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1 Introduction

Global stability of dynamic systems is a vast domain in ordinary differential equations and it
is one of its main topics. Many works have been done in this context, we list some of them:
[3, 4, 5, 6, 7, 8]. However, little is known in the stability of high order (see [10] and [2]).
In this paper, we are concerned with the global asymptotic stability of prolongations of flows
generated by some specific vector fields and their perturbations. The method used is based on
various estimates of the flows and their prolongations. To justify the study of the dynamic of
prolongations of flows, we consider the Lie algebra χ(Rn) of vector fields on Rn endowed with
the weak topology, which is the topology of the uniform convergence of vector fields and all
their derivatives on a compact sets. The Lie bracket is a fundamental operation not only in
differential geometry but in many fields of mathematics, such as dynamic and control theory.
The invertibility of this latter is of many uses i.e. given any vector fields X, Z find a vector
field Y such that [X,Y ] = Z. In the case of vector fields X defined in a neighborhood of
a point a with X(a) 6= 0 we have a positive answer: since in this case the vector field X is
locally of the form ∂

∂x1
and the solution is given by

Y (x1, . . . , xn) =
∫ x1

−r
Z(t, x2, . . . , xn)dt,

where ‖x‖ = max
1≤i≤n

|xi| < r. In the case of singular vector fields, i.e. X(a) = 0 little is known.

Consider a singular vector field X defined in a neighborhood U of the origin 0 with X(0) = 0
and let φt be the flow generated by X. Suppose that X is complete and consider a vector field Y
defined on an open set V ⊃ φt(U) for all t ∈ R. The transportation of a vector field Y along
the flow φt is defined as

(φt)∗Y (x) = (Dφt · Y ) ◦ φ−t(x)

and the derivative with respect to t is given as follows

d

dt
(φt)∗Y = [(φt)∗X, (φt)∗Y ] .
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Put Yt = −
∫ t
0 (φs)∗Zds, then

[X,Yt] = − d

dt

∣∣
t=0

(φt)∗
∫ t

0
(φs)∗Zds = −

∫ t

0

d

ds
(φs)∗Zds = Z − (φt)∗Z.

So if (φt)∗Z converges to 0 and the integral Y = −
∫ +∞
0 (φs)∗Zds is convergent in the weak

topology, then Y is a solution of our equation.
As applications of the right invertibility of the bracket operation on germs of vector fields at

a singular point we refer the reader to the papers by the authors [1, 2] (see also [10]).

2 Generalities

First we recall some definitions on global asymptotic stability as introduced in [9]. Let ‖·‖ be
the Euclidean norm on Rn, K ⊂ Rn is a compact set and f any smooth function on Rn, we put

‖f‖K
r = sup

x∈K
max
|α|≤r

‖Dαf(x)‖ . (1)

Definition 1. A point a ∈ Rn is said globally asymptotically stable (in brief G.A.S.) of the
flow φt if

i) a is an asymptotically stable (in brief A.S.) equilibrium of the flow φt;
ii) for any compact set K ⊂ Rn and any ε > 0 there exists TK > 0 such that for any

t ≥ TK we have ‖φt (x)− a‖ ≤ ε for all x ∈ K.

Definition 2. The point a ∈ Rn is said globally asymptotically stable of order r (1 ≤ r ≤ ∞)
for the flow φt if

i) a is a G.A.S. point for the flow φt;
ii) for any compact set K ⊂ Rn and

∀ ε > 0, ∃ TK > 0 such that ∀ t ≥ TK ⇒ ‖φt − aI‖K
r ≤ ε,

where I denotes the identity map.

A vector field X will be called semi-complete if the X-flow φt = exp(tX) is defined for all
t ≥ 0.

First we quote the following proposition which characterizes the uniform asymptotic stability,
for a proof see the book of W. Hahn [5].

Let (φ)t denote a flow defined on Rn.

Proposition 1. The origin 0 in Rn is G.A.S. point for the flow φt if for any ball B(0, ρ),
centered at 0 and of radius ρ > 0, there exist t0 ≥ 0 and functions a, b such that

‖φt(x)‖ ≤ a(‖x‖)b(t) (2)

with a a continuous function on B(0, ρ) monotonously increasing such that a(0) = 0 and b is
a continuous function defined for any t ≥ t0 monotonously decreasing such that lim

t→+∞
b(t) = 0.

3 Estimates of prolongations of flows

We start with some perturbations of linear vector fields.
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3.1 Perturbation of linear vector fields

Consider the following linear vector field

X1 =
n∑

i=1

αixi
∂

∂xi
,

where the coefficients αi ∈ [a, b] ⊂ R and are not all 0.
The X1-flow, ψ1

t = exp(tX1) is then

ψ1
t (x) = xeαt =

(
x1e

α1t, . . . , xne
αnt
)

∀ t ∈ R (3)

and its estimates are given by

‖x‖ eat ≤ ‖ψ1
t (x)‖ ≤ ‖x‖ ebt. (4)

Consider now a perturbation of the vector field X1 of the form Y1 = X1 + Z1, where Z1 is
a smooth vector field globally Lipschitzian on Rn. The explicit form of the Y1-flow is then

ψ1
t (x) = xeAt +

∫ t

0
Z1

(
ψ1

s(x)
)
ds, (5)

where A =

 α1 · · · 0
...

. . .
...

0 · · · αn

.

Lemma 1. If the perturbation Z1 fulfills

‖Z1(x)‖ ≤ c0 ∀ x ∈ Rn (6)

then the vector field Y1 is complete and the Y1-flow satisfies the estimates(
‖x‖ − c0

a

)
ebt +

c0
a
≤ ‖ψ1

t (x)‖ ≤
(
‖x‖+

c0
b

)
ebt − c0

b
.

Proof. Clearly the Y1-flow ψ1
t is bounded for any t ∈ [0, T ] with T < +∞ and any x ∈ Rn.

The same is true if we replace t by −t. Then ψ1
t is complete.

Consider now the equation

1
2
d

dt

∥∥ψ1
t (x)

∥∥2 =
〈
ψ1

t (x), αψ
1
t (x) + Z1

(
ψ1

t (x)
)〉
. (7)

Letting y = ‖ψ1
t (x)‖, we deduce

ay2 − c0y ≤
1
2
d

dt
y2 ≤ by2 + c0y, y(0) = ‖x‖

and by integrating we obtain(
‖x‖ − c0

a

)
ebt +

c0
a
≤ y ≤

(
‖x‖+

c0
b

)
ebt − c0

b
. �

Let B(0, 1) be the open unit ball centered at the origin 0.
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Lemma 2. If the perturbation Z1 fulfills the estimates

‖Z1(x)‖ ≤ c′0 ‖x‖
1+m ∀ x ∈ B (0, 1) and any integer m ≥ 1,

‖Z1(x)‖ ≤ c′′0 ‖x‖ for every x ∈ Rn \B (0, 1) , (8)

then Y1 is complete and the Y1-flow fulfills the following estimates for ant t ≥ 0

‖x‖ ea0t ≤
∥∥ψ1

t (x)
∥∥ ≤ ‖x‖ eb0t,

‖x‖ e−b0t ≤
∥∥ψ1

−t(x)
∥∥ ≤ ‖x‖ e−a0t (9)

with c0 = max {c′0, c′′0}, a0 = a− c0 and b0 = b+ c0.

Proof. Taking account of the explicit form of the flow (5) and the estimates (8), we deduce
that Y1 is complete. If x ∈ B (0, 1) then ‖Z1(x)‖ ≤ c′0 ‖x‖

1+m ≤ c′0 ‖x‖, letting c0 = max {c′0, c′′0}
then ‖Z1(x)‖ ≤ c0 ‖x‖ for any x ∈ Rn. If we put y =

∥∥ψ1
t (x)

∥∥ the equation (7) leads to

(a− c0)y ≤
d

dt
y ≤ (b+ c0)y, y(0) = ‖x‖

and putting b0 = b+ c0, a0 = a− c0, we deduce the following estimates

‖x‖ ea0t ≤ y ≤ ‖x‖ eb0t for any t ≥ 0.

The same is also true in the on Rn \B (0, 1). �

Lemma 3. Suppose that all the coefficients αi are negative, a ≤ αi ≤ b < 0.
If the perturbation Z1 fulfills the estimates

‖Z1(x)‖ ≤ c0 ‖x‖1+m for any x ∈ Rn and any integer m ≥ 1, (10)

then the vector field Y1 is semi-complete and the Y1-flow satisfies the estimates for any t ≥ 0

‖x‖ eat
(
1− c0

a
‖x‖m (1− eamt)

)− 1
m (11)

≤
∥∥ψ1

t (x)
∥∥ ≤ ‖x‖ebt

(
1− c0

b
‖x‖m (1− ebmt)

)− 1
m
.

Proof. By the relation (5) and the estimates (10), we deduce that the vector field Y1 is semi-
complete. Letting y =

∥∥ψ1
t (x)

∥∥ and taking into account the equation (7) and the estimates (10)
we deduce that

ay − c0y
1+m ≤ d

dt
y ≤ by + c0y

1+m, y(0) = ‖x‖

and by integration we have

‖x‖ eat
(
1− c0

a
‖x‖m (1− eamt)

)− 1
m ≤ y ≤ ‖x‖ ebt

(
1− c0

b
‖x‖m (1− ebmt)

)− 1
m
. �

Example 1. Let the vector field

X3 =
n∑

i=1

(
αixi + βix

1+mi
i

) ∂

∂xi

such that all the coefficients fulfilling

a ≤ αi ≤ b < 0, a′ ≤ βi ≤ b′ ≤ 0
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and all the exponents mi are even positive integers with 0 < m′
0 ≤ mi ≤ m0. The associated

flow φ3
t = exp(tX3) is the solution of the dynamic system

d

dt
φt(x) = X3 ◦ φt(x), φ0(x) = x

or in coordinates

d

dt
(φt(x))i = αi (φt(x))i + βi (φt(x))

1+mi
i , φ0(x) = x.

This latter is a Bernoulli type equation and its solution is given by

(
φ3

t (x)
)
i
= xie

αit

(
1 +

βi

αi
xmi

i

(
1− eαimit

))−1
mi

. (12)

The X3-flow φ3
t = exp (tX3) then has the explicit form

φ3
t (x) = xeαt

(
1 +

β

α
xm
(
1− eαmt

))−1
m

and the following estimates are true, ∀ t ≥ 0

‖x‖ eat ≤
∥∥φ3

t (x)
∥∥ ≤ ‖x‖ ebt. (13)

3.2 Estimation of the kth prolongation of the Y1-f low

Denote by η1
1(t, x, ν) = Dψ1

t (x)ν, where ν ∈ Rn, the first derivative with respect to x of the
Y1-flow, solution of the dynamic system

d

dt
η1
1(t, x, ν) = (DyX1 +DyZ1) η1

1(t, x, ν), η1
1(0, x, ν) = ν

with y = ψ1
t (x).

Lemma 4. If the perturbation Z1 fulfills the estimate

‖DZ1(x)‖ ≤ c1 for any x ∈ Rn, (14)

then the derivative of the Y1-flow is complete and has the following estimates, for any t ≥ 0

ea1t ≤
∥∥Dψ1

t (x)
∥∥ ≤ eb1t, e−b1t ≤

∥∥Dψ1
−t(x)

∥∥ ≤ e−a1t (15)

with a1 = a− c1 and b1 = b+ c1 .

Proof. Consider as in previous lemmas the following equation

1
2
d

dt

∥∥η1
1(t, x, ν)

∥∥2 =
〈
η1
1(t, x, ν), (α+DZ1) η1

1(t, x, ν)
〉

(16)

and put z =
∥∥η1

1(t, x, ν)
∥∥, so

(a− c1)z2 ≤ 1
2
d

dt
z2 ≤ (b+ c1)z2, z(0) = ‖ν‖ (17)

and then

‖ν‖ ea1t ≤ z ≤ ‖ν‖ eb1t for any t ≥ 0 and ν ∈ Rn. �
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Lemma 5. If the perturbation Z1 fulfils the estimates∥∥DlZ1(x)
∥∥ ≤ c′l ‖x‖

1−l+m for any x ∈ B (0, 1) and all integers m ≥ 1,∥∥DlZ1(x)
∥∥ ≤ c′′l ‖x‖

1−l ∀ x ∈ Rn \B (0, 1)

with l = 0, 1, then the first derivative of the Y1-flow is complete and is estimated by, for any
t ≥ 0

ea1t ≤ ‖Dψ1
t (x)‖ ≤ eb1t, e−b1t ≤ ‖Dψ1

−t(x)‖ ≤ e−a1t (18)

with cl = max {c′l, c′′l }, al = a− cl and bl = b+ cl, l = 0, 1.

Proof. For any x ∈ B (0, 1) we have ‖DlZ1(x)‖ ≤ c′l ‖x‖
1−l+m ≤ c′l ‖x‖

1−l and letting cl =
max {c′l, c′′l }, we get for any x ∈ Rn ‖DlZ1(x)‖ ≤ cl ‖x‖1−l. By the same arguments as in
previous lemmas we get the estimates (18). �

Lemma 6. Suppose that all the coefficients αi are negative, a ≤ αi ≤ b < 0.
If the perturbation Z1 fulfills the estimates

‖Z1(x)‖ ≤ c0 ‖x‖1+m , ‖DZ1(x)‖ ≤ c1 ‖x‖m for all x ∈ Rn and any integers m ≥ 1.

Then the estimates of the first derivation of the Y1-flow are as follows, for any t ≥ 0

eat
(
1− c0

a
‖x‖m (1− eamt)

)− c1
mc0 ≤

∥∥Dψ1
t (x)

∥∥ ≤ ebt
(
1− c0

b
‖x‖m (1− ebmt)

)− c1
mc0 .

Proof. Letting y =
∥∥ψ1

t (x)
∥∥ and z =

∥∥η1
1(t, x, ν)

∥∥ in equation (16), we get

(a− c1y
m)z2 ≤ 1

2
d

dt
z2 ≤ (b+ c1y

m)z2, z(0) = ‖ν‖

and taking into account the estimates given by the relation (11), we obtain

‖x‖m emat
(
1− c0

a
‖x‖m (1− eamt)

)−1
≤ ym ≤ ‖x‖m embt

(
1− c0

b
‖x‖m (1− ebmt)

)−1

consequently

‖ν‖ exp
(
at− c1

∫ t

0

‖x‖m emasds

1− c0
a ‖x‖

m (1− eams)

)
≤ z ≤ ‖ν‖ exp

(
bt+ c1

∫ t

0

‖x‖m embsds

1− c0
b ‖x‖

m (1− ebms)

)
which has the solution

‖ν‖ eat
(
1− c0

a
‖x‖m (1− eamt)

)− c1
mc0

≤ z ≤ ‖ν‖ ebt
(
1− c0

b
‖x‖m (1− ebmt)

)− c1
mc0 for ν ∈ Rn. �

Example 2. We consider the same vector field as in Example 1. Denote by ξ13(t, x, ν) =
Dφ3

t (x)ν, ∀ ν ∈ Rn, the first derivation of the X3-flow. In coordinates, we have for any i, j =
1, . . . , n,

(
φ3

t (x)
)
i
= xie

αit

(
1 +

βi

αi
xmi

i

(
1− eαimit

))−1
mi
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so we deduce that

∂

∂xj

(
φ3

t (x)
)
i
= eαit

(
1 +

βi

αi
xmi

i

(
1− eαimit

))−1− 1
mi

δi
j

and by the estimates (13) we get

eat ≤
∥∥Dφ3

t (x)
∥∥ ≤ ebt.

The second derivative is

∂2

∂x2
i

(
φ3

t (x)
)
i
= −(1 +mi)

βi

αi
x−1+mi

i eαit
(
1− eαimit

)(
1 +

βi

αi
xmi

i

(
1− eαimit

))−2− 1
mi

.

Consequently, for l = 1, 2 and any x ∈ B (0, ρ) with ρ > 0 arbitrary fixed, there are constants
Ml > 0 such that∥∥Dlφ3

t (x)
∥∥ ≤Mle

bt.

3.3 Perturbation of a nonlinear vector field

Consider the nonlinear vector field

X2 =
n∑

i=1

βix
1+mi
i

∂

∂xi
with all mi > 0 and all βi ≤ 0.

The explicit form of the X2-flow is then given by

φ2
t (x) = x(1−mβtxm)

−1
m (19)

for any t ≥ 0 in the sense(
φ2

t (x)
)
i
= xi(1−miβitx

mi
i )

−1
mi , 1 ≤ i ≤ n.

Lemma 7. If the following assumptions are true
i) all the coefficients βi are non positive, −a′ ≤ βi ≤ −b′ ≤ 0
ii) all the exponents mi are even positive integers; 0 < m0 ≤mi ≤ m′

0.

Then the vector field X2 is semi-complete and the X2-flow satisfies the estimates

‖x‖
(
1 + b′m0t ‖x‖m0

) −1
m0 ≤ ‖φ2

t (x)‖ ≤ ‖x‖
(
1 + a′m′

0t ‖x‖
m′

0

) −1
m′

0 for any t ≥ 0. (20)

Proof. Clearly the flow φ2
t = exp(tX2) given by (19) is semi-complete i.e. defined for all t ≥ 0.

Consider the equation

1
2
d

dt
‖φ2

t (x)‖2 =
〈
φ2

t (x), β
(
φ2

t (x)
)1+m

〉
and put y = φ2

t (x), then

b′y2+m0 ≤ 1
2
d

dt
y2 ≤ a′y2+m′

0 , y(0) = ‖x‖

and we get the estimates given in (20). �
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3.4 Estimation of the kth order derivation of the X2-f low

Let ξ12(t, x, ν) = Dφ2
t (x)ν, ∀ ν ∈ Rn be the first derivation of the X2-flow.

By formula (19), we get in coordinates

∂

∂xj

(
φ2

t (x)
)
i
= (1−miβitx

mi
i )−1− 1

mi δj
i with δj

i =
{

1 if i = j,
0 if i 6= j,

where i, j = 1, . . . , n.
Consequently(

1 + b′mt ‖x‖m0
)−1− 1

m0 ≤ ‖Dφ2
t (x)‖ ≤

(
1 + a′m′

0t ‖x‖
m′

0
)−1− 1

m′
0 . (21)

To get the estimates of the second derivative, we put

wi = 1−miβitx
mi
i ,

so

d

dxi
wi = mi(wi − 1)x−1

i and
∂

∂xi

(
φ2

t (x)
)
i
= wi

−1− 1
mi .

Consequently

∂2

∂x2
i

(
φ2

t (x)
)
i
= (1 +mi)x−1

i wi
− 1

mi

(
w−2

i − w−1
i

)
= x−1

i wi
− 1

mi

(
a2

1

wi
+
a2

2

w2
i

)
,

where a2
1 and a2

2 are real constants. Let ρ > 0 be any arbitrary and fixed real number, then for
any x ∈ B(0, ρ) and any t ≥ t0 > 0 and l = 1, 2 there is Ml > 0 such that∥∥Dlφ2

t (x)
∥∥ ≤Mlt

−1− 1
m′

0 .

Suppose that for l = 1, . . . , k − 1, with fixed k, there exist constants al
j and Ml > 0 such that

∂l

∂xl
i

(
φ2

t (x)
)
i
= x1−l

i wi
− 1

mi

l∑
j=1

al
j

wj
i

,

where al
j are real constants and

∥∥Dlφ2
t (x)

∥∥ ≤Mlt
−1− 1

m′
0 ∀ t > 0.

For the estimates of the kth derivative, we compute

∂k

∂xk
i

(
φ2

t (x)
)
i
= x1−k

i wi
− 1

mi

k∑
j=1

ak
j

wj
i

,

∂k

∂xk
i

(
φ2

t (x)
)
i
=

d

dxi
x2−k

i wi
− 1

mi

k−1∑
j=1

ak−1
j

wj
i

= x1−k
i wi

− 1
mi

k−1∑
j=1

(
ak−1

j

wj
i

(1− k − jmi) +
ak−1

j

wj+1
i

(1 + jmi)

)
= x1−k

i wi
− 1

mi

k∑
j=1

ak
j

wj
i

,

where ak
j are real constants.

So we resume
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Proposition 2. Suppose that
i) all the coefficients satisfy βi ≤ 0, −a′ ≤ βi ≤ −b′,
ii) the exponents mi are even natural numbers such that 0 < m0 ≤ mi ≤ m′

0.
Let ρ > 0 be any arbitrary fixed real number. For any x ∈ B(0, ρ), for any t ≥ t0 > 0 and

∀ k ≥ 1 there exist a constant Mk > 0 such that∥∥Dkφ2
t (x)

∥∥ ≤Mkt
−1− 1

m′
0 . (22)

3.5 Estimates of the Y2-f low

Let

Y2 =
n∑

i=1

(
βix

1+mi
i + Z2i(x)

) ∂
∂xi

the perturbation of the nonlinear vector field X2 and denote by ψ2
t = exp(tY2) the solution of

the dynamic system

d

dt
ψ2

t (x) = Y2 ◦ ψ2
t (x), ψ2

0(x) = x.

In coordinates we have, i = 1, . . . , n,

∂

∂t
ψ2,i(t, x) = βiψ

1+mi
2,i (t, x) + Z2i

(
ψ2

t (x)
)
, ψ2,i(0, x) = xi.

Putting

yi(t) = ψ−mi
2,i (t, x)

and

ψ2
t (x) = y

−1
m (t) =

(
y
−1
m1
1 (t), . . . , y

−1
mn
n (t)

)
we get

y′i(t) = −miψ
−1−mi
2,i (t, x)

∂

∂t
ψ2,i(t, x).

The Cauchy problem reads as

y′i(t) = −miβi −mi (yi(t))
1+ 1

mi Z2i(y
−1
m (t)), yi(0) = x−mi

i

and has the following solution

yi(t) = x−mi
i −miβit−mi

∫ t

0
yi(s)

1+ 1
mi Z2i(y

−1
m (s)ds,

i.e.

ψ2,i(t, x) = xi

(
1−miβitx

mi
i −mix

mi
i

∫ t

0
ψi(s, x)−1−miZ2i(ψ2

s(x))ds
)− 1

mi

,

so we have the explicit form of the Y2-flow

ψ2
t (x) = x

(
1−mβtxm −mxm

∫ t

0
ψ2

s(x)
−1−mZ2(ψ2

s(x))ds
)− 1

m

. (23)

Now we will estimate the Y2-flow.
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Lemma 8. Suppose that
i) all the coefficients satisfy βi ≤ 0, −a′ ≤ βi ≤ −b′;
ii) the exponents mi are even natural numbers with 0 < m0 ≤ mi ≤ m′

0;
iii)

‖Z2i(x)‖ ≤ c′0 |xi|2+mi if x ∈ B (0, 1) ,

‖Z2i(x)‖ ≤ c′′0 |xi|1+mi if x ∈ Rn \B (0, 1)

with c0 = max {c′0, c′′0}, b0 = b′ − c0 > 0, a0 = a′ + c0.
Then
1) the vector field Y2 is semi-complete;
2) the Y2-flow has the estimates

‖x‖ (1 + a0m0t ‖x‖m0)
−1
m0 ≤ ‖ψ2

t (x)‖ ≤ ‖x‖
(
1 + b0m

′
0t ‖x‖

m′
0
) −1

m′
0 ; (24)

3) let ρ > 0 and t0 > 0 be fixed, then for any x ∈ B (0, ρ) and any t ≥ t0 > 0 there is
a constant M0 > 0 such that

‖ψ2
t (x)‖ ≤M0 ‖x‖ t

− 1
m′

0 . (25)

Proof. Let x ∈ B (0, 1), by assumption we have ‖Z2i(x)‖ ≤ c′0 |xi|2+mi ≤ c′0 |xi|1+mi , put
c0 = max {c′0, c′′0} then for any x ∈ Rn we deduce ‖Z2i(x)‖ ≤ c0 |xi|1+mi . Now taking account of
the relation (23) we deduce that for any t ∈ [0, T ]∥∥ψ2

t (x)
∥∥ ≤ ‖x‖

(
1 +mt ‖x‖m (b′ − c0)

)− 1
m ≤ ‖x‖

hence the vector Y2 is semi-complete, i.e. defined for all t ≥ 0.
Consider the equation

1
2
d

dt
‖
(
ψ2

t (x)
)
i
‖2 =

〈(
ψ2

t (x)
)
i
, βi

(
ψ2

t (x)
)1+mi

i
+ Z2i

(
ψ2

t (x)
)〉

we get yi = ‖
(
ψ2

t (x)
)
i
‖ and yi(0) = |xi|, so we deduce

1
2
d

dt
y2

i ≤ (βi + c0)y2+mi
i ≤ −(b′ − c0)y2+mi

i

and

1
2
d

dt
y2

i ≥ (βi − c0)y2+mi
i ≥ −(a′ + c0)y2+mi

i .

We put b0 = b′ − c0 and a0 = a′ + c0, the solutions are estimated as

(|xi|−mi + a0mit)
− 1

mi ≤ ‖
(
ψ2

t (x)
)
i
‖ ≤ (|xi|−mi + b0mit)

− 1
mi . (26)

Hence, we have the estimate (25). �

Now, we estimate the first derivation of the Y2-flow. Let η1
2(t, x, ν) = Dψ2

t (x)ν, ∀ ν ∈ Rn

the solution of the dynamic system

d

dt
η1
2(t, x, ν) = (DyX2 +DyZ2) η1

2(t, x, ν), η1
2(0, x, ν) = ν

with y = ψ2
t (x).
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Lemma 9. Suppose that
i) the coefficients are such that βi ≤ 0, −a′ ≤ βi ≤ −b′;
ii) the coefficients mi are even natural numbers, 0 < m0 ≤ mi ≤ m′

0;
iii)

‖DlZ2i(x)‖ ≤ c′l |xi|2−l+mi if x ∈ B (0, 1) ,

‖DlZ2i(x)‖ ≤ c′′l |xi|1−l+mi if x ∈ Rn \B (0, 1)

with l = 0, 1;
iv)

a0 = a′ + c0, b0 = b′ − c0 > 0

and

a1 = a′(1 +m0) + c1, b1 = b′(1 +m0)− c1 > 0

with cl = max {c′l, c′′l }.
Then the first derivation of the Y2-flow has the following estimates, for any t > 0(

1 + b0m0t ‖x‖m0
)− a1

b0m0 ≤ ‖Dψ2
t (x)‖ ≤

(
1 + a0m

′
0t ‖x‖

m′
0
)− b1

a0m′
0 . (27)

Let ρ > 0 be arbitrary and fixed for any x ∈ B(0, ρ), and any t ≥ t0 > 0 there is a constant
M1 > 0 such that

‖Dψ2
t (x)‖ ≤M1t

− b1
a0m′

0 . (28)

Proof. Let x ∈ B (0, 1), for l = 0, 1 we have

‖DlZ2i(x)‖ ≤ c′l |xi|2−l+mi ≤ c′l |xi|1−l+mi .

Let cl = max {c′l, c′′l } then for x ∈ Rn one has

‖DlZ2i(x)‖ ≤ cl |xi|1−l+mi .

Consider the equation

1
2
d

dt
‖η1

2(t, x, ν)‖2 =
〈
η1
2(t, x, ν), (DyX2 +DyZ2) η1

2(t, x, ν)
〉

and put z(t) = ‖η1
2(t, x, ν)‖ with z(0) = ‖ν‖, then

1
2
d

dt
z2 ≤ sup

i=1,...,n

(
((1 +mi)βi + c1)‖

(
ψ2

t (x)
)
i
‖mi
)
z2 ≤ z2 sup

i=1,...,n

(
−b1‖

(
ψ2

t (x)
)
i
‖mi
)

and

1
2
d

dt
z2 ≥ inf

i=1,...,n

(
((1 +mi)βi − c1)‖

(
ψ2

t (x)
)
i
‖mi
)
z2 ≥ z2 inf

i=1,...,n

(
−a1‖

(
ψ2

t (x)
)
i
‖mi
)
.

The solutions fulfill the following estimates

‖ν‖ exp inf
i=1,...,n

(
−a1

∫ t

0
‖
(
ψ2

s(x)
)
i
‖mids

)
≤ z(t) ≤ ‖ν‖ exp sup

i=1,...,n

(
−b1

∫ t

0
‖
(
ψ2

s(x)
)
i
‖mids

)
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with, by (26)

|xi|mi

1 + a0mit |xi|mi
≤ ‖

(
ψ2

t (x)
)
i
‖mi ≤ |xi|mi

1 + b0mit |xi|mi
.

So we deduce

‖ν‖ exp inf
i=1,...,n

(
−a1

∫ t

0

|xi|mi

1 + b0mis |xi|mi
ds

)
≤ z(t) ≤ ‖ν‖ exp sup

i=1,...,n

(
−b1

∫ t

0

|xi|mi

1 + a0mis |xi|mi
ds

)
.

Consequently the solutions satisfy

‖ν‖ inf
i=1,...,n

(1 + b0mit |xi|mi)−
a1

b0mi ≤ z(t) ≤ ‖ν‖ sup
i=1,...,n

(1 + a0mit |xi|mi)−
b1

a0mi .

Then there are constants m0 > 0 and m′
0 > 0 such that

‖ν‖ (1 + b0m0t ‖x‖m0)−
a1

b0m0 ≤ ‖Dψ2
t (x)ν‖

≤ ‖ν‖
(
1 + a0m

′
0t ‖x‖

m′
0
)− b1

a0m′
0 ∀ ν ∈ Rn and for any t > 0.

Hence, we have the estimate (28). �

3.6 Perturbation of binomial vector fields

Let

Y3 =
n∑

i=1

(
αixi + βix

1+mi
i + Z3i(x)

) ∂
∂xi

with a ≤ αi ≤ b < 0, a′ ≤ βi ≤ b′ ≤ 0 and 0 < m0 ≤ mi ≤ m′
0, be the perturbation of

the binomial vector field X3 and let ψ3
t = exp(tY3) be the Y3-flow which is the solution of the

dynamic system

d

dt
ψt(x) = Y3 ◦ ψt(x), ψ0(x) = x

and in coordinates, we get

∂

∂t
ψ3,i(t, x) = αiψ3,i(t, x) + βiψ

1+mi
3,i (t, x) + Z3,i

(
ψ3

t (x)
)
, ψi(0, x) = xi

which is a Bernoulli type equation and by the same method as in the proof of previous lemmas
and with putting

yi(t) = ψ−mi
3,i (t, x)

and

ψ3
t (x) = y

−1
m (t) =

(
y
−1
m1
1 (t), . . . , y

−1
mn
n (t)

)
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we get the solution

ψ3,i(t, x) = xie
αit

(
1 +

βi

αi
xmi

i (1− e
αimit

)

−mix
mi
i

∫ t

0
[ψ3,i(s, x)]

−1−mi Z3,i(ψ3
s(x))e

αimis
ds

)−1
mi

and the implicit form of the Y3-flow reads as

ψ3
t (x) = xeαt

(
1 +

β

α
xm(1− eαmt)−mxm

∫ t

0

[
ψ3

s(x)
]−1−m

Z3(ψ3
s(x))e

αmsds

)− 1
m

. (29)

3.7 Estimation of the Y3-f low

By the same arguments as in the previous, we get the following estimates of the Y3-flow.

Lemma 10. If the following assumptions are true
i) all the coefficients αi are negative, −a ≤ αi ≤ −b < 0;
ii) all the coefficients βi are non positive, −a′ ≤ βi ≤ −b′;
iii) the exponents mi are even natural numbers with 0 < m0 ≤mi ≤ m′

0;
iv)

‖Z3i(x)‖ ≤ c′0 |xi|2+mi if x ∈ B (0, 1) ,

‖Z3i(x)‖ ≤ c′′0 |xi|1+mi if x ∈ Rn \B (0, 1)

with c0 = max {c′0, c′′0}, b0 = b′ − c0 > 0, a0 = a′ + c0.
Then
1) there exist constants m > 0 and m′ > 0 such that the Y3−flow has the estimates, ∀ t ≥ 0

‖x‖ e−at
(
1 +

a0

a
‖x‖m (1− e−amt)

)− 1
m

≤ ‖ψ3
t (x)‖ ≤ ‖x‖ e−bt

(
1 +

b0
b
‖x‖m′

(1− e−bm′t)
)− 1

m′

;

2) for any t > 0 there are positive constants c1 and c2 such that

c1 ‖x‖ e−at ≤ ‖ψ3
t (x)‖ ≤ c2 ‖x‖ e−bt; (30)

3) the vector field Y3 is semi-complete.

By similar calculations as in previous lemmas, we get the following estimates to the first
derivative of the Y3-flow.

Lemma 11. Suppose that
i) all the coefficients αi are negative, −a ≤ αi ≤ −b < 0;
ii) all the coefficients βiare non positive, −a′ ≤ βi ≤ −b′;
iii) the exponents mi are even natural numbers such that 0 < m0 ≤ mi ≤ m′

0;
iv)

‖DlZ3i(x)‖ ≤ c′l |xi|2−l+mi if x ∈ B (0, 1) ,

‖DlZ3i(x)‖ ≤ c′′l |xi|1−l+mi if x ∈ Rn \B (0, 1)

with l = 0, 1;
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v)

a0 = a′ + c0, b0 = b′ − c0 > 0

and

a1 = a′(1 +m0) + c1, b1 = b′(1 +m0)− c1 > 0

with cl = max {c′l, c′′l }.
Then there exist constants m > 0 and m′ > 0 such that for any t ≥ 0

e−at

(
1 +

b0
b
‖x‖m (1− e−bmt)

)− a1
b0m

≤ ‖Dψ3
t (x)‖ ≤ e−bt

(
1 +

a0

a
‖x‖m′

(1− e−am′t)
)− b1

a0m′

and for any t ≥ 0, there is a constant M1 > 0 such that∥∥Dψ3
t (x)

∥∥ ≤M1e
−bt. (31)

4 Global stability of prolongations of flows

With notations of the previous sections, we will give global stability of some flows.

4.1 Global stability of the Y1-f low

Lemma 12. Let the vector fields

Y1 =
n∑

i=1

(αixi + Z1i(x))
∂

∂xi

with the following assumptions
i) all the coefficients are negative, −a ≤ αi ≤ −b < 0;
ii)

‖Z1(x)‖ ≤ c′0 ‖x‖
1+m ∀ x ∈ B (0, 1) and ∀m ≥ 1,

‖Z1(x)‖ ≤ c′′0 ‖x‖ ∀ x ∈ Rn \B (0, 1) ;

iii) b0 = b− c0 > 0, where c0 = max {c′0, c′′0}.
Then the origin 0 is a globally asymptotically stable equilibrium to the Y1-flow ψ1

t on Rn.

Proof. Let ψ1
t = exp(tY1) be the Y1-flow, then by the assumptions and the estimates given by

Lemma 2 we get that∥∥ψ1
t (x)

∥∥ ≤ ‖x‖ e−b0t ∀ t ≥ 0 and ∀x ∈ Rn

and by Proposition 1, the origin 0 is G.A.S. for ψ1
t on Rn. �

Example 3. We consider the vector field

X3 =
n∑

i=1

(
αixi + βix

1+mi
i

) ∂

∂xi
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of Example 1 with a ≤ αi ≤ b < 0, a′ ≤ βi ≤ b′ ≤ 0. The X3-flow φ3
t = exp (tX3) is then given

by

φ3
t (x) = xeαt

(
1 +

β

α
xm
(
1− eαmt

))−1
m

.

Let ρ > 0 be arbitrary and fixed real number. By the estimates (13), we have for any x ∈ B(0, ρ)
and any t ≥ t0 ≥ 0∥∥φ3

t (x)
∥∥ ≤ ‖x‖ e−bt.

By Proposition1 the origin 0 is a G.A.S. for the flow φ3
t on Rn.

4.2 Global stability of the first prolongation of the Y1-f low

Lemma 13. With the same assumptions as in Lemma 12 and the following conditions

‖DZ1(x)‖ ≤ c′1 ‖x‖
m ∀ x ∈ B (0, 1) and ∀ m ≥ 1,

‖DZ1(x)‖ ≤ c′′1 ∀ x ∈ Rn \B (0, 1)

with b1 = b− c1 > 0 and c1 = max {c′1, c′′1}.
Then the origin 0 is a globally asymptotically stable for the first prolongation of the Y1-flow

ψ1
t on Rn.

Proof. By the estimates (18) and the hypothesis we deduce that

‖Dψ1
t (x)ν‖ ≤ ‖ν‖ e−b1t ∀ t > 0, ∀ ν ∈ Rn

and by Proposition 1,we obtain that the origin 0 is a G.A.S. equilibrium on Rn for η1
1(t, x, v) =

Dψ1
t (x)ν. �

4.3 Global stability of the kth prolongation of the Y1-f low

Suppose that
i) all the coefficients are negative, −a ≤ αi ≤ −b < 0;
ii) for any l = 1, . . . , k − 1

‖DlZ1(x)‖ ≤ c′l ‖x‖
1−l+m for any x ∈ B (0, 1) and for any integer m ≥ l − 1,

‖DlZ1(x)‖ ≤ c′′l ∀ x ∈ Rn \B (0, 1) ,
a0 = a+ c0, b0 = b− c0 > 0,
a1 = a+ c1, b1 = b− c1 > 0

with cl = max {c′l, c′′l }, bl = cl ∀ l ≥ 2.
Put ηl

1(t, x, ν, . . . , ν) = Dkψ1
t (x)ν

k, where ν ∈ Rn. Since by Lemmas 12 and 13 the origin 0 is
an G.A.S. equilibrium for ηl

1, with l = 0, 1, on Rn, we suppose that this property remains true
for l = 0, 1, . . . , k − 1 with k ≥ 2 i.e. for any ρ > 0 and any x ∈ B(0, ρ) there exist constants
Ml > 0 such that for any t ≥ t0 > 0

‖Dlψ1
t (x)‖ ≤Mle

−b1t.

We will show that the origin 0 is a G.A.S. equilibrium for ηk
1 on Rn. ηk

1 (t, x, ν, . . . , ν) =
Dkψ1

t (x)ν
k is solution of the dynamic system

d

dt
ηk
1 = DyY1 · ηk

1 +Gk
1(t, x, ν), ηk

1 (0, x, ν, . . . , ν) = ν
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with y = ψ1
t (x) and

Gk
1(t, x, ν) =

k∑
l=2

Dl
yY1(y)

∑
i1+···+il=k

ij>0

 l∏
j=1

Dijψ1
t (x)ν

ij



=
k−1∑
l=2

Dl
yZ1(y)

∑
i1+···+il=k

ij>0

 l∏
j=1

Dijψ1
t (x)ν

ij

+Dk
yZ1(y)

(
Dψ1

t (x)ν
)k
.

Consequently we get

ηk
1 (t, x, ν, . . . , ν) = Dψ1

t (x)ν +
∫ t

0
DΨ1

t−s(ψ
1
s(x))G

k
1(s, x, ν)ds.

The integral is well defined at s = 0, since

lim
s→0+

Dψ1
t−s(ψ

1
s(x)) = Dψ1

t (x)

and there exist constants Al > 0 such that

lim
s→0+

Gk
1(s, x, ν) =

k∑
l=2

AlD
l
yZ1(y)νk.

We will show that it converges uniformly with respect to x as t+∞. Put

Ik =
∫ t

0
‖Dψ1

t−s(ψ
1
s(x))‖‖Gk

1(s, x, ν)‖ds.

Since ‖DlZ1(x)‖ ≤ cl ∀ l ≥ 1, ∀ x ∈ Rn, there are constants bl > 0 such that ∀ y ∈ Rn,
‖Dl

yY1(y)‖ ≤ bl and by the assumption of recurrence there exist constants Ml > 0 such that

‖Dlψ1
t (x)‖ ≤Mle

−b1t ∀ t ≥ 0.

We deduce that there is a constant Ck > 0 such that

Ik ≤
k∑

l=2

blMl

∫ t

0
e−b1(t−s+sl)ds ≤ Cke

−b1t.

So for any x ∈ Rn one has

lim
t→+∞

Ik ≤
k∑

l=2

Mlbl ‖ν‖l
∫ +∞

0
e−b1sds =

1
b1

k∑
l=2

Mlbl ‖ν‖l

and the integral Ik is uniformly convergent with respect to x ∈ Rn as t→ +∞. Consequently

lim
t→+∞

‖ηk
1‖ = lim

t→+∞
‖Dψ1

t (x)ν‖+
∫ +∞

0
lim

t→+∞
‖Dψ1

t−s(ψ
1
s(x))‖‖Gk

1(s, x, ν)‖ds = 0

and there is a constant M ′
k > 0 such that

‖ηk
1‖ ≤ ‖Dψ1

t (x)ν‖+
∫ +∞

0
‖Dψ1

t−s(ψ
1
s(x))‖‖Gk

1(s, x, ν)‖ds ≤M ′
k‖ν‖ke−b1t.

This show by Proposition 1 that the origin 0 is a G.A.S. equilibrium to ηk
1 on Rn. We formulate

our proving as follows

Proposition 3. Let k ≥ 0 be any integer. The origin 0 is a G.A.S. equilibrium of order k for
the Y1-flow and there is a constant Mk > 0 such that ∀ t > 0

‖Dkψ1
t (x)‖ ≤Mke

−b1t, ‖Dkψ1
−t(x)‖ ≤Mke

a1t. (32)
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5 Global stability of a flow generated
by nonlinear perturbed vector fields

First we will start with monomial vector fields.

5.1 Global stability of the X2-f low

Let

X2 =
n∑

i=1

βix
1+mi
i

∂

∂xi

with
(i) all the coefficients βi ≤ 0 such that −a′ ≤ βi ≤ −b′;
(ii) all the exponents mi are even natural integers with 0 < m0 ≤mi ≤ m′

0.
Let φ2

t = exp (tX2) be the X2-flow. By the estimations (19) we obtain

∥∥φ2
t (x)

∥∥ ≤ ‖x‖
(
1 + a′m′

0t ‖x‖
m′

0
) −1

m′
0 .

Let ρ > 0 be arbitrary fixed, for any x ∈ B(0, ρ) and any t ≥ t0 > 0 there is a constant
M0 > 0 such that

‖φ2
t (x)‖ ≤M0 ‖x‖ t

− 1
m′

0 .

By Proposition 1, the origin is a globally asymptotically stable equilibrium to the flow φ2
t on Rn.

Let l = 1, 2, . . . any positive integer. By Proposition 2, we have: for any fixed ρ > 0, and all
x ∈ B(0, ρ) and t ≥ t0 > 0, there exist constants Ml > 0 and M ′

l > 0 such that

‖Dlφ2
t (x)‖ ≤Ml t

−1− 1
m′

0 and ‖Dlφ2
0(x)‖ ≤M ′

l .

So the origin 0 is a G.A.S. equilibrium for Dlφ2
t (x) on Rn.

Resuming our proving, we get

Proposition 4. Let k ≥ 0 be any integer. Under the above conditions (i) and (ii), the origin 0
is a G.A.S. of order k for the X2-flow on Rn.

5.2 Global stability of high order of the Y2-f low

Let

Y2 =
n∑

i=1

(
βix

1+mi
i + Z2,i(x)

) ∂
∂xi

be a smooth vector field on Rn such that
i) all the coefficients βi ≤ 0 are non negative with −a′ ≤ βi ≤ −b′;
ii) mi are even natural numbers with 0 < m0 ≤mi ≤ m′

0;
iii) for k = 0, . . . , 1 +mi

‖DkZ2i(x)‖ ≤ c′k |xi|2−k+mi if x ∈ B (0, 1) ;

‖DkZ2i(x)‖ ≤ c′′k |xi|1−k+mi if x ∈ Rn \B (0, 1) ;
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iv) for any k ≥ 2 +mi

‖DkZ2i(x)‖ ≤ ck;

v)

a0 = a′ + c0, a1 = a′(1 +m0) + c1,

b0 = b′ − c0 > 0, b1 = b′(1 +m0)− c1 > a0m
′
0

with ck = max {c′k, c′′k}.

Remark 1. If x ∈ B (0, 1) then ‖DkZ2i(x)‖ ≤ c′k |xi|2−k+mi ≤ c′k |xi|1−k+mi . Putting cl =
max {c′l, c′′l }, we deduce that for any x ∈ Rn have ‖DkZ2i(x)‖ ≤ ck |xi|1−k+mi .

5.2.1 Global stability of the Y2-f low on Rn

Let ψ2
t = exp (tY2) be the Y2-flow and let ρ > 0 be arbitrary and fixed, so by the estimates (25)

for all x ∈ B(0, ρ) and all t ≥ t0 > 0 there is a constant M0 > 0 such that

‖ψ2
t (x)‖ ≤M0 ‖x‖ t

− 1
m′

0 .

So by Proposition 1, the origin 0 is a G.A.S. equilibrium for the Y2-flow ψ2
t on Rn.

5.2.2 Global stability of prolongation of the Y2-f low on Rn

We proceed by recurrence. Since it is already true for k = 0, we suppose that for any l =
1, . . . , k − 1, with k ≥ 2, the origin 0 is a G.A.S. to Dlψ2

t (x) on Rn that is to say for any fixed
ρ > 0, all x ∈ B(0, ρ) and all t ≥ t0 > 0 there are constants Ml > 0 such that

‖Dlψ2
t (x)‖ ≤Mlt

− b1
a0m′

0 and ‖Dlψ2
0(x)‖ ≤M ′

l .

We will show that 0 is a G.A.S. for Dkψ2
t (x) on Rn.

Put ηk
2 (t, x, ν, . . . , ν) = Dkψ2

t (x)ν
k ∀ ν ∈ Rn which is solution of the dynamic system

d

dt
ηk
2 = DyY2 · ηk

2 +Gk
2(t, x, ν), ηk

2 (0, x, ν, . . . , ν) = ν

with y = ψ2
t (x) and

Gk
2(t, x, ν) =

k∑
l=2

Dl
yY2(y)

∑
i1+···+il=k

ij>0

 l∏
j=1

Dijψ2
t (x)ν

ij

 .

By the method of the resolvent, we deduce

ηk
2 (t, x, ν, . . . , ν) = Dψ2

t (x)ν +
∫ t

0
Dψ2

t−s(ψ
2
s(x))G

k
2(s, x, ν)ds.

Clearly the integral

I1
k =

∫ 1

0
‖Dψ2

t−s(ψ
2
s(x))‖‖Gk

2(s, x, ν)‖ds
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is well defined at s = 0 and s = t, since

lim
s→0+

Dψ2
t−s(ψ

2
s(x)) = Dψ2

t (x).

By the recurrent assumption Dlψ2
0(x) are bounded and there exist constants Al > 0 such that

lim
s→0+

‖Gk
2(s, x, ν)‖ ≤

k∑
l=2

Al‖Dl
xY2(x)νl‖.

In the same way

lim
s→t−

Dψ2
t−s(ψ

2
s(x)) = identity.

Now, we have to show that

I2
k =

∫ t

1
‖Dψ2

t−s(ψ
2
s(x))‖‖Gk

2(s, x, ν)‖ds

converges uniformly on any compact set K ⊂ Rn as t→ 0.
Let x ∈ K, by the relations (26) and (28) we get for all t ≥ 0

‖x‖ (1 + a0m0t ‖x‖m0)
−1
m0 ≤ ‖ψ2

t (x)‖ ≤ ‖x‖
(
1 + b0m

′
0t ‖x‖

m′
0
) −1

m′
0 ,

(1 + b0m0t ‖x‖m0)−
a1

b0m0 ≤ ‖Dψ2
t (x)‖ ≤

(
1 + a0m

′
0t ‖x‖

m′
0
)− b1

a0m′
0 .

So ‖y‖ = ‖ψ2
t (x)‖ ≤ ‖x‖ and

∥∥Dψ2
t−s(ψ

2
s(x))

∥∥ is bounded. Since for any x ∈ Rn and any
l = 1, . . . , 1+mi, ‖DlZ2i(x)‖ ≤ cl |xi|1−l+mi then Dl

yY2(y) are bounded. Now by the assumption
of recurrence there exist constants Ml > 0 such that for any t > 0

‖Dlψ2
t (x)‖ ≤Mlt

− b1
a0m′

0

with a0m
′
0 < b1 i.e. b1

a0m′
0
> 1, and we deduce the existence of constants Cl > 0 such that

lim
t→+∞

I2
k ≤

k∑
l=2

Cl

∫ +∞

1
s
− lb1

a0m′
0 ds ≤

k∑
l=2

Cl

(
lb1
a0m′

0

− 1
)−1

.

The integral I2
k converges uniformly on any compact K ⊂ Rn as t→ +∞.

Now since the integral is well defined at s = 0, then

lim
t→0

‖ηk
2 (t, x, ν, . . . , ν)‖ ≤ lim

t→0
‖Dψ2

t (x)ν‖ = ‖ν‖

hence there is a constant M ′
k > 0 such that

‖Dkψ2
0(x)‖ ≤M ′

k.

In the same way as above the integral
∫ t
0 ‖Dψ

2
t−s(ψ

2
s(x))‖‖Gk

2(s, x, ν)‖ds is well defined and
putting τ = s

t we obtain

ηk
2 (t, x, ν, . . . , ν) = Dψ2

t (x)ν + t

∫ 1

0
Dψ2

t(1−τ)(ψ
2
tτ (x))G

k
2(tτ, x, ν)dτ.
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Since b1 = b′(1 +m0)− c1 > a0m
′
0 , by the estimates (26) and (28), we deduce the existence of

a constant Mk > 0 such that

‖ηk
2 (t, x, ν, . . . , ν)‖ ≤ ‖Dψ2

t (x)ν‖+ t

∫ 1

0
‖Gk

2(tτ, x, ν)‖dτ

≤ ‖Dψ2
t (x)ν‖+ t

k∑
l=2

∫ 1

0

(tτ)
− lb1

a0m′
0 ‖x‖1+m′

0−l(
1 + b0m′

0tτ ‖x‖
m′

0

) 1+m′
0−l

m′
0

dτ ≤Mkt
− b1

a0m′
0 .

Which shows that the origin 0 is a G.A.S. equilibrium for ηk
2 on Rn. We formulate this fact as

Proposition 5. Let k ≥ 0 be any integer. Under the above conditions (i), (ii), (iii), (iv)
and (v), the origin 0 is a G.A.S. of order k on Rn for the Y2-flow and there is a constant
Mk > 0 such that for any t ≥ t0 > 0

‖Dkψ2
t (x)‖ ≤Mkt

− b1
a0m′

0 . (33)

5.3 Global stability of prolongations of the Y3-f low

Let

Y3 =
n∑

i=1

(
αixi + βix

1+mi
i + Z3i(x)

) ∂
∂xi

with
i) all the coefficient αi are negative with −a ≤ αi ≤ −b;
ii) all the coefficients βi ≤ 0 and −a′ ≤ βi ≤ −b′;
iii) the exponents mi are even natural numbers with 0 < m0 ≤ mi ≤ m′

0;
iv) For any k = 0, . . . , 1 +mi

‖DkZ3i(x)‖ ≤ c′k |xi|2−k+mi if x ∈ B (0, 1) ,

‖DkZ3i(x)‖ ≤ c′′k |xi|1−k+mi if x ∈ Rn \B (0, 1) ;

v) for any k ≥ 2 +mi

‖DkZ3i(x)‖ ≤ ck;

vi)

a0 = a′ + c0, a1 = a′(1 +m0) + c1,

b0 = b′ − c0 > 0, b1 = b′(1 +m0)− c1 > 0

with ck = max {c′k, c′′k} .

Remark 2. If x ∈ B (0, 1) then ‖DkZ3i(x)‖ ≤ c′k |xi|2−k+mi ≤ c′k |xi|1−k+mi .
Let cl = max {c′l, c′′l }, for any x ∈ Rn one has ‖DkZ3i(x)‖ ≤ ck |xi|1−k+mi .
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5.3.1 Global stability of the Y3-f low Rn

Denote by ψ3
t = exp(tY3), by the estimates (30), we have

‖ψ3
t (x)‖ ≤ C‖x‖e−bt ∀ t > 0 and ∀ x ∈ Rn,

where C > 0 is a constant. So by Proposition 1, 0 is a G.A.S. on Rn. We proceed by recurrence;
since the property is true in case k = 0, we assume that the property remains true for any
l = 1, . . . , k − 1, with k fixed i.e. 0 is a global G.A.S. of ηl

3(t, x, ν, . . . ν) = ‖Dlψ3
t (x)ν

k‖ on Rn

and there exist constants Ml > 0 such that for any t > 0

‖Dlψ3
t (x)‖ ≤Mle

−bt.

We will show that 0 is a G.A.S. equilibrium to ηk
3 on Rn.

ηk
3 (t, x, ν, . . . , ν) is a solution to the dynamic system

d

dt
ηk
3 = Dyη

k
3 +Gk

3(t, x, ν)

with y = ψ3
t (x) and

Gk
3(t, x, ν) =

k∑
l=2

Dl
yY3(y)

∑
i1+···+il=k

ij>0

 l∏
j=1

Dijψ3
t (x)ν

ij

 .

By the method of the resolvent, we get

ηk
3 (t, x, ν, . . . , ν) = Dψ3

t (x)ν +
∫ t

0
Dψ3

t−s(ψ
3
s(x))G

k
3(s, x, ν)ds

and by the same argument as for the Y 1-flow, we deduce that for any integer k ≥ 0 there exist
a constant Mk such that ∀ t ≥ 0

‖Dkψ3
t (x)‖ ≤Mk ‖x‖ e−bt.

By Proposition 1, we have

Proposition 6. Under the above conditions (i), (ii), (iii), (iv), (v) and (vi), the origin 0 is a
G.A.S. equilibrium of order k on Rn to the Y3-flow .

References

[1] Benalili M., Lansari A., Ideal of finite codimension in contact Lie algebra, J. Lie Theory 11 (2001), 129–134.
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