
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 096, 11 pages

Lagrangian Approach to Dispersionless

KdV Hierarchy

Amitava CHOUDHURI †1, B. TALUKDAR †1 and U. DAS †2

†1 Department of Physics, Visva-Bharati University, Santiniketan 731235, India
E-mail: amitava ch26@yahoo.com, binoy123@bsnl.in

†2 Abhedananda Mahavidyalaya, Sainthia 731234, India

Received June 05, 2007, in final form September 16, 2007; Published online September 30, 2007
Original article is available at http://www.emis.de/journals/SIGMA/2007/096/

Abstract. We derive a Lagrangian based approach to study the compatible Hamiltonian
structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that
our treatment of the problem serves as a very useful supplement of the so-called r-matrix
method. We suggest specific ways to construct results for conserved densities and Hamil-
tonian operators. The Lagrangian formulation, via Noether’s theorem, provides a method
to make the relation between symmetries and conserved quantities more precise. We have
exploited this fact to study the variational symmetries of the dispersionless KdV equation.
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1 Introduction

The equation of Korteweg and de Vries or the so-called KdV equation

ut = 1
4u3x + 3

2uux

in the dispersionless limit [1]

∂

∂t
→ ε

∂

∂t
and

∂

∂x
→ ε

∂

∂x
with ε→ 0

reduces to

ut = 3
2uux. (1.1)

Equation (1.1), often called the Riemann equation, serves as a prototypical nonlinear partial
differential equation for the realization of many phenomena exhibited by hyperbolic systems [2].
This might be one of the reasons why, during the last decade, a number of works [3] was envisaged
to study the properties of dispersionless KdV and other related equations with special emphasis
on their Lax representation and Hamiltonian structure.

The complete integrability of the KdV equation yields the existence of an infinite family of
conserved functions or Hamiltonian densities Hn’s that are in involution. All Hn’s that generate
flows which commute with the KdV flow give rise to the KdV hierarchy. The equations of the
hierarchy can be constructed using [4]

ut = Λnux(x, t), n = 0, 1, 2, . . . (1.2)

with the recursion operator

Λ = 1
4∂

2
x + u+ 1

2ux∂
−1
x .
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In the dispersionless limit the recursion operator becomes

Λ = u+ 1
2ux∂

−1
x . (1.3)

According to (1.2), the pseudo-differential operator Λ in (1.3) defines a dispersionless KdV
hierarchy. The first few members of the hierarchy are given by

n = 0 : ut = ux, (1.4a)
n = 1 : ut = 3

2uux, (1.4b)

n = 2 : ut = 15
8 u

2ux, (1.4c)

n = 3 : ut = 35
16u

3ux, (1.4d)

n = 4 : ut = 315
128u

4ux. (1.4e)

Thus the equations in the dispersionless hierarchy can be written in the general form

ut = Anu
nux, (1.5)

where the values of An should be computed using (1.3) in (1.2). We can also generate A1, A2,
A3 etc recursively using

An =
(
1 + 1

2n

)
An−1, n = 1, 2, 3, . . . and A0 = 1.

The Hamiltonian structure of the dispersionless KdV hierarchy is often studied by taking
recourse to the use of Lax operators expressed in the semi-classical limit [5]. In this work we
shall follow a different viewpoint to derive Hamiltonian structure of the equations in (1.5). We
shall construct an expression for the Lagrangian density and use the time-honoured method of
classical mechanics to rederive and reexamine the corresponding canonical formulation. A single
evolution equation is never the Euler–Lagrange equation of a variational problem. One common
trick to put a single evolution equation into a variational form is to replace u by a potential
function u = −wx. In terms of w, (1.5) will become an Euler–Lagrange equation. We can,
however, couple a nonlinear evolution equation with an associated one and derive the action
principle. This allows one to write the Lagrangian density in terms of the original field variables
rather than the w’s, often called the Casimir potential. In Section 2 we adapt both these
approaches to obtain the Lagrangian and Hamiltonian densities of the Riemann type equations.
In Section 3 we study the bi-Hamiltonian structure [6]. One of the added advantage of the
Lagrangian description is that it allows one to establish, via Noether’s theorem, the relationship
between variational symmetries and associated conservation laws. The concept of variational
symmetry results from the application of group methods in the calculus of variations. Here one
deals with the symmetry group of an action functional A[u] =

∫
Ω0
L
(
x, u(n)

)
dx with L, the

so-called Lagrangian density of the field u(x). The groups considered will be local groups of
transformations acting on an open subset M⊂ Ω0×U ⊂ X ×U . The symbols X and U denote
the space of independent and dependent variables respectively. We devote Section 4 to study
this classical problem. Finally, in Section 5 we make some concluding remarks.

2 Lagrangian and Hamiltonian densities

For u = −wx (1.5) becomes

wxt = An(−1)nwn
xw2x. (2.1)
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The Fréchet derivative of the right side of (2.1) is self-adjoint. Thus we can use the homotopy
formula [7] to obtain the Lagrangian density in the form

Ln = 1
2wtwx +

An(−1)n+1

(n+ 1)(n+ 2)
wn+2

x . (2.2)

In writing (2.2) we have subtracted a gauge term which is harmless at the classical level. The
subscript n of L merely indicates that it is the Lagrangian density for the nth member of the
dispersionless KdV hierarchy. The corresponding canonical Hamiltonian densities obtained by
the use of Legendre map are given by

Hn =
An

(n+ 1)(n+ 2)
un+2. (2.3)

Equation (1.5) can be written in the form

ut +
∂ρ[u]
∂x

= 0 (2.4)

with

ρ[u] = − An

(n+ 1)
un+1. (2.5)

There exists a prolongation of (1.5) or (2.4) into another equation

vt +
δ(ρ[u]vx)

δu
= 0, v = v(x, t) (2.6)

with the variational derivative

δ

δu
=

m∑
k=0

(−1)k ∂
k

∂xk

∂

∂ukx
, ukx =

∂ku

∂xk

such that the coupled system of equations follows from the action principle [8]

δ

∫
Lc dxdt = 0.

The Lagrangian density for the coupled equations in (2.4) and (2.6) is given by

Lc = 1
2(vut − uvt)− ρ[u]vx.

For ρ[u] in (2.5), (2.6) reads

vt = Anu
nvx. (2.7)

For the system represented by (1.5) and (2.7) we have

Lc
n = 1

2(vut − uvt) +
An

(n+ 1)
un+1vx. (2.8)

The result in (2.7) could also be obtained using the method of Kaup and Malomed [9]. Referring
back to the supersymmetric KdV equation [10] we identify v as a fermionic variable associated
with the bosonic equation in (1.5). It is of interest to note that the supersymmetric system is
complete in the sense of variational principle while neither of the partners is. The Hamiltonian
density obtained from the Lagrangian in (2.8) is given by

Hc
n = − An

(n+ 1)
un+1vx. (2.9)

It remains an interesting curiosity to demonstrate that the results in (2.3) and (2.9) represent
the conserved densities of the dispersionless KdV and supersymmetric KdV flows. We demon-
strate this by examinning the appropriate bi-Hamiltonian structures of (1.5) and the pair (1.5)
and (2.7).
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3 Bi-Hamiltonian structure

Zakharov and Faddeev [11] developed the Hamiltonian approach to integrability of nonlinear
evolution equations in one spatial and one temporal (1+1) dimensions and Gardner [12], in
particular, interpreted the KdV equation as a completely integrable Hamiltonian system with ∂x

as the relevant Hamiltonian operator. A significant development in the Hamiltonian theory is
due to Magri [6] who realized that integrable Hamiltonian systems have an additional structure.
They are bi-Hamiltonian, i.e., they are Hamiltonian with respect to two different compatible
Hamiltonian operators. A similar consideration will also hold good for the dispersionless KdV
equations and we have

ut = ∂x

(
δHn

δu

)
= 1

2 (u∂x + ∂xu)
(
δHn−1

δu

)
, n = 1, 2, 3 . . . . (3.1)

Here

H =
∫
Hdx. (3.2)

It is easy to verify that for n = 1, (2.3), (3.1) and (3.2) give (1.4b). The other equations of the
hierarchy can be obtained for n = 2, 3, 4, . . . . The operators D1 = ∂x and D2 = 1

2 (u∂x + ∂xu)
in (3.1) are skew-adjoint and satisfy the Jacobi identity. The dispersionless KdV equation, in
particular, can be written in the Hamiltonian form as

ut = {u(x),H1}1 and ut = {u(x),H0}2

endowed with the Poisson structures

{u(x), u(y)}1 = D1δ(x− y) and {u(x), u(y)}2 = D2δ(x− y).

Thus D1 and D2 constitute two compatible Hamiltonian operators such that the equations
obtained from (1.5) are integrable in Liouville’s sense [6]. Thus Hn’s in (2.3) via (3.2) give
the conserved densities of (1.5). In other words, Hn’s generate flows which commute with the
dispersionless KdV flow and give rise to an appropriate hierarchy. It will be quite interesting
to examine if a similar analysis could also be carried out for the supersymmetric dispersionless
KdV equations.

The pair of supersymmetric equations ut = unux and vt = unvx can be written as

ηt = J1

(
δHs

n

δη

)
= J2

(
δHs

n−1

δη

)
, (3.3)

where η =
(
u
v

)
, Hs

n = Hc
n

An
and Hc

n =
∫
Hc

ndx. In (3.3) J1 and J2 stand for the matrices

J1 =
(

0 1
−1 0

)
and J2 =

(
0 u
−u 0

)
. (3.4)

Since Hc
n for different values of n represent the conserved Hamiltonian densities obtained by the

use of action principle, the supersymmetric dispersionless KdV equations will be bi-Hamiltonian
provided J1 and J2 constitute a pair of compatible Hamiltonian operators. Clearly, J1 and J2

are skew-adjoint. Thus J1 and J2 will be Hamiltonian operators provided we can show that [5]

pr vJiθ(ΘJi) = 0, i = 1, 2. (3.5)
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Here pr stands for the prolongation of the evolutionary vector field v of the characteristic Jiθ.
The quantity pr vJi

θ is calculated by using

pr vJiθ =
∑
µ,j

Dj

(∑
ν

(Ji)µνθ
ν

)
∂

∂ηµ
j

, Dj =
∂

∂xj
, µ, ν = 1, 2. (3.6)

In our case the column matrix θ =
(
φ
ψ

)
represents the basis univectors associated with the

variables η =
(
u
v

)
. Understandably, θν and ηµ denote the components of θ and η and (Ji)µν

carries a similar meaning. The functional bivectors corresponding to the operators Ji is given by

ΘJi = 1
2

∫
θT ∧ Jiθdx (3.7)

with θT , the transpose of θ. From (3.4), (3.6) and (3.7) we found that both J1 and J2 satisfy (3.5)
such that each of them constitutes a Hamiltonian operator. Further, one can check that J1 and J2

satisfy the compatibility condition

pr vJ1θ(ΘJ2) + pr vJ2θ(ΘJ1) = 0.

This shows that (3.3) gives the bi-Hamiltonian form of supersymmetric dispersionless KdV
equations. The recursion operator defined by

Λ = J2J−1
1 =

(
u 0
0 u

)
reproduces the hierarchy of supersymmetric dispersionless KdV equation according to

ηt = Λnηx.

for n = 0, 1, 2, . . . . This verifies that Hc
n

An
’s as conserved densities generate flows which commute

with the supersymmetric dispersionless KdV flow.

4 Variational symmetries

The Lagrangian and Hamiltonian formulations of dynamical systems give a way to make the re-
lation between symmetries and conserved quantities more precise and thereby provide a method
to derive expressions for the conserved quantities from the symmetry transformations. In its
general form this is referred to as Noether’s theorem. More precisely, this theorem asserts that
if a given system of differential equations follows from the variational principle, then a continu-
ous symmetry transformation (point, contact or higher order) that leaves the action functional
invariant to within a divergence yields a conservation law. The proof of this theorem requires
some knowledge of differential forms, Lie derivatives and pull-back [5]. We shall, however, carry
out the symmetry analysis for the dispersionless KdV equation using a relatively simpler mathe-
matical framework as compared to that of the algebro-geometric theories. In fact, we shall make
use of some point transformations that depend on time and spatial coordinates. The approach
to be followed by us has an old root in the classical-mechanics literature. For example, as early
as 1951, Hill [13] provided a simplified account of Noether’s theorem by considering infinitesimal
transformations of the dependent and independent variables characterizing the classical field.
We shall first present our general scheme for symmetry analysis and then study the variational
or Noether’s symmetries of the dispersionless KdV equation.
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Consider the infinitesimal transformations

xi′ = xi + δxi, δxi = εξi(x, f) (4.1a)

and

f ′ = f + δf, δf = εη(x, f) (4.1b)

for a field variable f = f(x, t) with ε, an arbitrary small quantity. Here x = {x0, x1}, x0 = t
and x1 = x. Understandably, our treatment for the symmetry analysis will be applicable to
(1 + 1) dimensional cases. However, the result to be presented here can easily be generalized to
deal with (3 + 1) dimensional problems. For an arbitrary analytic function g = g(xi, f), it is
straightforward to show that

δg = εXg

with

X = ξi ∂

∂xi
+ η

∂

∂f
, (4.2)

the generator of the infinitesimal transformations in (4.1). A similar consideration when applied
to h = h(xi, f, fi) with fi = ∂f

∂xi gives

δh = εX ′h (4.3)

with

X ′ = X +
(
ηi − ξj

i fj

) ∂
∂fi

. (4.4)

Understandably, X ′ stands for the first prolongation of X. To arrive at the statement for the
Noether’s theorem we consider among the general set of transformations in (4.1) only those that
leave the field-theoretic action invariant. We thus write

L(xi, f, fi)d(x) = L′(xi′, f ′, fi
′)d(x′), (4.5)

where d(x) = dxdt. In order to satisfy the condition in (4.5) we allow the Lagrangian density
to change its functional form L to L′. If the equations of motion, expressed in terms of the
new variables, are to be of precisely the same functional form as in the old variables, the two
density functions must be related by a divergence transformation. We thus express the relation
between L′ and L by introducing a gauge function Bi(x, f) such that

L′(xi′, f ′, fi
′)d(x′) = L(xi′, f ′, fi

′)d(x′)− εdB
i

dxi′d(x
′) + o(ε2). (4.6)

The general form of (4.6) for the definition of symmetry transformations will allow the scale
and divergence transformations to be considered as symmetry transformations. Understandably,
the scale transformations give rise to Noether’s symmetries while the scale transformations in
conjunction with the divergence term lead to Noether’s divergence symmetries. Traditionally,
the concept of divergence symmetries and concommitant conservation laws are introduced by
replacing Noether’s infinitesimal criterion for invariance by a divergence condition [14]. However,
one can directly work with the conserved densities that follow from (4.6) because nature of the
vector fields will determine the contributions of the gauge term. For some of the vector fields
the contributions of Bi to conserved quantities will be equal to zero. These vector fields are
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Noether’s symmetries else we have Noether’s divergence symmetries. In view of (4.5), (4.6) can
be written in the form

L(xi′, f ′, fi
′)d(x′) = L(xi, f, fi)d(x) + ε

dBi

dxi
d(x). (4.7)

Again using L for h in (4.3), we have

L(xi′, f ′, fi
′)d(x′) = L(xi, f, fi)

[
d(x) + εdξi(x, fi)

]
+ εX ′L(xi, f, fi)d(x). (4.8)

From (4.7) and (4.8), we write

dBi

dxi
=
dξi

dxi
L+X ′L. (4.9)

Using the value of X ′ from (4.4) in (4.9), dBi

dxi is obtained in the final form

dBi

dxi
=
dξi

dxi
L+ ξi ∂L

∂xi
+ η

∂L
∂f

+
(
ηi − ξj

i fj

) ∂L
∂fi

. (4.10)

Thus we find that the action is invariant under those transformations whose constituents ξ and η
satisfy (4.10). The terms in (4.10) can be rearranged to write

d

dxi

{
Bi − ξiL+

(
ξjfj − η

) ∂L
∂fi

}
+
(
ξjfj − η

) [∂L
∂f

− d

dxi

(
∂L
∂fi

)]
= 0. (4.11)

The expression inside the squared bracket stands for the Euler–Lagrange equation for the clas-
sical field under consideration. In view of this, (4.11) leads to the conservation law

dIi

dxi
= 0 (4.12)

with the conserved density given by

Ii = Bi − ξiL+
(
ξjfj − η

) ∂L
∂fi

. (4.13)

In the case of two independent variables (x0, x1) ≡ (t, x), (4.12) can be written in the explicit
form

dI0

dt
+
dI1

dx
= 0. (4.14)

From (2.2) the Lagrangian density for the dispersionless KdV equation is obtained as

L = 1
2wtwx + 1

4w
3
x. (4.15)

Identifying f with w we can combine (4.13), (4.14) and (4.15) to get

B0
t + wtB

0
w − 1

4ξ
0
tw

3
x − 1

4ξ
0
wwtw

3
x + 1

2ξ
1
tw

2
x + 1

2ξ
1
wwtw

2
x − 1

2ηtwx − ηwwtwx

+B1
x + wxB

1
w + 1

2ξ
1
xw

3
x + 1

2ξ
1
ww

4
x + 1

2ξ
0
xw

2
t + 1

2wxw
2
t ξ

0
w + 3

4ξ
0
xw

2
xwt − 3

4ηxw
2
x

− 1
2ηxwt − 3

4ηww
3
x + 3

4ξ
0
ww

3
xwt = 0. (4.16)
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In writing (4.16) we have made use of (2.1) with n = 1. Equation (4.16) can be globally satisfied
iff the coefficients of the following terms vanish separately

w0
x or w0

t : B0
t +B1

x = 0, (4.17a)

wt : B0
w − 1

2ηx = 0, (4.17b)

w2
t : 1

2ξ
0
x = 0, (4.17c)

wx : B1
w − 1

2ηt = 0, (4.17d)

w2
x : 1

2ξ
1
t − 3

4ηx = 0, (4.17e)

w3
x : −1

4ξ
0
t − 3

4ηw + 1
2ξ

1
x = 0, (4.17f)

w4
x : 1

2ξ
1
w = 0, (4.17g)

wtwx : −ηw = 0, (4.17h)

wtw
2
x : 1

2ξ
1
w + 3

4ξ
0
x = 0, (4.17i)

wtw
3
x : 1

2ξ
0
w = 0, (4.17j)

w2
twx : 1

2ξ
0
w = 0. (4.17k)

Equations in (4.17) will lead to finite number of symmetries. This number appears to be
disappointingly small since we have a dispersionless KdV hierarchy given in (1.5). Further,
symmetry properties reflecting the existence of infinitely many conservation laws will require
an appropriate development for the theory of generalized symmetries. In this work, however,
we shall be concerned with variational symmetries only.

From (4.17c), (4.17j) and (4.17k) we see that ξ0 is only a function of t. We, therefore, write

ξ0(x, t, w) = β(t). (4.18)

Also from (4.17g), (4.17i) and (4.18) we see that ξ1 is not a function of w. In view of (4.17h)
and (4.18), (4.17f) gives

ξ1x − 1
2βt = 0

which can be solved to get

ξ1 = 1
2βtx+ α(t), (4.19)

where α(t) is a constant of integration. Using (4.19) in (4.17e) we have

ηx = 1
3βttx+ 2

3αt. (4.20)

The solution of (4.20) is given by

η = 1
6βttx

2 + 2
3αtx+ γ(t) (4.21)

with γ(t), a constant of integration. In view of (4.21), (4.17b) and (4.17d) yield

B0 = 1
6βttxw + 1

3αtw (4.22)

and

B1 = 1
12βtttx

2w + 1
3αttxw. (4.23)

Equations (4.22) and (4.23) can be combined with (4.17a) to get finally

βttt = 0 and αtt = 0. (4.24)
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From (4.24) we write

β = 1
2a1t

2 + a2t+ a3 (4.25)

and

α = b1t+ b2, (4.26)

where a’s and b’s are arbitrary constants. Substituting the values of β and α in (4.18), (4.19),
(4.21) we obtain the infinitesimal transformation, ξ0, ξ1 and η, as

ξ0 = 1
2a1t

2 + a2t+ a3, (4.27a)

ξ1 = 1
2(a1t+ a2)x+ b1t+ b2, (4.27b)

η = 1
6a1x

2 + 2
3b1x+ b3. (4.27c)

In writing (4.27c) we have treated γ(t) as a constant and replaced it by b3. Implication of this
choice will be made clear while considering the symmetry algebra. In terms of (4.27), (4.2)
becomes

X = a1V1 + a2V2 + a3V3 + b1V4 + b2V5 + b3V6,

where

V1 = 1
2 t

2 ∂

∂t
+ 1

2xt
∂

∂x
+ 1

6x
2 ∂

∂w
, V2 = t

∂

∂t
+ 1

2x
∂

∂x
,

V3 =
∂

∂t
, V4 = t

∂

∂x
+ 2

3x
∂

∂w
, V5 =

∂

∂x
, V6 =

∂

∂w
. (4.28)

It is easy to check that the vector fields V1, . . . , V6 satisfy the closure property. The commutation
relations between these vector fields are given in Table 1.

Table 1. Commutation relations for the generators in (4.28). Each element Vij in the Table is represented
by Vij = [Vi, Vj ].

V1 V2 V3 V4 V5 V6

V1 0 −V1 −V2 0 −1
2V4 0

V2 V1 0 −V3
1
2V4 −1

2V5 0
V3 V2 V3 0 V5 0 0
V4 0 −1

2V4 −V5 0 −2
3V6 0

V5
1
2V4

1
2V5 0 2

3V6 0 0
V6 0 0 0 0 0 0

The symmetries in (4.28) are expressed in terms of the velocity field and depend explicitly
on x and t. Looking from this point of view the symmetry vectors obtained by us bear some
similarity with the so called ‘addition symmetries’ suggested independently by Chen, Lee and
Lin [15] and by Orlov and Shulman [16]. It is easy to see that V2 to V6 correspond to scaling,
time translation, Galilean boost, space translation and translation in velocity space respectively.
The vector field V1 does not admit such a simple physical realization. However, we can write V1

as V1 = 1
2 tV2 + 1

4xV4.
Making use of (4.15), (4.22), (4.23), (4.25) and (4.26) we can write the expressions for the

conserved quantities in (4.13) as

I0 = 1
6a1xw + 1

3b1w −
1
4ξ

0w3
x + 1

2ξ
1w2

x − 1
2ηwx, (4.29a)

I1 = 1
2ξ

0w2
t + 3

4ξ
0wtw

2
x + 1

2ξ
1w3

x − 1
2ηwt − 3

4ηw
2
x. (4.29b)
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The expressions for I0 and I1 are characterized by ξi and η, the values of which change as we
go from one vector field to the other. The first two terms in I0 stand for the contribution of B0

and there is no contribution of the gauge term in I1 since from (4.23) and (4.24) B1 = 0. For
a particular vector field a1 and b1 may either be zero or non zero. One can verify that except for
vector fields V1 and V4, a1 = b1 = 0 such that V2, V3, V5 and V6 are simple Noether’s symmetries
while V1 and V4 are Noether’s divergence symmetries. Coming down to details we have found
the following conserved quantities from (4.29a) and (4.29b)

I0
V1

= 1
6xw −

1
8 t

2w3
x + 1

4xtw
2
x − 1

12x
2wx, (4.30a)

I1
V1

= 1
4xtw

3
x + 3

8 t
2wtw

2
x + 1

4 t
2w2

t − 1
12x

2wt − 1
8x

2w2
x, (4.30b)

I0
V2

= −1
4 tw

3
x + 1

4xw
2
x, (4.30c)

I1
V2

= 1
4xw

3
x + 3

4 twtw
2
x + 1

2 tw
2
t , (4.30d)

I0
V3

= −1
4w

3
x, (4.30e)

I1
V3

= 3
4wtw

2
x + 1

2w
2
t , (4.30f)

I0
V4

= 1
3w + 1

2 tw
2
x − 1

3xwx, (4.30g)

I1
V4

= 1
2 tw

3
x − 1

3xwt − 1
2xw

2
x, (4.30h)

I0
V5

= 1
2w

2
x, (4.30i)

I1
V5

= 1
2w

3
x, (4.30j)

I0
V6

= −1
2wx, (4.30k)

I1
V6

= −1
2wt − 3

4w
2
x. (4.30l)

It is easy to check that the results in (4.30) is consistent with (4.14). The pair of conserved
quantities corresponding to time translation, space translation and velocity space translation,
namely, {(4.30e),(4.30f)}, {(4.30i),(4.30j)} and {(4.30k),(4.30l)} do not involve x and t explicitly.
Each of the pair in conjunction with (4.14) give the dispersionless KdV equation in a rather
straightforward manner. As expected (4.30e) stands for the Hamiltonian density or energy
of (1.4b).

5 Conclusion

Compatible Hamiltonian structures of the dispersionless KdV hierarchy are traditionally ob-
tained with special attention to their Lax representation in the semiclassical limit. The deriva-
tion involves judicious use of the so-called r-matrix method [17]. We have shown that the
combined Lax representation–r-matrix method can be supplemented by a Lagrangian approach
to the problem. We found that the Hamiltonian densities corresponding to our Lagrangian rep-
resentations stand for the conserved densities for the dispersionless KdV flow. We could easily
construct the Hamiltonian operators from the recursion operator which generates the hierarchy.
We have derived the bi-Hamiltonian structures for both dispersionless KdV and supersymmetric
KdV hierarchies. As an added realism of the Lagrangian approach we studied the variational
symmetries of equation (1.4b). We believe that it will be quite interesting to carry out similar
analysis for the supersymmetric KdV pair in (1.4b) and for n = 1 limit of (2.7).
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