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Abstract. We begin a study of the intersection theory of the moduli spaces of degree
two stable maps from two-pointed rational curves to arbitrary-dimensional projective space.
First we compute the Betti numbers of these spaces using Serre polynomial and equivariant
Serre polynomial methods developed by E. Getzler and R. Pandharipande. Then, via the
excision sequence, we compute an additive basis for their Chow rings in terms of Chow
rings of nonlinear Grassmannians, which have been described by Pandharipande. The ring
structure of one of these Chow rings is addressed in a sequel to this paper.
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1 Introduction

Let Mg,n(Pr, d) be the moduli space of stable maps from n-pointed, genus g curves to Pr of
degree d. In this article we will begin a study of the intersection theory of the moduli spaces
M0,2(Pr, 2).

Moduli spaces of stable maps have proven useful in studying both superstring theory and
enumerative geometry. Developing a solid mathematical foundation for computation of certain
numbers in string theory was the primary motivation behind the introduction of moduli spaces
of stable maps in [14]. Examples include the instanton numbers, which intuitively count the
number of holomorphic instantons on a space X (nonconstant holomorphic maps from Riemann
surfaces to X). Instanton numbers are calculated using other values called Gromov–Witten
invariants. Naively, Gromov–Witten invariants should count the number of curves of a certain
homology class and genus which pass through certain subvarieties of the target space. More
specifically, let X be a projective manifold, β ∈ H2(X), g and n nonnegative integers. Let
γ1, . . . , γn ∈ H∗(X) be cohomology classes such that there exist subvarieties Z1, . . . , Zn with Zi

representing the Poincaré dual of γi. Then the Gromov–Witten invariant 〈γ1, . . . , γn〉g,β should
count the number of genus g curves of class β that intersect all of the Zi. Also of interest are
gravitational correlators, which generalize Gromov–Witten invariants. Gravitational correlators
are defined and computed mathematically as intersection numbers on the moduli space of stable
maps. See [3, Chapter 10] for a rigorous definition and the sequel [4] for some computations
that flow from the results of this paper.

In the dozen years since Kontsevich introduced the concept in [14] and [13], the moduli space
of stable maps has been exploited to solve a plethora of enumerative problems for curves. As
a rule, these results were derived without a complete description of the Chow rings involved.
Instead, the requisite intersection numbers were calculated somewhat indirectly, most often
using the method of localization. (An overview of localization is given in [3, Chapter 9].) Such
a complete description is the key step in giving another, more direct, computation of these
enumerative numbers and possibly many others. Since a presentation for a ring gives an easy
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way to compute all products in the ring, giving presentations for the Chow rings of moduli spaces
of stable maps is the clear path toward attaining a full and direct knowledge of their intersection
theory. As a consequence, this also helps give a new and more direct way of determining values
of instanton numbers, Gromov–Witten invariants, and gravitational correlators.

Until recently, presentations for Chow rings of moduli spaces of stable maps were known only
in a few special cases. Most of these had projective space as the target of the stable maps,
and in this case the moduli space Mg,n(Pr, d) depends on four nonnegative integer parameters:
the genus g of the curves, the number n of marked points on the curves, the dimension r of
the target projective space, and the degree d of the stable maps. Most impressive was the pre-
sentation of A∗(M0,1(Pr, d)) for arbitrary d and r described by Mustata and Mustata in [17].
Behrend and O’Halloran gave a presentation for A∗(M0,0(Pr, 2)) and conjectured a presentation
for A∗(M0,0(Pr, 3)) in [2]. Also of relevance, Oprea more recently described a system of tauto-
logical subrings of the cohomology (and hence Chow) rings in the genus zero case and showed
that, if the target X is an SL flag variety, then all rational cohomology classes on M0,n(X,β) are
tautological. This gave, at least in principle, a set of generators for any such Chow ring, namely
its tautological classes. He furthermore described an additive generating set for the cohomology
ring of any genus zero moduli space (with target a projective algebraic variety). Finally, he spec-
ulated that all relations between the tautological generators are consequences of the topological
recursion relations. These developments were substantial steps toward describing presentations
for the Chow rings of moduli spaces of stable maps in much more general cases. See [19]
and [20] for more details. More basic examples include A∗(M0,n(Pr, 0)) ' A∗(Pr) × A∗(M0,n),
where M0,n is the moduli space of stable curves. This case reduces to finding presentations
for the rings A∗(M0,n), and Keel did so in [11]. Also, M0,0(Pr, 1) is isomorphic to G(1, r),
the Grassmannian of lines in projective space, and M0,1(Pr, 1) is isomorphic to F(0, 1; r), the
flag variety of pointed lines in projective space. The spaces M0,n(P1, 1) are Fulton-MacPherson
compactifications of configuration spaces of P1. Presentations for their Chow rings were given
by Fulton and MacPherson in [7]. Detailed descriptions of Chow rings of spaces Mg,n(Pr, d),
with g > 0, are almost nonexistent (although some progress is now being made for g = 1).
Additional complications arise in this case.

This was the state of affairs up to the posting of this article, which lays the foundation
for computing presentations of the Chow rings of the spaces M0,2(Pr, 2). This computation is
completed for the case r = 1 in [4], the sequel to this article, where we obtain the presentation

A∗(M0,2(P1, 2)) ' Q[D0, D1, D2,H1,H2, ψ1, ψ2](
H2

1 ,H
2
2 , D0ψ1, D0ψ2, D2 − ψ1 − ψ2, ψ1 − 1

4D1 − 1
4D2 −D0 +H1,

ψ2 − 1
4D1 − 1

4D2 −D0 +H2, (D1 +D2)3, D1ψ1ψ2

) .
This gave the first known presentation for a Chow ring of a moduli space of stable maps of degree
greater than one with more than one marked point. The sequel also employs the presentation
to give a new computation of the genus zero, degree two, two-pointed gravitational correlators
of P1. Algorithms for computing theses values have previously been developed; see [15] and [3],
for example.

Knowing the Betti numbers of M0,2(Pr, 2) is the important first step in our computation,
since it will give us a good idea of how many generators and relations to expect in each degree.
We accomplish this in Section 2 by using the equivariant Serre polynomial method of Getzler
and Pandharipande. I owe much gratitude to Getzler and Pandharipande for supplying a copy
of their unpublished preprint [9], which provided the inspiration for Section 2. In Section 3, we
use the presentations of the Chow rings for the moduli spaces M0,0(Pr, d) from [21] together
with excision to determine a generating set for the Chow ring A∗(M0,2(Pr, 2)). Comparing the
dimension of each graded piece with the Betti numbers from Section 2, we conclude that this
generating set is actually an additive basis.
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Since the completion of this article, additional results have been announced. Getzler and
Pandharipande have substantially reworked the material from and completed the computations
begun in their preprint, giving Betti numbers for all the spaces M0,n(Pr, d) in [10]. However,
they do this via an indirect method, using a generalization of the Legendre transform, and
the result is an algorithm for computing the Betti numbers rather than a closed formula for
them. The approach taken here is more straightforward and sheds more light on the geometry
involved. Finally, Mustata and Mustata extended their results for one-pointed spaces to supply
presentations for the Chow rings of all spaces M0,n(Pr, d) in [18]. Again, the methods of the
present paper are simpler, and the presentation obtained in the sequel is more explicit.

1.1 Conventions and preliminary comments

We will work over the field C of complex numbers. Let n = N ∩ [1, n] be the initial segment
consisting of the first n natural numbers.

The moduli stack Mg,n(Pr, d) captures all the data of the moduli problem for stable maps,
while the moduli scheme Mg,n(Pr, d) loses some information, including that of automorphisms
of families. Since retaining all of this data leads to a more beautiful, powerful, and complete
theory, we will work with the stack incarnations of the moduli spaces rather than the coarse
moduli schemes.

Let H∗(F ) denote the rational de Rham cohomology ring of a Deligne–Mumford stack F .

Proposition 1 (Homology isomorphism). Let X be a flag variety. Then there is a canonical
ring isomorphism

A∗(M0,n(X,β)) → H∗(M0,n(X,β)). (1)

See [19] for a proof. Following [11], we call any scheme or stack Y an HI scheme or HI
stack if the canonical map A∗(Y ) → H∗(Y ) is an isomorphism. In particular, by Proposition 1
Y = M0,n(Pr, d) is an HI stack since Pr is a flag variety. This allows us to switch freely between
cohomology and Chow rings. We should note that the isomorphism doubles degrees. The degree
of a k-cycle in Ak(M0,n(X,β)), called the algebraic degree, is half the degree of its image in
H2k(M0,n(X,β)).

2 The Betti numbers of M0,2(Pr, 2)

2.1 Serre polynomials and the Poincaré polynomial of M0,2(Pr, 2)

This section owes much to Getzler and Pandharipande, who provide the framework for computing
the Betti numbers of all the spaces M0,n(Pr, d) in [9]. However, we will take the definitions
and basic results from other sources, and prove their theorem in the special case that we need.
We will compute a formula for the Poincaré polynomials of the moduli spaces M0,2(Pr, 2) using
what are called Serre polynomials in [9] and Serre characteristics in [10]. (These polynomials are
also known as virtual Poincaré polynomials or E-polynomials.) Serre polynomials are defined
for varieties over C via the mixed Hodge theory of Deligne ([6]). Serre conjectured the existence
of polynomials satisfying the key properties given below. A formula was later given by Danilov
and Khovanskĭı in [5]. If (V, F,W ) is a mixed Hodge structure over C, set

V p,q = F p grW
p+q V ∩ F̄ q grW

p+q V

and let X (V ) be the Euler characteristic of V as a graded vector space. Then

Serre(X) =
∞∑

p,q=0

upvqX (H•
c (X,C)p,q).
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If X is a smooth projective variety, then the Serre polynomial of X is just its Hodge polynomial:

Serre(X) =
∞∑

p,q=0

(−u)p(−v)q dimHp,q(X,C).

If X further satisfies Hp,q(X,C) = 0 for p 6= q, then we can substitute a new variable q = uv
for u and v. In this case, the coefficients of the Serre polynomial of X give its Betti numbers,
so that Serre(X) is the Poincaré polynomial of X.

We will use two additional key properties of Serre polynomials. The first gives a compatibility
with decomposition: If Z is a closed subvariety of X, then Serre(X) = Serre(X\Z) + Serre(Z).
Second, it respects products: Serre(X×Y ) = Serre(X) Serre(Y ). (The latter is actually a conse-
quence of the previous properties.) It follows from these two properties that the Serre polynomial
of a fiber space is the product of the Serre polynomials of the base and the fiber. The definition
and properties above come from [8]. We also use the following consequence of the Eilenberg–
Moore spectral sequence, which is essentially Corollary 4.4 in [22].

Proposition 2. Let Y → B be a fiber space with B simply connected, and let X → B be
continuous. If H∗(Y ) is a free H∗(B)-module, then

H∗(X ×B Y ) ' H∗(X)⊗H∗(B) H
∗(Y )

as an algebra.

Since we deal exclusively with cases where the isomorphism (1) holds, there is never any
torsion in the cohomology. Thus we have the following.

Corollary 1. Let X and Y be varieties over a simply connected base B, and suppose either X
or Y is locally trivial over B. Then

Serre(X ×B Y ) =
Serre(X) Serre(Y )

Serre(B)
.

We will sometimes use the notation Y/B for the fiber of a fiber space Y → B.
To extend this setup to Deligne–Mumford stacks, where automorphism groups can be non-

trivial (but still finite), equivariant Serre polynomials are needed. Let G be a finite group acting
on a variety X. The idea is this: The action of G on X induces an action on its cohomology
(preserving the mixed Hodge structure), which in turn gives a representation of G on each
(bi)graded piece of the cohomology. The cohomology of the quotient variety X/G, and hence
of the quotient stack [X/G], is the part of the cohomology of X which is fixed by the G-action,
i.e., in each degree the subspace on which the representation is trivial.

Our definition comes from [8]. The equivariant Serre polynomial Serre(X,G) of X is given
by the formula

Serreg(X) =
∞∑

p,q=0

upvq
∑

i

(−1)i Tr(g|(H i
c(X,C))p,q).

for each element g ∈ G. We can also describe the equivariant Serre polynomial more compactly
with the formula

Serre(X,G) =
∞∑

p,q=0

upvq
∑

i

(−1)i[H i
c(X,C)p,q],

taken from [9]. In the case G = Sn, we write Serren(X) for Serre(X,Sn). A G-equivariant
Serre polynomial takes values in R(G)[u, v], where R(G) is the virtual representation ring of
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G. The augmentation morphism ε : R(G) → Z, which extracts the coefficient of the trivial
representation 11 from an element of R(G), extends to an augmentation morphism R(G)[u, v] →
Z[u, v]. If G acts on a quasi-projective variety X, the Serre polynomial of the quotient stack
[X/G] is the augmentation of the equivariant Serre polynomial of X.

Every virtual representation ring R(G) has the extra structure of a λ-ring. See [12] for the
definitions and basic properties of λ-rings and pre-λ-rings. Here we just briefly state the most
relevant facts.

Let V be a G-module. Then λi(V ) is the i’th exterior power ΛiV of V , where we define g ∈ G
to act by g(v1 ∧ · · · ∧ vi) = gv1 ∧ · · · ∧ gvi. Define λ0(V ) to be the trivial one-dimensional repre-
sentation. (One can similarly define a G-module structure on the i’th symmetric power SiV .)
Knutson proves in [12, Chapter II] that these exterior power operations give R(G) the structure
of a λ-ring for any finite group G. Addition is given by [V ] + [W ] = [V ⊕W ], and the product
is [V ] · [W ] = [V ⊗W ], both with the naturally induced actions.

Knutson also shows that Z is a λ-ring with λ-operations given via λt(m) = (1+ t)m, where by

definition λt(m) =
∑
λi(m)ti. For m,n ≥ 0, this gives λn(m) =

(
m

n

)
. Finally, he shows that if

R is a λ-ring, then there is a unique structure of λ-ring on R[x] under which λk(rXn) = λk(r)Xnk

for n, k ∈ N∪{0} and r ∈ R. This gives a λ-ring structure on Z[q]. The augmentation morphism
ε : R(G) → Z is a map of λ-rings; it commutes with the λ-operations.

We will use the following facts about Serre polynomials and equivariant Serre polynomials.
For n ∈ N, let [n] = qn−1

q−1 . Then [n + 1] is the Serre polynomial of Pn, as is clear from the
presentation for its Chow ring. Getzler and Pandharipande prove that the Serre polynomial of
the Grassmannian G(k, n) of k-planes in Cn is the q-binomial coefficient[

n

k

]
=

[n]!
[k]![n− k]!

,

where [n]! = [n][n− 1] · · · [2][1]. We will prove this formula in the special case k = 2.

Lemma 1. The Serre polynomial of G(2, n) is
[
n
2

]
.

Proof. We can work with the Grassmannian G(1, n − 1) of lines in Pn−1 since G(2, n) '
G(1, n − 1). The universal P1-bundle over G(1, n − 1) is isomorphic to F(0, 1;n − 1), the flag
variety of pairs (p, `) of a point p and a line ` in Pn−1 with p ∈ `. On the other hand, there is
a projection F(0, 1;n−1) → Pn−1 taking (p, `) to p. Its fiber over a point p is {` | p ∈ `}, which is
isomorphic to Pn−2. (To see this isomorphism, fix a hyperplane H ⊂ Pn−1 not containing p and
map each line to its intersection with H.) It follows that Serre(F(0, 1;n− 1)) = [n][n− 1]. Since
Serre(F(0, 1;n−1)) = Serre(G(1, n−1))[2] also, we are able to conclude that Serre(G(1, n−1)) =
[n][n− 1]/[2]. �

Next, since PGL(2) is the complement of a quadric surface in P3, Serre(PGL(2)) = [4]−[2]2 =
q3 − q.

In addition to the λ-operations, every λ-ring R has σ-operations as well. These can be
defined in terms of the λ-operations by σk(x) = (−1)kλk(−x). Routine checking shows that
the σ-operations also give R the structure of a pre-λ-ring. Here we simply note the following
formulas for the λ-ring Z[q]

σk([n]) =
[
n+ k − 1

k

]
and λk([n]) = q(

k
2)
[
n

k

]
.

Proofs of these formulas can be found in [16, Section I.2]. Next we explain why these formulas
are relevant. Let ε be the sign representation of Sn. Note the identity ε2 = 11. We will prove
the following claim from [9].
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Lemma 2. If X is a smooth variety and S2 acts on X2 by switching the factors, then

Serre2(X2) = σ2(Serre(X))11 + λ2(Serre(X))ε.

Proof. Let V be a vector space. Now V ⊗ V = S2V ⊕ Λ2V as S2-modules, with S2 acting
by switching the factors of V ⊗ V , trivially on S2V , and by sign on Λ2V . If 0 is the zero
representation, certainly λi(0) = 0 for i > 0. We use this fact and the properties of λ-rings to
obtain

0 = λ2([V ]− [V ]) = 11 · λ2(−[V ]) + [V ] · (−[V ]) + λ2[V ] · 11
= λ2(−[V ])− [S2V ]− [Λ2V ] + λ2[V ].

Since σ2[V ] = λ2(−[V ]), this implies σ2[V ] = [S2V ]. Since X is smooth, H∗(X2) = H∗(X)⊗
H∗(X), with the action of S2 switching the factors. Applying the above with V = H∗(X)
gives [H∗(X2)] = σ2[H∗(X)] + λ2[H∗(X)]. Breaking this down by (cohomological) degree,
we have [H i(X2)]qi = [σ2[H∗(X)]]iqi + [λ2[H∗(X)]]iqi. We need to show that [H i(X2)]qi =
[σ2(Serre(X))]i11 + [λ2(Serre(X))]iε. We will show the equality of the first summands of each
expression; showing equality of the terms involving λ2 is easier. First, by induction the iden-
tity λ2(−m) = λ2(m + 1) holds. Second, note that any pre-λ-operation λ2 acts on sums by
λ2(
∑

i xi) =
∑

i λ2(xi)+
∑

i<j xixj . Third, note that vector spaces in the following computation
live in the graded algebra H∗(X) ⊗ H∗(X), and we will apply the usual rules for grading in
a tensor product. Finally, all of the representations below are trivial. We find

[σ2[H∗(X)]]iqi =

σ2

∑
j

Hj(X)


i

qi =

∑
j

[S2Hj(X)] +
∑
j<k

[Hj(X)⊗Hk(X)]


i

qi

=



(
[S2H i/2(X)] +

∑
j+k=i
j<k

[Hj(X)⊗Hk(X)]

)
qi if i is even,

( ∑
j+k=i
j<k

[Hj(X)⊗Hk(X)]

)
qi if i is odd,

=



((
hi/2(X) + 1

2

)
11 +

∑
j+k=i
j<k

hj(X)hk(X)11

)
qi if i is even,

( ∑
j+k=i
j<k

hj(X)hk(X)11

)
qi if i is odd.

On the other hand,

[σ2(Serre(X))]i11 = [λ2(−
∑

hj(X)qj)]i11

=

∑λ2(−hj(X))q2j +
∑
j<k

hj(X)hk(X)qj+k


i

11

=



((
hi/2(X) + 1

2

)
qi +

∑
j+k=i
j<k

hj(X)hk(X)qi

)
11 if i is even,

( ∑
j+k=i
j<k

hj(X)hk(X)qi

)
11 if i is odd.

�
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As a corollary, the ordinary Serre polynomial of [X2/S2] is σ2(Serre(X)).
The following proposition gives a key fact used in our computations. Notice that it refers

to the locus M0,0(Pr, d)) of stable maps with smooth domain curve, which is a proper (dense)
subset of the compactified moduli space M0,0(Pr, d).

Proposition 3. If d > 0, Serre(M0,0(Pr, d)) = q(d−1)(r+1)
[
r+1
2

]
.

This follows from Pandharipande’s proof in [21] that the Chow ring of the nonlinear Grass-
mannian MPk(Pr, d) is isomorphic to the Chow ring of the ordinary Grassmannian G(k, r). If
k = 1, the nonlinear Grassmannian is M0,0(Pr, d). (The Serre polynomial grades by dimension
rather than codimension. This is why the shifting factor q(d−1)(r+1) appears.)

Recall that M0,n(Pr, 0) ' M0,n × Pr, so that the Serre polynomials of these spaces are easy
to compute.

Finally, let F (X,n) be the configuration space of n distinct labeled points in a nonsingular
variety X. Fulton and MacPherson show in [7] that

Serre(F (X,n)) =
n−1∏
i=0

(Serre(X)− i).

In order to compute the Serre polynomial of a moduli space of stable maps, we can stratify
it according to the degeneration types of the maps and compute the Serre polynomial of each
stratum separately. The degeneration types of maps in M0,n(Pr, d) are in 1–1 correspondence
with stable (n, d)-trees via taking the dual graph of a stable map. These concepts were defined
and developed by Behrend and Manin in [1].

We are now ready to compute the Poincaré polynomials of some moduli spaces of stable
maps.

Proposition 4. The Poincaré polynomial of M0,2(Pr, 2) is

Serre(M0,2(Pr, 2)) =

(
r∑

i=0

qi

)(
r−1∑
i=0

qi

)(
r+2∑
i=0

qi + 2
r+1∑
i=1

qi + 2
r∑

i=2

qi

)
, (2)

and the Euler characteristic of M0,2(Pr, 2) is r(r + 1)(5r + 3).

Proof. We begin by stratifying M0,2(Pr, 2) according to the degeneration type of the stable
maps. Since the strata are locally closed, the compatibility of Serre polynomials with decom-
position allows us to compute the Serre polynomial of each stratum separately and add up the
results to obtain Serre(M0,2(Pr, 2)).

Each stratum is isomorphic to a finite group quotient of a fiber product of moduli spaces
of stable maps from smooth domain curves via the following procedure. Given a stable map
(C, x1, x2, f), consider the normalization of C. It consists of a disjoint union of smooth curves Ci

corresponding to the components of C, and there are maps fi from each curve to Pr naturally
induced by f . Furthermore, auxiliary marked points are added to retain data about the node
locations. The result is a collection of stable maps with smooth domain curves, one for each com-
ponent of C. The evaluations of auxiliary marked points corresponding to the same node must
agree. This gives rise to a fiber product of moduli spaces type M0,n(Pr, d), together with a mor-
phism onto the stratum coming from the normalization map. There can be automorphisms of the
stable maps in the stratum that are not accounted for by the fiber product. These occur when
there is a collection of connected unions Ui of components that satisfy the following conditions:

(1) none of the Ui contain any marked points;

(2) restrictions of f to Ui and Uj give isomorphic maps for all i and j.
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These automorphisms correspond exactly to the automorphisms of the dual graph Γ of the
stratum. Proving the assertion that Aut(Γ) is the right group to quotient by appears quite
complicated in general, but we can see it directly for the strata of M0,2(Pr, 2). When stratified
according to the dual graphs of stable maps, M0,2(Pr, 2) has 9 types of strata. The corresponding
dual graphs are shown below.

All the stratum types are listed, and the assertion clearly holds in each case. So we can
compute the Serre polynomials of the strata using Corollary 1 and Proposition 3.

There are actually 10 strata, because there are two strata of type 6 depending on which
marked point is identified with which tail on the graph. We use the same numbers to label
the strata as those labeling the corresponding graphs above. Eight of the strata have no auto-
morphisms, so we can directly compute ordinary Serre polynomials in these cases. The strata
corresponding to Graphs 7 and 8 have automorphism group S2. Calculating the S2-equivariant
Serre polynomials of these strata is necessary as an intermediate step. We now compute the
Serre polynomials of the strata.

Stratum 1 is M0,2(Pr, 2). It is an F (P1, 2)-bundle over M0,0(Pr, 2). Thus Stratum 1 has
Serre polynomial

Serre(F (P1, 2)) Serre(M0,0(Pr, 2)) = (q2 + q)qr+1 [r + 1][r]
[2]

= qr+2[r + 1][r].

Stratum 2 is isomorphic to the fiber product

M0,1(Pr, 2)×Pr M0,3(Pr, 0).

Now M0,3(Pr, 0) ' Pr, so the Serre polynomial of this stratum is just

Serre(M0,1(Pr, 2)) = Serre(P1) Serre(M0,0(Pr, 2)) = qr+1[r + 1][r]

since M0,1(Pr, 2) is a P1-bundle over M0,0(Pr, 2).
Stratum 3 is isomorphic to the fiber product

M0,3(Pr, 1)×Pr M0,1(Pr, 1).

The F (P1, 3)-bundle M0,3(Pr, 1) over M0,0(Pr, 1) has Serre polynomial (q3− q)
[
r+1
2

]
. Similarly,

Serre(M0,1(Pr, 1)) = (q + 1)
[
r+1
2

]
= [r + 1][r]. Thus Stratum 3 has Serre polynomial

(q3 − q)
[
r+1
2

]
[r + 1][r]

[r + 1]
= (q2 − q)[r + 1][r]2.
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Stratum 4 is isomorphic to the fiber product

M0,2(Pr, 1)×Pr M0,2(Pr, 1).

The F (P1, 2)-bundle M0,2(Pr, 1) over M0,0(Pr, 1) has Serre polynomial (q2 + q)
[
r+1
2

]
. Thus

Stratum 4 has Serre polynomial

(q2 + q)2[r + 1]2[r]2

[r + 1][2]2
= q2[r + 1][r]2.

Stratum 5 is isomorphic to the fiber product

M0,3(Pr, 0)×Pr M0,2(Pr, 1)×Pr M0,1(Pr, 1),

and this in turn is isomorphic to M0,2(Pr, 1)×PrM0,1(Pr, 1). So Stratum 5 has Serre polynomial

(q2 + q)
[
r+1
2

]
(q + 1)

[
r+1
2

]
[r + 1]

= q[r + 1][r]2.

A stratum of type 6 is isomorphic to the fiber product

M0,2(Pr, 1)×Pr M0,3(Pr, 0)×Pr M0,1(Pr, 1).

This is isomorphic toM0,2(Pr, 1)×PrM0,1(Pr, 1), so each stratum of type 6 has Serre polynomial

(q2 + q)
[
r+1
2

]
(q + 1)

[
r+1
2

]
[r + 1]

= q[r + 1][r]2.

Thus the total contribution from strata of type 6 is

2q[r + 1][r]2.

Stratum 9 is isomorphic to the fiber product

M0,1(Pr, 1)×Pr M0,3(Pr, 0)×Pr M0,3(Pr, 0)×Pr M0,1(Pr, 1).

It has Serre polynomial

(q + 1)2
[
r+1
2

]2
[r + 1]

= [r + 1][r]2.

We now turn our attention to the two strata with automorphisms. Stratum 8 is isomorphic
to the quotient of

X = M0,3(Pr, 0)×Pr M0,3(Pr, 0)×(Pr)2 M0,1(Pr, 1)2

by the action of S2. The first copy of M0,3(Pr, 0) is superfluous. The action of S2 on the
cohomology of the second copy of M0,3(Pr, 0) is trivial. The action switches the two factors of
M0,1(Pr, 1) as well as the two factors in Pr × Pr. Since M0,1(Pr, 1) is a fiber space over Pr, we
can use Lemma 2 and Corollary 1 in computing the equivariant Serre polynomial of X to be

Serre2(M0,3(Pr, 0)) Serre2((M0,1(Pr, 1)/Pr)2)

= [r + 1]
(
σ2

(
Serre(M0,1(Pr, 1))

Serre(Pr)

)
11 + λ2

(
Serre(M0,1(Pr, 1))

Serre(Pr)

)
ε

)
= [r + 1](σ2([r])11 + λ2([r])ε)
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= [r + 1]
([
r + 1

2

]
11 + q

[
r

2

]
ε

)
.

(As in the proof of Lemma 1, the fiberM0,1(Pr, 1)/Pr is isomorphic to Pr−1.) Now augmentation
gives

[r + 1]2[r]
[2]

as the Serre polynomial of Stratum 8.
Stratum 7 is isomorphic to the quotient of

Y = M0,1(Pr, 1)2 ×(Pr)2 M0,4(Pr, 0)

by the action of S2, which again switches the squared factors. In addition, it switches two of
the four marked points in M0,4(Pr, 0). Now M0,4(Pr, 0) ' M0,4 × Pr, and S2 acts trivially on
the Pr factor. Furthermore, M0,4 ' P1 \ {0, 1,∞} has Serre polynomial q − 2. But we need
to know Serre2(M0,4) under an S2-action switching two of the deleted points. It is not hard to
imagine that Serre2(M0,4) = (q − 1)11− ε, but this takes some work to prove. Considering M0,4

as the parameter space of four distinct points in P1 modulo automorphisms of P1, we obtain
M0,4 ' F (P1, 4)/PGL(2). Now PGL(2) acts freely on F (P1, 4). As a result,

Serre2(M0,4) =
Serre2(F (P1, 4))
Serre2(PGL(2))

. (3)

Since the cohomology of PGL(2) is not affected by the action,

Serre2(PGL(2)) = Serre(PGL(2)) = q3 − q. (4)

We can stratify (P1)4 into fifteen cells whose closures are respectively (P1)4, the six large
diagonals, the seven “medium diagonals” where two coordinate identifications are made, and
the small diagonal, so that F (P1, 4) is the complement of the union of all the cells corresponding
to diagonals. We examine how the action affects cells of each type, subtracting the polynomials
for cells that are removed. For concreteness, suppose the first two marked points are switched.
Then two Chow classes in A∗((P1)4) are switched if and only if their difference is a multiple of
H2 −H1 (where Hi is the standard Chow generator of A∗((P1)4) obtained by pulling back the
hyperplane class of P1 under the i’th projection), so it is not hard to get

Serre2((P1)4) = (q4 + 3q3 + 4q2 + 3q + 1)11 + (q3 + 2q2 + q)ε.

How does the action affect the diagonals removed from (P1)4? Exactly two pairs, (∆13,∆23)
and (∆14,∆24), of the six large diagonals are switched, so the corresponding cells contribute

(−4q3 + 4q)11 + (−2q3 + 2q)ε

to the equivariant Serre polynomial, since these diagonals have been removed. Exactly two
pairs, (∆134,∆234) and (∆(13)(24),∆(14)(23)), among the seven diagonals with two identifications
are switched as well. The corresponding cells contribute

(−5q2 − 5q)11 + (−2q2 − 2q)ε

to the equivariant Serre polynomial. The small diagonal is not affected by the action, so it
contributes

(−q − 1)11.
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Putting these together gives

Serre2(F (P1, 4)) = (q4 − q3 − q2 + q)11 + (−q3 + q)ε.

Then by (3) and (4), we have the desired result Serre2(M0,4) = (q − 1)11− ε. Using Corollary 1
again, we thus calculate the equivariant Serre polynomial of Y to be

Serre2(M0,4(Pr, 0)) Serre2((M0,1(Pr, 1)/Pr)2)

= [r + 1]((q − 1)11− ε)
([
r + 1

2

]
11 + q

[
r

2

]
ε

)
= [r + 1]

((
(q − 1)

[
r + 1

2

]
− q

[
r

2

])
11 +

(
(q2 − q)

[
r

2

]
−
[
r + 1

2

]))
ε.

Augmentation gives

[r + 1]
(

(q − 1)
[
r + 1

2

]
− q

[
r

2

])
=

[r + 1][r]
[2]

((q − 1)[r + 1]− q[r − 1])

=
[r + 1][r]

[2]
(qr+1 + qr)− [r + 1]2[r]

[2]
= [r + 1][r]qr − [r + 1]2[r]

[2]

as the Serre polynomial of Stratum 7.
To get the Serre polynomial for the whole moduli space, we add together the contributions

from all the strata

Serre(M0,2(Pr, 2))

= qr+2[r + 1][r] + qr+1[r + 1][r] + (q2 − q)[r + 1][r]2 + q2[r + 1][r]2 + q[r + 1][r]2

+ 2q[r + 1][r]2 + [r + 1][r]2 +
[r + 1]2[r]

[2]
+ [r + 1][r]qr − [r + 1]2[r]

[2]
= [r + 1][r](qr+2 + qr+1 + (q2 − q)[r] + q2[r] + 3q[r] + [r] + qr)

= [r + 1][r](qr+2 + qr+1 + qr + [r](2q2 + 2q + 1))

= [r + 1][r]

(
qr+2 + qr+1 + qr + 2

r+1∑
i=2

qi + 2
r∑

i=1

qi +
r−1∑
i=0

qi

)

=

(
r∑

i=0

qi

)(
r−1∑
i=0

qi

)(
r+2∑
i=0

qi + 2
r+1∑
i=1

qi + 2
r∑

i=2

qi

)
.

Evaluating this sum at q = 1 gives the Euler characteristic (r + 1)r(5r + 3). �

2.2 Formulas for the Betti numbers of M0,2(Pr, 2)

Let αi denote the i’th Betti number of the flag variety F(0, 1; r) of point-line pairs in Pr such that
the point lies on the line. Recall from the proof of Lemma 1 that Serre(F(0, 1; r)) = [r + 1][r].
The product [r+1][r] also appears as a factor in the Serre polynomial (2) of M0,2(Pr, 2), making
its coefficients especially relevant to our computations. It is easy to see that the Betti numbers
of F(0, 1; r) initially follow the pattern (1, 2, 3, . . . ), so that for the first half of the Betti numbers
we have αi = i+ 1. Since dim F(0, 1; r) = 2r− 1 is always odd, it always has an even number of
Betti numbers. By Poincaré duality, it follows that the middle two Betti numbers are both r,
and the Betti numbers then decrease back to 1. It can be checked that all the Betti numbers
are given by the formula

αi = r +
1
2
−
∣∣∣∣r − 1

2
− i

∣∣∣∣
for i ∈ 0 ∪ 2r − 1, and αi = 0 otherwise.
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Let βj be the j’th Betti number of M0,2(Pr, 2). By distributing over the rightmost set
of parentheses in Equation 2, we can reduce the computation of βj to finding coefficients of
expressions of the form [r+1][r][m], where m ∈ {r− 1, r+1, r+3}. But these can be expressed
in terms of the αi, and in this way we get the following formulas for the Betti numbers of
M0,2(Pr, 2):

βj =



j∑
i=0

αi + 2
j−1∑
i=0

αi + 2
j−2∑
i=0

αi if j ≤ r,

r+1∑
i=0

αi + 2
r∑

i=0

αi + 2
r−1∑
i=1

αi if j = r + 1,

j∑
i=j−r−2

αi + 2
j−1∑

i=j−r−1

αi + 2
j−2∑

i=j−r

αi if r + 2 ≤ j ≤ 2r − 1,

2r−1∑
i=r−2

αi + 2
2r−1∑
i=r−1

αi + 2
2r−2∑
i=r

αi if j = 2r,

2r−1∑
i=j−r−2

αi + 2
2r−1∑

i=j−r−1

αi + 2
2r−1∑
i=j−r

αi if 2r + 1 ≤ j ≤ 3r + 1.

We can come up with an especially explicit description of βj for j < r since we know αi = i+1
for i < r. Also, αr = r, which gives the second part below.

Corollary 2. 1. For j < r, the j’th Betti number of M0,2(Pr, 2) is

βj =
5
2
j2 +

3
2
j + 1.

2. Furthermore

βr =
5
2
r2 +

3
2
r.

As a consequence of this, a particular Betti number of M0,2(Pr, 2) stabilizes as r becomes
large.

Corollary 3. For all r > j, the j’th Betti number of M0,2(Pr, 2) is βj = 5
2j

2 + 3
2j + 1.

Let β̄j be this limiting value. We have

β̄0 = 1, β̄1 = 5, β̄2 = 14, β̄3 = 28, β̄4 = 47, β̄5 = 71, . . . .

2.3 Poincaré polynomials of M0,1(Pr, 2) and M0,2(Pr, 2) for small r

Using the same procedure as above, one can easily compute the Poincaré polynomial ofM0,1(Pr, 2),
which is also needed in the sequel [4].

Proposition 5. If r is even, the Poincaré polynomial of M0,1(Pr, 2) is

Serre(M0,1(Pr, 2)) =

(
r∑

i=0

qi

)(r−2)/2∑
i=0

q2i

(r+2∑
i=0

qi +
r+1∑
i=1

qi +
r∑

i=2

qi

)
,

and if r is odd, the Poincaré polynomial of M0,1(Pr, 2) is

Serre(M0,1(Pr, 2)) =

(
r−1∑
i=0

qi

)(r−1)/2∑
i=0

q2i

(r+2∑
i=0

qi +
r+1∑
i=1

qi +
r∑

i=2

qi

)
.

Thus, for small values of r, we get the explicit Poincaré polynomials listed in Tables 1 and 2.
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Table 1. Euler characteristics and Poincaré polynomials for X = M0,1(Pr, 2).
r χ(X) Serre(X)
1 6 1 + 2q + 2q2 + q3

2 27 1 + 3q + 6q2 + 7q3 + 6q4 + 3q5 + q6

3 72 1 + 3q + 7q2 + 11q3 + 14q4 + 14q5 + 11q6 + 7q7 + 3q8 + q9

4 150 1 + 3q + 7q2 + 12q3 + 18q4 + 22q5 + 24q6

+22q7 + 18q8 + 12q9 + 7q10 + 3q11 + q12

5 270 1 + 3q + 7q2 + 12q3 + 19q4 + 26q5 + 32q6 + 35q7

+35q8 + 32q9 + 26q10 + 19q11 + 12q12 + 7q13 + 3q14 + q15

6 441 1 + 3q + 7q2 + 12q3 + 19q4 + 27q5 + 36q6 + 43q7 + 48q8 + 49q9

+48q10 + 43q11 + 36q12 + 27q13 + 19q14 + 12q15 + 7q16 + 3q17 + q18

7 672 1 + 3q + 7q2 + 12q3 + 19q4 + 27q5 + 37q6 + 47q7

+56q8 + 62q9 + 65q10 + 65q11 + 62q12 + 56q13 + 47q14

+37q15 + 27q16 + 19q17 + 12q18 + 7q19 + 3q20 + q21

Table 2. Euler characteristics and Poincaré polynomials for Y = M0,2(Pr, 2).
r χ(Y ) Serre(Y )
1 16 1 + 4q + 6q2 + 4q3 + q4

2 78 1 + 5q + 13q2 + 20q3 + 20q4 + 13q5 + 5q6 + q7

3 216 1 + 5q + 14q2 + 27q3 + 39q4 + 44q5 + 39q6 + 27q7 + 14q8 + 5q9 + q10

4 460 1 + 5q + 14q2 + 28q3 + 46q4 + 63q5 + 73q6 + 73q7

+63q8 + 46q9 + 28q10 + 14q11 + 5q12 + q13

5 840 1 + 5q + 14q2 + 28q3 + 47q4 + 70q5 + 92q6 + 107q7 + 112q8

+107q9 + 92q10 + 70q11 + 47q12 + 28q13 + 14q14 + 5q15 + q16

6 1386 1 + 5q + 14q2 + 28q3 + 47q4 + 71q5 + 99q6 + 126q7

+146q8 + 156q9 + 156q10 + 146q11 + 126q12 + 99q13

+71q14 + 47q15 + 28q16 + 14q17 + 5q18 + q19

7 2128 1 + 5q + 14q2 + 28q3 + 47q4 + 71q5 + 100q6 + 133q7 + 165q8

+190q9 + 205q10 + 210q11 + 205q12 + 190q13 + 165q14 + 133q15

+100q16 + 71q17 + 47q18 + 28q19 + 14q20 + 5q21 + q22

3 An additive basis for M0,2(Pr, 2)

A presentation for the Chow rings A∗(M0,0(Pr, d)) is described in [21] (see also [2]). Naturally
then, an additive basis for these rings is readily available. In this section, we describe an additive
basis for A∗(M0,2(Pr, 2)) in terms of the additive bases for A∗(M0,0(Pr, 1)) and A∗(M0,0(Pr, 2))
using a decomposition of M0,2(Pr, 2) and excision. (Note that an additive basis has now been
more explicitly described in [18].)

Let X be the locus in M0,2(Pr, 2) where the curve has two degree one components (with
degree zero components also allowed). It is a divisor, and its complement is the open locus U
where the curve has a degree two component. In the notation of Section 2, U is the union of
Strata 1 and 2.

Note that U is a P1×P1-bundle overM0,0(Pr, 2). LetH1 andH2 be the two hyperplane divisor
classes in P1×P1. Then any class in Ak(U) can be expressed in the form α+β1H1+β2H2+γH1H2,
where α ∈ Ak(M0,0(Pr, 2)), βi ∈ Ak−1(M0,0(Pr, 2)), and γ ∈ Ak−2(M0,0(Pr, 2)). Thus we can
write

Ak(U) ' Ak(M0,0(Pr, 2))⊕Ak−1(M0,0(Pr, 2))⊕Ak−1(M0,0(Pr, 2))⊕Ak−2(M0,0(Pr, 2)).
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Consider the exact sequence

Ak−1(X) −→ Ak(M0,2(Pr, 2)) −→ Ak(U) −→ 0.

This says Ak(M0,2(Pr, 2)) is the direct sum of Ak(U) and the image of Ak−1(X). We have
reduced to studying the latter. Let Y be the sublocus of X where there are no marked points on
the degree one components. Then Y is a divisor in X, and we can consider the exact sequence

Ak−2(Y ) −→ Ak−1(X) −→ Ak−1(V ) −→ 0,

where V = X−Y . We can further decompose V into V1
∐
V2, where V2 contains the locus where

each degree one component has a marked point. In V2 we also allow the second marked point to
approach the node. In the notation of Section 2, V2 is the union of Stratum 4 and one of the strata
of type 6. Thus V2 is a P1×A1-bundle over the boundary divisor D 'M0,1(Pr, 1)×PrM0,1(Pr, 1)
in M0,0(Pr, 2). Since the fiber product is a Pr−1-bundle over M0,1(Pr, 1), and M0,1(Pr, 1) is
a P1-bundle over M0,0(Pr, 1) ' M0,0(Pr, 1), we find overall that D is a Pr−1 × P1-bundle over
M0,0(Pr, 1). Similarly, V1, which is the union of Stratum 3, Stratum 5, and the other stratum of
type 6, is also a P1 ×A1-bundle over D, and thus a Pr−1 × (P1)2 ×A1-bundle over M0,0(Pr, 1).
We have

Ak−1(V2) ' Ak−1(V1) ' ⊕r−1
i=0

(
Ak−i−1(M0,0(Pr, 1))⊕Ak−i−2(M0,0(Pr, 1))

⊕Ak−i−2(M0,0(Pr, 1))⊕Ak−i−3(M0,0(Pr, 1))
)
.

Finally, Y is the union of Strata 7, 8, and 9, and is a P1-bundle over the codimension two
boundary stratum Z in M0,1(Pr, 2). (This is the boundary locus where the domain curves have
three components.) Now Z is isomorphic to the S2-quotient of M0,1(Pr, 1)2 ×(Pr)2 M0,3(Pr, 0)
that arises by switching the factors in the squares. This fiber product is isomorphic to a (Pr−1)2-
bundle over Pr. So

Ak−2(Y ) '
(
⊕r−1

i=0 ⊕
r−1
j=0 A

k−i−j−2(Pr)
)S2

⊕
(
⊕r−1

i=0 ⊕
r−1
j=0 A

k−i−j−3(Pr)
)S2

.

Putting all this together, we attain an additive basis for A∗(M0,2(Pr, 2)). It is given in
degree k by

Ak(M0,2(Pr, 2)) ' Ak(M0,0(Pr, 2))⊕Ak−1(M0,0(Pr, 2))

⊕Ak−1(M0,0(Pr, 2))⊕Ak−2(M0,0(Pr, 2))

⊕⊕r−1
i=0

(
Ak−i−1(M0,0(Pr, 1))⊕Ak−i−2(M0,0(Pr, 1))

⊕Ak−i−2(M0,0(Pr, 1))⊕Ak−i−3(M0,0(Pr, 1))
)

⊕⊕r−1
i=0

(
Ak−i−1(M0,0(Pr, 1))⊕Ak−i−2(M0,0(Pr, 1))

⊕Ak−i−2 (M0,0(Pr, 1))⊕Ak−i−3(M0,0(Pr, 1))
)

⊕
(
⊕r−1

i=0 ⊕
r−1
j=0 A

k−i−j−2(Pr)
)S2

⊕
(
⊕r−1

i=0 ⊕
r−1
j=0 A

k−i−j−3(Pr)
)S2

.

Of course, this is only a generating set a priori, but by comparing with the Betti numbers
we can see that the generators are independent. In other words, we need only verify that the
expression above gives the same Serre polynomial for A∗(M0,2(Pr, 2)) as found in Section 2.
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Keeping in mind that the Serre polynomial grades by dimension rather than codimension, and
using the notation of Section 2, from the decomposition above we obtain

(q + 1)2qr+1

[
r + 1

2

]
+ 2

r−1∑
i=0

qi+1(q + 1)2
[
r + 1

2

]
+ (q + 1)[r + 1]σ2([r])

= [r + 1][r]((q + 1)qr+1 + 2q[r](q + 1) + [r + 1])

= [r + 1][r]

(
qr+2 + qr+1 + 2

r∑
i=1

qi + 2
r+1∑
i=2

qi +
r∑

i=0

qi

)

= [r + 1][r]

(
r+2∑
i=0

qi + 2
r+1∑
i=1

qi + 2
r∑

i=2

qi

)
,

in agreement with equation (2).
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