

The full action of the standard model of particle physics is quite involved and spelled out it
fills about a page [23, Section 4.1]. It has been known for a long time that bits of the standard
model Lagrangian are intimately related to the heat trace expansion (4.10). To be more specific,
let D be a Dirac type operator on a closed manifold. Recall that locally a Dirac operator has
the form gijc(∂i)∂j + · · · , i.e. its leading symbol at a (co)tangent vector v is given by Clifford
multiplication by v. Consequently its square is an operator of Laplace type which locally takes
the form D2 = gij∂i∂j + · · · .

The heat trace expansion (4.10) takes the form

Tr(e−tD2
) ∼t→0+

∞∑
j=0

Aj/2(D
2)t(j−dim M)/2,

where Aj/2(D2) =
∫
M aj/2(x;D2)d volM (x) is the integral of a local expression aj/2(x;D2) in the

metric, the fibre metric, and the coefficients of D. From the very construction it is immediately
clear that the functional Aj/2(D2) is invariant under the natural action of the diffeomorphism
group. Such functionals are not easy to find from scratch and the complexity of the expression
for Aj/2 increases fast. For differential operators Aj/2 = 0 for j odd. For a Dirac operator on
a Clifford bundle E, the first few A′js are known explicitly. We mention

a0

(
x,D2

)
= (4π)− dim M/2 rank(E), A0

(
D2

)
= (4π)− dim M/2 rank(E) vol(M),

7tr0 : Mn(A ) → A is the generalized trace map, tr2j is its obvious extension to tensor products.
8The proper notion is that of a spectral triple with discrete dimension spectrum.
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a1

(
x,D2

)
= (4π)− dim M/2 tr

(
−R

6
+ E

)
,

where R denotes the scalar curvature and E = ∇∗∇−D2 is the 0th order term in the Lichnerowicz
formula for D. Hence, for the spin Dirac operator A1(D2) is nothing but the Einstein action.

The appearance of the Einstein action in the heat trace expansion may lead to the following
speculation: can one cook up a Dirac operator in such a way that the full action of the standard
model appears in the short-time (i.e. high energy expansion) of the heat trace? The answer to
this question is probably no. However, the stunning result of Chamseddine, Connes and Mar-
colli [23] is that the answer is yes if we consider the Dirac operator on a mildly noncommutative
space.

To explain this, we first summarize a few relations between the heat trace, the ζ-function and
the non-commutative residue. Again, let D be a Dirac type operator on the closed manifold M .
For a pseudodifferential operator A the noncommutative residue is defined by

−
∫
A := Ress=0 Tr(A|D|−s)

= −2 times the coefficient of log t in the asymptotic expansion of Tr
(
Ae−tD2)

.

The noncommutative residue is indeed independent of the choice of D. For the Dirac operator
itself there is an obvious relation between the noncommutative residue of |D|−k and the heat
coefficients. Namely, for a non-negative integer k

−
∫
|D|−k = Ress=k ζ|D|(s) =

2A(dim M−k)/2(D2)
Γ(k/2)

(with the understanding 1/Γ(0) = 0).
Using simple properties of the Mellin transform, one therefore derives the following result

(cf. [23, Appendix]): if f is an even smooth rapidly decaying function on the real line then one
has the following asymptotic expansion:

Tr(f(D/Λ)) ∼Λ→∞ f(0)A 1
2

dim M (D2)Λ0 +
dim M∑
k=1

fk −
∫
|D|−k Λk + o(1)

∼Λ→∞ f(0)A 1
2

dim M (D2)Λ0 +
dim M∑
k=1

fk

2A(dim M−k)/2(D2)
Γ(k/2)

Λk + o(1), (5.1)

where fk =
∫∞
0 uk−1f(u)du. This asymptotic expansion is the key for the understanding of the

high energy expansion of the spectral action.
Some decade ago A. Chamseddine and A. Connes [22] proposed the spectral action

Tr(f(D/Λ) + 1
2〈Jψ,Dψ〉 (5.2)

on a noncommutative space (A ,H , D). The stunning relation to the standard model is as
follows.

Let M be a closed 4-dimensional spin manifold. Furthermore, let F be a finite spectral triple
over the algebra A = C ⊕ H ⊕M3(C). The algebra A is deliberately chosen such that the
natural group of local gauge transformations of the space M × F is the semidirect product of
C∞(M,U(1)× SU(2)× SU(3)) by the diffeomorphism group of M .

The spin Dirac operator on M and the Dirac operator on the finite spectral triple (A ,H,D)
(this is after all a self-adjoint endomorphism of a finite-dimensional Hilbert space) give rise to
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a spectral triple (C∞(M,A ),H , D) over the noncommutative algebra C∞(M,A ). The Dirac
operator on the finite spectral triple (A ,H,D) depends on 31 real parameters, which physically
correspond to the masses for leptons and quarks etc. The main result of [23] states that the
asymptotic formula Λ → ∞ for the spectral action functional (5.2) yields the full Lagrangian
of the standard model with neutrino mixing and Majorana mass terms. Note that through the
spin manifold M gravity is naturally built into the model.

Let us look at (5.1). Then the result of [23] says that for the noncommutative spectral
triple sketched above the Lagrangian of the standard model shows up in the coefficients of the
expansion (5.1). This is a far reaching generalization of the above observation that the Einstein
action is the A1-term in the expansion for the spin Dirac operator.

6 Heat-kernel asymptotics and quantum gravity

In classical and quantum field theory, as well as in the current attempts to develop a quan-
tum theory of the universe and of gravitational interactions, it remains very useful to describe
physical phenomena in terms of differential equations for the variables of the theory, supple-
mented by boundary conditions for the solutions of such equations. For example, the problems
of electrostatics, the analysis of waveguides, the theory of vibrating membranes, the Casimir
effect, van der Waals forces, and the problem of how the universe could evolve from an initial
state, all need a careful assignment of boundary conditions. In the latter case, if one follows
a functional-integral approach, one faces two formidable tasks: (i) the specification of the ge-
ometries occurring in the “sum over histories” and matching the assigned boundary data; (ii) the
choice of boundary conditions on metric perturbations which may lead to the evaluation of the
one-loop semiclassical approximation.

Indeed, while the full functional integral for quantum gravity is a fascinating idea but remains
a formal tool, the one-loop calculation may be put on solid ground, and appears particularly
interesting because it yields the first quantum corrections to the underlying classical theory
(although it is well known that quantum gravity based on Einstein’s theory is not perturbatively
renormalizable). Within this framework, it is of crucial importance to evaluate the one-loop
divergences of the theory under consideration. Moreover, the task of the theoretical physicist
is to understand the deeper general structure of such divergences. For this purpose, one has to
pay attention to all geometric invariants of the problem, in a way made clear by a branch of
mathematics known as invariance theory. The key geometric elements of our problem are hence
as follows.

A Riemannian geometry (M, g) is given, where the manifold M is compact and has a boun-
dary ∂M with induced metric γ, and the metrics g and γ are positive-definite. A vector bundle
over M , say V , is given, and one has also to consider a vector bundle Ṽ over ∂M . An operator
of Laplace type, say P , is a second-order elliptic operator with leading symbol given by the
metric (more precisely, it has scalar leading symbol gabkakb). Thus, one deals with a map from
the space of smooth sections of V onto itself,

P : C∞(M,V ) → C∞(M,V ),

which can be expressed in the form

P = −gab ∇V
a ∇V

b − E,

where ∇V is the connection on V , and E is an endomorphism of V : E ∈ End(V ). Moreover,
the boundary operator is a map

B : C∞(M,V ) → C∞(∂M, Ṽ ),
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and contains all the informations on the boundary conditions of the problem. Since gauge
theories need a generalization of Robin boundary conditions, we consider a boundary operator
of the form (the operation of restriction to the boundary being implicitly understood)

B = ∇N +
1
2

[
Γi∇̂i + ∇̂iΓi

]
+ S. (6.1)

With our notation, ∇N is the normal derivative operator ∇N ≡ Na∇a (Na being the inward-
pointing normal to ∂M), S is an endomorphism of the vector bundle Ṽ , Γi are endomorphism-
valued vector fields on ∂M , and ∇̂i denotes tangential covariant differentiation with respect
to the connection induced on ∂M . More precisely, when sections of bundles built from V are
involved, ∇̂i means

∇(lc)
∂M ⊗ 1 + 1⊗∇,

where ∇(lc)
∂M denotes the Levi-Civita connection of the boundary of M . Hereafter, we assume

that 1 + Γ2 > 0, to ensure strong ellipticity of the boundary value problem (see definition on
pp. 69–70 of [44]).

The case of mixed boundary conditions corresponds to the possibility of splitting the bund-
le V , in a neighbourhood of ∂M , as the direct sum of two bundles, say V1 and V2, for each
of which a boundary operator of the Dirichlet or (generalized) Robin type is also given. The
former involves a projection operator, say Π, while the latter may also involve the complementary
projector, 1−Π, and the metric of V , say H:

B1 = Π, B2 = (1−Π)
[
H∇N + 1

2

(
Γi∇̂i + ∇̂iΓi

)
+ S

]
.

We can now come back to our original problem, where only the boundary operator (6.1) occurs,
and investigate its effect on heat-kernel asymptotics. Indeed, given the heat equation for the
operator P , its kernel, i.e. the heat kernel, is, by definition, a solution for t > 0 of the equation(

∂

∂t
+ P

)
U(x, x′; t) = 0,

jointly with the initial condition

lim
t→0

∫
M
dx′

√
detg(x′) U(x, x′; t)ρ(x′) = ρ(x),

and the boundary condition[
BU(x, x′; t)

]
∂M

= 0.

The fibre trace of the heat-kernel diagonal, i.e. TrU(x, x; t), admits an asymptotic expansion
which describes the local asymptotics, and involves interior invariants and boundary invariants.
Interior invariants are built universally and polynomially from the metric, the Riemann cur-
vature Ra

bcd of M , the bundle curvature, say Ωab, the endomorphism E, and their covariant
derivatives. By virtue of Weyl’s work on the invariants of the orthogonal group, these polyno-
mials can be found by using only tensor products and contraction of tensor arguments. The
asymptotic expansion of the integral∫

M
dx

√
det g TrU(x, x; t) ≡ TrL2

(
e−tP

)
,
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yields instead the global asymptotics. For our purposes, it is more convenient to weight e−tP

with a smooth function f ∈ C∞(M), and then consider the asymptotic expansion

TrL2

(
fe−tP

)
≡

∫
M
dx

√
detg f(x)TrU(x, x; t) ∼ (4πt)−m/2

∞∑
l=0

tl/2Al/2(f, P,B). (6.2)

Hereafter, m is the dimension of M , and the coefficient Al/2(f, P,B) consists of an interior part,
say Cl/2(f, P ), and a boundary part, say Bl/2(f, P,B). The interior part vanishes for all odd
values of l, whereas the boundary part only vanishes if l = 0. The interior part is obtained
by integrating over M the linear combination of local invariants of the appropriate dimension
mentioned above, where the coefficients of the linear combination are universal constants, inde-
pendent of m. Moreover, the boundary part is obtained upon integration over ∂M of another
linear combination of local invariants. In that case, however, the structure group is O(m − 1),
and the coefficients of linear combination are universal functions, independent of m, unaffected
by conformal rescalings of g, and invariant in form (i.e. they are functions of position on the
boundary, whose form is independent of the boundary being curved or totally geodesic). It is
thus clear that the general form of the Al/2 coefficient is a well posed problem in invariance
theory, where one has to take all possible local invariants built from f , Ra

bcd, Ωab, Kij , E, S, Γi

and their covariant derivatives (hereafter, Kij is the extrinsic-curvature tensor of the boundary),
eventually integrating their linear combinations over M and ∂M . For example, in the boundary
part Bl/2(f, P,B), the local invariants integrated over ∂M are of dimension l−1 in tensors of the
same dimension of the second fundamental form of the boundary, for all l ≥ 1. The universal
functions associated to all such invariants can be found by using the conformal-variation method
described, for example, in [44], jointly with the analysis of simple examples and particular cases.

In other words, recurrence relations of algebraic nature exist among all universal functions,
and one can therefore use the solutions of simple problems to determine completely the remaining
set of universal functions for a given value of the integer l in the asymptotic expansion (6.2).
The detailed investigation of the coefficients A1, A3/2 and A2 when the boundary operator is
given by equation (6.1) and all curvature terms are non-vanishing is performed in [4, 38] One
then finds the result (which holds for all integer values of l ≥ 2)

Al/2(f, P,B) = Ãl/2(f, P,B) +
∫

∂M
Tr

[
al/2(f,R,Ω,K,E,Γ, S)

]
, (6.3)

where Ãl/2(f, P,B) is formally analogous to the purely Robin case, but replacing the universal
constants in the boundary terms with universal functions, whereas al/2 is a linear combination
of all local invariants of the given dimension which involve contractions with Γi. Our task is
now to derive an algorithm for the general form of al/2, since it helps a lot to have a formula
that clarifies the general features of a scheme where the number of new invariants is rapidly
growing. Indeed, from [4, 38], we know that, in a1, only one new invariant occurs: fKijΓiΓj ,
whereas in a3/2 11 new invariants occur, obtained by contraction of Γi with terms like (tensor
indices are here omitted for simplicity)

fK2, fKS, f∇̂K, f∇̂S, fR, fΩ, f;NK.

In a2, the number of new invariants is 68: 57 involve contractions of Γi with terms like

fK3, fK2S, fKS2, fRK, fΩK, fEK, fRS, fΩS, fK∇̂K, fS∇̂K,

fK∇̂S, fS∇̂S, f∇̂∇̂K, f∇̂∇̂S, f∇R, f∇Ω, f∇E,

10 local invariants involve contractions of Γi with contributions like

f;NK
2, f;NKS, f;N∇̂K, f;N∇̂S, f;NR, f;NΩ,
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and the last invariant is f;NNKijΓiΓj . It is thus clear that the knowledge of all local invariants
in al/2 plays a role in the form of a(l+1)/2, and one can write the formulas

a1 = f

i1∑
i=1

U (1,1)
i I

(1)
i ,

a3/2 = f

i2∑
i=1

U (3/2,3/2)
i I

(3/2)
i + f;N

i1∑
i=1

U (3/2,1)
i I

(1)
i ,

a2 = f

i3∑
i=1

U (2,2)
i I

(2)
i + f;N

i2∑
i=1

U (2,3/2)
i I

(3/2)
i + f;NN

i1∑
i=1

U (2,1)
i I

(1)
i .

With our notation, i1 = 1, i2 = 10, i3 = 57, and U (x,y)
i are the universal functions, where i

is an integer ≥ 1, x is always equal to the order l/2 of al/2, and y is equal to the label of the

invariant I(y)
i , which does not contain f or derivatives of f and is of dimension 2y − 1 in K or

in tensors of the same dimension of K.
These remarks make it possible to write down a formula which holds for all l ≥ 2:

al/2(f,R,Ω,K,E,Γ, S) =
l−2∑
r=0

f (r)

il−r−1∑
i=1

U (l/2,(l−r)/2)
i [Γ2]I(l−r)/2

i [R,Ω,K,E,Γ, S], (6.4)

where f (r) is the normal derivative of f of order r (with f (0) = f), and square brackets are used
for the arguments of universal functions and local invariants, respectively. The equations (6.3)
and (6.4) represent the desired parametrization of heat-kernel coefficients with generalized
boundary conditions, provided that the Γi are covariantly constant.

One has now to evaluate the universal functions in the general formulas for A3/2, A2, A5/2

and so on. For the coefficients A3/2 and A2, results of a limited nature are available in [4, 38],
which show that all universal functions are generated from

√
1 + Γ2 and 1√

−Γ2
Artanh

√
−Γ2.

Upon completion of this hard piece of work, one could perform the evaluation of all universal
functions for A5/2(f, P,B) as well, possibly with the help of computers. For this purpose, one has
to combine the conformal-variation method with the analysis of simpler cases. One then obtains
a quicker and more elegant derivation of the coefficient A1(f, P,B). There are thus reasons to
expect that, in the near future, all heat-kernel coefficients with generalized boundary conditions
may be obtained via a computer algorithm in a relatively short time. This adds evidence in
favour of the understanding of general mathematical structures being very helpful in providing
the complete solution of difficult problems in physics and mathematics. In particular, from the
point of view of quantum field theory in curved manifolds, this would mean an entirely geometric
understanding of the f irst set of quantum corrections to the underlying classical theory, with the
help of invariance theory, functorial methods and computer programs. This is the case because,
on the one hand, heat-kernel coefficients Al/2(f, P,B) in the asymptotic expansion (6.2) are
obtained from a geometric construction as we said, while, on the other hand, the coefficient Al/2

yields the one-loop divergence of the corresponding theory in l-dimensional space-time. Such
one-loop divergences are indeed the first set of quantum corrections to the classical theory. This
has implications for the old unification program of Section 2, because it shows the perturbative
limits of its quantization: one-loop quantum gravity based on the Einstein–Hilbert action is only
on-shell finite, i.e. upon imposing the vacuum Einstein equations

Rab − 1
2gabR = 0 =⇒ Rab = 0.

The reason is that only three geometric invariants can be built in such a case, i.e.

RabcdR
abcd, RabR

ab, R2,
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bearing in mind that the fourth one, given by the wave operator acting on the scalar curva-
ture, has vanishing integral if spacetime has empty boundary. The above invariants should be
integrated over the spacetime manifold, so that the integral representation of the Euler number
makes it possible to deal eventually with two invariants only: RabR

ab and R2. But both of them
vanish if and only if the metric solves the vacuum Einstein equations in four dimensions.

In Euclidean quantum gravity, if one uses the de Donder gauge-fixing functional, one finds
a boundary operator formally analogous to the one in equation (6.1) but imcompatible with the
strong ellipticity of the boundary value problem [5]. Only recently, in [45, 46], has one found
a viable way out in the particular case of the Euclidean 4-ball, and more work is in order on
this key issue, which has also implications for singularity avoidance in quantum cosmology, as
we mentioned in Section 3. This framework is relevant also for the new unification outlined
in Section 2, as is shown in [8]. In this work, the authors study a toy model of brane-induced
gravity for the calculation of its one-loop effective action, and obtain the inverse-mass asymptotic
expansion of the effective action and its ultraviolet divergences, which are found to be non-
vanishing in all spacetime dimensions. They also obtain the heat-kernel asymptotics associated
with generalized boundary conditions containing tangential derivatives (cf. equation (6.1)). In
addition to the usual powers of the t-parameter in the expansion (6.2), they find also logarithmic
terms or powers multiple of one quarter. Such a property is considered in the context of strong
ellipticity of the boundary value problem, which can be violated under certain conditions [8].

A Infinite-dimensional manifolds in quantum gravity

We would like to stress here that infinite-dimensional manifolds are the natural arena for study-
ing the quantization of the gravitational field, even prior to considering a space-of-histories
formulation. In [51], an approach is proposed where the states and operators emerge as certain
scalar and vector fields on an infinite-dimensional manifold G of classical solutions of Einstein’s
equations. Such a formalism essentially reproduces quantum electrodynamics when G is re-
placed by the space of square-integrable solutions of Maxwell’s equations. According to the
author of [51], a quantum theory of gravitation is obtained if one can solve two problems:

1. Impose a manifold structure on a suitable collection of solutions of the Einstein equations
(e.g. without sources).

2. Determine tensor fields T b
a and Gab on that manifold, subject to

T b
a T c

b = −δ c
a , Gab = Gba, T a

c G
cb = −T b

c G
ca.

The solution of these two problems for any classical system of interacting bosonic fields
should produce a quantum theory. In general relativity, one might select for G the collection of
all asymptotically simple solutions of the Einstein equations, the main steps being as follows [51].
Let M = M ∪ I be a manifold with boundary, where the boundary I consists of two disjoint
copies of S2 × R, and the interior of M is R4. The main idea is to incorporate into M all
structure which is independent of the metric chosen. One therefore requires that a conformal
factor Ω is given on M such that

Ω > 0 on M, Ω = 0 on I,

while the gradient of Ω is nonvanishing on I, whose conformal structure is required to be given.
Let now G be the collection of all source-free solutions of the Einstein equations on M which are
asymptotically simple with conformal factor Ω and conformal infinity I, and which reproduce
the given conformal structure on I. A vector in G at a point g ∈ G (the point g being a solution
of the Einstein equations) is a linearized solution γ β

α which is regular on I. Thus, the desired
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tensor field T b
a is a linear mapping on linearized solutions at g which, applied twice to γ β

α ,
gives −γ β

α . One could obtain such a mapping by expressing the linearized solution in terms of
its initial data on past null infinity, and then altering the phase of the data in a suitable way.
Last, but not least, the desired metric Gab on G should assign a real number to each linearized
solution. One might use for this purpose the integral [51]

I ≡
∫

M
γ β

α γ α
β dV.

To sum up, there are at least three sources of infinite-dimensionality in quantum gravity:

1. The infinite-dimensional Lie group (or pseudo-group) of spacetime diffeomorphisms, which
is the invariance group of general relativity in the first place [28, 93].

2. The infinite-dimensional space of histories in a functional-integral quantization [30, 31].

3. The infinite-dimensional Geroch space of asymptotically simple spacetimes [51].
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