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Abstract. Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza–
Klein procedure. Explicit formulas are given for reducing from four and three dimensions
to three and two dimensions, respectively. When the higher dimensional conformal tensor
vanishes because the space is conformallly flat, the lower-dimensional Kaluza–Klein func-
tions satisfy equations that coincide with the Einstein–Weyl equations in three dimensions
and kink equations in two dimensions.
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1 Introduction

In this paper, we shall examine a mathematical problem, which does not possess any evident
physical significance, but nevertheless leads to interesting equations that lie in various areas
of mathematical physics. The problem that we address concerns the dimensional reduction of
geometric conformal tensors (defined below) from n to n−1 dimensions. More specifically, for an
n-dimensional conformal tensor, constructed from a metric tensor gMN , {M,N} : 0, 1, . . . , n−1,
the metric tensor is parameterized in the Kaluza–Klein fashion

gMN = e2σ

(
gµν − aµaν −aµ

−aν −1

)
, {µ, ν} : 0, 1, . . . , n− 2, (1)

corresponding to the n and n− 1 line elements

ds2(n) = gMN dxM dxN = e2σ
[
ds2n−1 − (aµ dx

µ + dxn−1)2
]
,

ds2(n−1) = gµν dx
µ dxν .

The metric functions are taken to be independent of the “last” coordinate xn−1. Consequently
the n-dimensional conformal tensor reduces to an n − 1 dimensional conformal tensor, plus
other geometrical entities appropriate to n− 1 dimensions. An n-dimensional diffeomorphism,
δxN = −fN (x), where the transformation function is independent of the last coordinate, acts
on the quantities in (1) in such a way that {gµν , aµ, σ} transform as n− 1 dimensional tensors,
vector and scalar, respectively, and also aµ experiences an Abelian gauge transformation.

The effect of such a dimensional reduction on the n-dimensional Riemann tensor is known:
it is described by the classic geometric Gauss–Codazzi equations (see for example [1]). Here we
present analogous results for conformal tensors, in various dimensions.

We begin by describing conformal tensors.
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2 Conformal tensors

In dimensions greater than three, the conformal tensor is the Weyl tensor CKLMN related to
the Riemann tensor by

CKLMN ≡ RKLMN − 1
n− 2

(
gKN SML − gKN SML − gLM SNK + gLN SMK

)
, (2)

SNL ≡ RNL − 1
2(n− 1)

gNLR.

RNL and R are the Ricci quantities, while CKLMN has the following properties

(a) It is covariant against conformal redefinition of the metric

gMN (x) → λ(x)gMN (x).

(b) It vanishes if and only if the space is conformally flat: gMN is diffeomorphic to ληMN

where ηMN is flat.

(c) It possesses the symmetries of the Riemann tensor and also is traceless in each index pair.

Evidently, according to properties (a) and (b), the Weyl tensor acts as a template for confor-
mal flatness: by evaluating it on a specific metric tensor one can learn whether the space-time
is conformally flat.

In three dimensions the Weyl tensor vanishes identically, and the Riemann tensor is given by
the last term in (2) (at n = 3). But not all 3-dimensional space-times are conformally flat. So
there is needed a replacement for the Weyl tensor, which would act as a template for conformal
flatness.

The Cotton tensor

CKL =
1

2
√
g

(
εKMN DM RL

N + εLMN DM RK
N

)
serves that role, as it possesses conformal template properties (a) and (b). CKL is symmetric
in its indices, and like the Weyl tensor, it is traceless. The Weyl tensor is not obtained by
varying a scalar action. But the Cotton tensor enjoys this property, since it is the variation of
the gravitational Chern–Simons term

CS(Γ) ≡ 1
4π2

∫
d3x εKLM

(
1
2

ΓR
KS ∂L ΓS

MR +
1
3

ΓR
KS ΓS

LT ΓT
MK

)
,

δCS(Γ) = − 1
4π2

∫
d3x

√
g CKL δgKL.

Because CS(Γ) is a scalar, CKL is covariantly conserved.
Finally in two dimensions, all spaces are (locally) conformally flat, so there is no need for

a conformal tensor, and indeed none exists.

3 Dimensional reductions

We have derived the relevant formulas for the general n→ n− 1 reduction. They are compli-
cated and will not be recorded here, since they appear in the published research paper [2]. We
remark on two general features

(a) The reductions of the Weyl and Cotton tensors do not depend on the conformal factor e2σ

in (1), because the tensors are conformally invariant.
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(b) The dependence of the tensors on the vector aµ is mostly through the “gauge invariant”
combination.

fµν = ∂µ aν − ∂ν aµ. (3)

We present explicit formulas for the 4 → 3 and 3 → 2 reductions. These are especially
interesting owing to the absence of a Weyl tensor in three and two dimensions, and the presence
of the Cotton tensor in three dimensions.

3.1 4 → 3 reduction

The 4-dimensional Weyl tensor CMNKL with indices in the 3-dimensional range (µ, ν, λ, τ) reads

Cµνλτ = gµλ cτν − gµτcλν − gνλ cτµ + gντ cλµ, (4)

where

cµν ≡ 1
2

(
rµν − 1

3
gµν r − fµfν +

1
3
gµν f2

)
. (5)

Here rµν and r are 3-dimensional Ricci entities, constructed from the 3-dimensional metric
tensor gµν , while fµ is the dual “field” strength, constructed from the vector potential aµ

(see (3))

fµ ≡ εµαβ

2
√
g
fαβ =

εµαβ

√
g
∂α aβ.

There remains one more component of the 4-dimensional Weyl tensor that must be specified

C−λµν =
εµντ

2
√
g

(
dλfτ + dτf

λ
)
− aτ C

τλµν .

Here dλ is the 3-dimensional covariant derivative, and “−” refers to the “last” (M = 3) va-
lued index of the 4-dimensional Weyl tensor. Other components of CMNKL are fixed by its
tracelessness [2].

3.2 3 → 2 reduction

The 3-dimensional Cotton tensor CMN , with its indices in the 2 dimensional range, becomes

Cµν = gµν

(
d2f − f3 − 1

2
rf

)
− dµdν f. (6)

Now r is the 2-dimensional Ricci scalar constructed from the 2-dimensional metric tensor gµν ;
dµ is the appropriate 2-dimensional covariant derivative; f is the dual to fµν – a scalar in two
dimensions

f ≡ εµν

2
√
−g

fµν =
εµν

√
−g

∂µaν . (7)

The further component of the Cotton tensor is given by

C−µ =
1

2
√
−g

εµν ∂ν (r + 3f2)− aν C
µν

with “−” denoting the “last” (M = 2) valued index. The remaining component of CMN is fixed
by its tracelessness [3].
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4 Embedding in a conformally flat space

If we demand that the higher dimensional conformal tensor vanishes, the reduced formulas
become equations that determine the lower-dimensional metric tensor and vector field (actually
only its “gauge”-invariant curl enters). The lower dimensional geometry is therefore embedded
in a conformally flat space of one higher dimension.

4.1 4 → 3 embedding

When the 4-dimensional Weyl tensor vanishes (4) and (5) imply the 3-dimensional traceless
equation

Cµν = 0 ⇒ rµν − 1
3
gµν r = fµfν − 1

3
gµν fαfα. (8)

While (4) and (6) require

dµfν + dνfµ = 0, (9)

i.e. fµ is a Killing vector of the 3-geometry. Equations (8) and (9) have the consequence (by
differention of (8) and use of (9))

r = −5f2 + c,

where c is a constant. Also one readily shows that the quantity

Fµ ≡ εµνλ

√
g
dνfλ

is an additional Killing vector of the 3-geometry – we call it the “dual” Killing vector [2].
We present explicit solutions to (8) and (9) that are static and circularly symmetric. With

such an Ansatz, two solutions are found [2]

(a) ds23 = v(ρ)dt2 − 4/a
1− ρ2/a

dρ2

v(ρ)
− ρ2dθ2, (10)

v(ρ) ≡ A+B
√

1− ρ2/a.

fµ is the time-like Killing vector for (10)

fµ : {f t = 1, fρ = 0, fθ = 0}, (11)

while the dual Killing vector is spacelike

Fµ : {F t = 0, F ρ = 0, F θ = 1}. (12)

Note |a| may be eliminated from (10) by rescaling ρ and θ.

(b) ds23 = w(ρ)dt2 − 1
w(ρ)

dρ2 − ρ2(dθ)2, (13)

w(ρ) ≡ 1
4
ρ4 +Aρ2 +B. (14)

Now fµ is the space-like Killing vector,

fµ = {f t = 0, fρ = 0, fθ = 1} (15)

while dual Killing vector is time-like

Fµ : {F t = 1, F ρ = 0, F θ = 0}. (16)
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4.2 3 → 2 embedding

The vanishing of the 3-dimensional Cotton tensor requires, according to (6), both the 2-dimen-
sional traceless equation(

dµdν −
gµν

2
d2

)
f = 0 (17)

and the trace condition

d2f − 2f3 − rf = 0 (18)

while (7) sets

r = −3f2 + c (19)

where c is a constant. Therefore (18) becomes [3]

d2f + f3 − cf = 0. (20)

Since, unlike the Weyl tensor, the Cotton tensor is the variation of an action – the gravitational
Chern–Simons action CS(Γ) – equations (17)–(20) arise by varying the dimensionally reduced
CS(Γ), which reads

CS = − 1
8π2

∫
d2x

√
−g (fr + f3). (21)

The equations (17)–(20) can be solved for arbitrary values of c: positive, negative, zero [3, 4].
Especially interesting are the solutions for c > 0, where the f ↔ −f reflection “symmetry” of
the equations (not of the action (21)) is spontaneously broken by the solution f = ±

√
c, r = 2c.

In further analogy with familiar field theoretical behavior, there also exists a solution which
interpolates between the ±

√
c “vacua”

f =
√
c tanh

√
cx

2
, r = 2c+

3c

cosh2
√

c
2 x

.

It is amusing to recall the above mentioned field theoretic analog. In 2-dimensional Minkowski
space-time a scalar field Φ can satisfy the equation

2Φ + Φ3 − cΦ = 0, c > 0

which possesses the Φ ↔ −Φ symmetry breaking solution Φ = ±
√
c. As is well known the

equation also admits the kink solution which interpolates between the two ±
√
c “vacua”

ψkink =
√
c tanh

√
c

2
x.

The analogy is perfect, but there is a normalization discrepancy. The curved-space kink
possess a spatial coordinate scaled by 2, while in the flat-space kink the scaling is

√
2. This is

the only effect of the non-trivial geometry.
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5 Other work

In [4, 5] we list papers that rely to some extent on the results presented here, specifically
employing formulas arising in the 3 → 2 reduction.

In the discussion following the lecture, M. Eastwood observed that the formulas relevant
to the 4 → 3 reduction coincide with equations that arise in the 3-dimensional Einstein–Weyl
conformal theory [6]. This is an interesting connection, which we now elaborate.

Einstein–Weyl theory (in any dimension) is equipped with a metric tensor gµν and an ad-
ditional vector Wω – the “Weyl potential” – which arises when the covariant “Weyl deriva-
tive” 4W

ω , involving the torsion-less “Weyl connection” W λ
µν , acts on gµν and preserves its

conformal class [1, 7]

4W
ω gµν ≡ ∂ω gµν −W λ

ωµ gλν −W λ
ων gµλ = 2Wω gµν . (22)

The Weyl connection can be constructed from the conventional Christoffel connection Γλ
µν ,

supplemented by an Wω-dependent expression

W λ
µν = Γλ

µν +W λ gµν −Wµ δ
λ
ν −Wν δ

λ
µ. (23)

A curvature tensor is determined as usual by

[4W
µ ,4W

ν ]Vα = −WRβ
αµν Vβ , (24)

whose traces define “Ricci” quantities

WRµν = WRα
µαν ,

WR = WRµ
µ.

The Einstein–Weyl equation then requires that WR(µν), the symmetric part of the “Ricci”
tensor (generically WR(µν) is not symmetric), be in the same conformal class as the metric
tensor,

WR(µν) = λ gµν

or equivalently in three dimensions

WR(µν) −
gµν

3
WR = 0. (25)

From (23) and (24) WR(µν) can be expressed in terms of the usual Ricci tensor, supplemented
by Wω-dependent terms

WR(µν) = Rµν +D(µWν) +WµWν + gµν(DλW
λ −WλW

λ). (26)

Thus the Einstein–Weyl equation (25) requires the vanishing of a trace free quantity.

Rµν −
1
3
gµν R+WµWν −

gµν

3
W λWλ +D(µWν) −

1
3
gµν D

λWλ = 0. (27)

(In (26) and (27) Dω is the covariant derivative constructed with the Christoffel connection Γα
µν .)

The equations (22) and (26) are preserved under conformal transformations: the metric tensor
is rescaled and the Weyl potential undergoes a gauge transformation.

gµν → e2σ gµν , Wµ →Wµ + ∂µ σ.
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This gauge freedom is fixed by choosing the “Gauduchon” gauge DµWµ = 0, and one can further
show that for positive definite metrics D(µWν) vanishes

D(µWν) = 0.

This leaves from (27) the gauge fixed, 3-dimensional Einstein–Weyl equation

Rµν −
1
3
gµν R+WµWν −

gµν

3
W λWλ = 0.

Comparison with (8) and (9) shows that our 3-dimensional equation for the vanishing of the
4-dimensional Weyl tensor coincide with the gauge-fixed Einstein–Weyl equation, apart from
a relative sign between the curvature quantities and the Weyl quantities. This sign discrepancy
arises because we performed our reduction on a space with indefinite signature. When the
reduction is performed with positive metric, the signs coincide.

This relation to Einstein–Weyl theory puts our work into contact with a wide mathematical
literature where solutions other than our (10)–(16) are derived.
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