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1 Introduction

In this paper, following Drinfel’d, we define the Yangian of the strange Lie superalgebra of
Qn−1 type. Recall that the Yangian of the simple Lie algebra was defined by V. Drinfel’d as
a quantization of the polynomial currents Lie bialgebra (with values in this simple Lie algebra)
with coalgebra structure defined by rational Yang r-matrix [1, 2, 3, 5]. The Yangian of the
reductive Lie algebra can be given the same definition in special cases. The object dual to
Yangian (of the general linear Lie algebra gl(n))) was studied before by L. Faddeev and others
while working on Quantum Inverse Scatering Method (QISM). We call this definition of Yangian
the RFT approach. V. Drinfel’d shows this object to be isomorphic to the Yangin of gl(n). It
is the RFT approach that is usual for papers devoted to Yangians and defines the Yangian as
the algebra generated by matrix elements of Yangians irreducible representations according to
Drinfel’d (see [4] and [6, 7, 8] for Yangians of the Lie superalgebras). More precisely, the Yangian
can be viewed as the Hopf algebra generated by matrix elements of a matrix T (u) (so-called
transfer matrix) with the commutation defining relations:

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v),

where T1(u) = T (u) ⊗ E, T2(v) = E ⊗ T (v), E is an identity matrix R(u) is some rational
matrix-function (with the values in End (V ⊗ V )). R(u) is called a quantum R-matrix (see [4]).

The RFT approach is used in the paper [14] (see also [6, 7, 8]) to define the Yangian of
basic Lie superalgebra, while the Drinfel’d’s one is used in papers [10, 11, 13]. We cannot use
directly Drinfel’d approach for defining the Yangian of strange Lie superalgebra [16] as this
Lie superalgebra does not have nonzero invariant bilinear forms. Hence we cannot define the
Lie bisuperalgebra’s structure on the polynomial currents Lie superalgebra with values in the
strange Lie superalgebra. M. Nazarov noted that this structure can be defined on the twisted
current Lie superalgebra and used the RFT approach to do it (see [15]). In this paper we use
Nazarov’s idea to define the Yangian of strange Lie superalgebra according to Drinfel’d. Our
definition can be used for further research of the Yangian of strange Lie superalgebra. It is
quite convenient to study such problems as exact description of the quantum double of Yangian
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of strange Lie superalgebra and computation of Universal R-matrix of quantum double. Our
method can also be extended on the other twisted current Lie algebras and Lie superalgebra
quantization description. As a result, we obtain so-called the twisted Yangians without a Hopf
(super)algebra structure (in general) but being comodule over some Hopf (super)algebras.

Note that the Yangian of the basic Lie superalgebra A(m,n) was defined according to Drin-
fel’d in [10] where the Poincaré–Birkgoff–Witt theorem (PBW-theorem) and the theorem on
existence of pseudotriangular structure on Yangian (or the theorem on existence of the universal
R-matrix) are also proved. Further, in [11, 13] the quantum double of the Yangian of the Lie
superalgebra A(m,n) is described, and the multiplicative formulas for the universal R-matrices
(for both quantum double of the Yangian and Yangian) are obtained. This paper is the con-
sequence of [10, 12] and extension of some of their results on the Yangian of the “strange” Lie
superalgebra.

Following Drinfel’d, we define the Yangian of the strange Lie superalgebra of Qn−1 type and
describe the current system of Yangian generators and defining relations, which is an analogue of
the same system from [3]. The problem of the equivalency between our definition and Nazarov’s
one is not resolved yet. The problem of constructing of the explicit formulas defining the
isomorphism between the above realization (as in [9] in the case of sln) is open and seems very
interesting. This will be discussed in further papers.

2 Twisted current bisuperalgebras

Let V = V0 ⊕ V1 be a superspace of superdimension (n, n), i.e. V be a Z2-graded vector space,
such that dim(V0) = dim(V1) = n. The set of linear operators End (V ) acting in the V be
an associative Z2-graded algebra (or superalgebra), End (V ) = (End (V ))0 ⊕ (End (V ))1, if the
grading defined by formula:

(End (V ))k = {g ∈ End (V ) : gVi ⊂ Vi+k}.

Let {e1, . . . , en, en+1, . . . , e2n} be a such base in V that {e1, . . . , en} be a basis in V0, {en+1, . . .,
e2n} be a basis in V1. Then we can identify End (V ) with the superalgebra of (2n × 2n)-
matrices gl(n, n) (see also [16, 17]). Let us define on the homogeneous components of gl(n, n)
the commutator (or supercommutator) by the formula:

[A,B] = AB − (−1)deg(A) deg(B)BA,

where deg(A) = i for A ∈ gl(n, n)i, i ∈ Z2. Then gl(n, n) turns into the Lie superalgebra.
Further, we will numerate the vectors of the base of V by integer numbers ±1, . . . ,±n, i.e.
{e1, . . . , en, e−1, . . . , e−n} is a basis in V , {e1, . . . , en} is a basis in V0, {e−1, . . . , e−n} is a basis
in V1. Then matrices from gl(n, n) are indexed by numbers: ±1, . . . ,±n, also. Note that

gl(n, n)0 =
{(

A 0
0 B

)
: A,B ∈ gl(n)

}
,

gl(n, n)1 =
{(

0 C
D 0

)
: C,D ∈ gl(n)

}
.

Let A =
(

A11 A12

A21 A22

)
, Aij ∈ gl(n). By definition, put:

str (A) = tr (A11)− tr (A22).

The str (A) is called the supertrace of A. Define superalgebra sl(n, n) by the formula:

sl(n, n) = {A ∈ gl(n, n) : str (A) = 0}.
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Let us also denote sl(n, n) by Ã(n − 1, n − 1). The Lie superalgebra Ã(n − 1, n − 1) has 1-
dimensional center Z. Then A(n− 1, n− 1) := Ã(n− 1, n− 1)/Z is a simple Lie superalgebra.

Let π : Ã(n− 1, n− 1) → A(n− 1, n− 1) be a natural projection.
Consider the isomorphism σ′ : Ã(n− 1, n− 1) → Ã(n− 1, n− 1), which is defined on matrix

units Ei,j by the formula σ(Ei,j) = E−i,−j . As σ′(Z) = Z, then σ′ induces the involutive
automorphism σ : A(n − 1, n − 1) → A(n − 1, n − 1). Let g = A(n − 1, n − 1). As σ2 = 1,
then eigenvalues of σ equal ±1. Let ε = −1, j ∈ Z2 = {0, 1}. Let us set gj = Ker (σ − εjE),
g = g0 ⊕ g1. We emphasize that g0 = gσ is a set of fixed points of automorphism σ. It is clear
that gσ is a Lie subsuperalgebra of Lie superalgebra g. By definition Qn−1 = gσ is a strange Lie
superalgebra. Its inverse image in Ã(n− 1, n− 1) we denote by Q̃n−1.

We will use the following properties of the Lie superalgebra Qn−1. The root system ∆ of the
Lie superalgebra Qn−1 coincides with root system of the Lie algebra An−1 = sl(n), but the non-
zero roots of Qn−1 are both even and odd. We will use the following notations: A = (aij)n−1

i,j=1

is a Cartan matrix of sl(n), (αi, αj) = aij for simple roots αi, αj (i, j ∈ {1, . . . , n− 1}). Define
the generators of the Lie superalgebra Qn−1 x±i , x̂±i , hi, ki, i = 1, . . . , n − 1 and elements x±i,
x̂±i, hi, ki of g1 by formulas

hi = π((Ei,i − Ei+1,i+1) + (Ei,i − E−i−1,−i−1)),

hi = π((Ei,i − Ei+1,i+1)− (Ei,i − E−i−1,−i−1)),

x+
i = π(Ei,i+1 + E−i,−i−1), x+i = π(Ei,i+1 − E−i,−i−1),

x−i = π(Ei+1,i + E−i−1,−i), x−i = π(Ei+1,i − E−i−1,−i),
ki = π((Ei,−i − Ei+1,−i−1) + (E−i,i − E−i−1,i+1)),

ki = π((Ei,−i − Ei+1,−i−1)− (E−i,i − E−i−1,i+1)),

x̂+
i = π(Ei,−i−1 + E−i,i+1), x̂+i = π(Ei,−i−1 − E−i,i+1),

x̂−i = π(Ei+1,−i + E−i−1,i), x̂−i = π(Ei+1,−i − E−i−1,i).

The Lie superalgebra Qn−1 can be defined as superalgebra generated by generators hi, ki, x±i ,
x̂±i , i ∈ {1, . . . , n− 1}, satisfying the commutation relations of Cartan–Weyl type (see [17]). We
will use notations x±αi = x±i , x̂±αi = x̂±i , x±αi = x±

i, x̂±αi = x̂±i. There exists a nondegenerate
supersymmetric invariant bilinear form (·, ·) on the Lie superalgebra A(n − 1, n − 1) such that
(g0, g0) = (g1, g1) = 0 and g0 and g1 nondegenerately paired. We use also root generators xα,
x̂α (α ∈ ∆) and elements xα, x̂α ∈ g1 dual (relatively form (·, ·)) to them.

Let us extend the automorphism σ to automorphism σ̃ : g((u−1)) → g((u−1)), on Laurent
series with values in g by formula:

σ̃(x · uj) = σ(x)(−u)j .

Consider the following Manin triple (P,P1,P2):

(P = g((u−1))σ̃, P1 = g[u]σ̃, P2 = (u−1g[[u−1]])σ̃.

Define the bilinear form 〈·, ·〉 on P by the formula:

〈f, g〉 = res (f(u), g(u))du, (1)

where res
( n∑

k=−∞
ak · uk

)
:= a−1, (·, ·) is an invariant bilinear form on g. It is clear that P1, P2

are isotropic subsuperalgebras in relation to the form 〈·, ·〉. It can be shown in the usual way
that there are the following decompositions:

g[u]σ̃ =
∞⊕

k=0

(
g0 · u2k ⊕ g1 · u2k+1

)
, g((u−1))σ̃ =

⊕
k∈Z

(
g0 · u2k ⊕ g1 · u2k+1

)
. (2)
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Describe the bisuperalgebra structures on g[u]σ̃. Let {ei} be a basis in g0 and {ei} be a dual
basis in g1 in relation to the form (·, ·). Let t0 =

∑
ei ⊗ ei, t1 =

∑
ei ⊗ ei, t = t0 + t1. Consider

also the basis {ei,k} in P1 and dual basis {ei,k} (⊂ P2) in relation to the form 〈·, ·〉, which define
by the formulas:

ei,2k = ei · u2k, ei,2k+1 = ei · u2k+1, k ∈ Z+,

ei,2k = ei · u−2k−1, ei,2k+1 = ei · u−2k−2, k ∈ Z+.

Calculate a canonical element r, defining the cocommutator in P

r =
∑

ei,k ⊕ ei,k =
∑
k∈Z

∑
i

(
ei · v2k ⊗ ei · u−2k−1 + ei · v2k+1 ⊗ ei · u−2k−2

)
=

∞∑
k=0

((∑
ei ⊗ ei

)
· u−1

(v

u

)2k
)

+
∞∑

k=0

((∑
ei ⊗ ei

)
· u−1

(v

u

)2k+1
)

= t0
u−1

(1− (v/u)2)
+ t1

u−1(v/u)
1− (v/u)2

=
t0 · u

(u2 − v2)
+

t1 · v
u2 − v2

=
1
2
(

1
u− v

+
1

u + v
)t0 +

1
2

(
1

u− v
− 1

u + v

)
t1

=
1
2

t0 + t1
u− v

+
1
2

t0 − t1
u + v

=
1
2

∑
k∈Z+

(σk ⊗ id) · t
u− εk · v

.

Denote rσ(u, v) := r. Then we have the following expression for cocommutator:

δ : a(u) → [a(u)⊗ 1 + 1⊗ a(v), rσ(u, v)].

Proposition 1. The element rσ(u, v) has the following properties:

1) rσ(u, v) = −r21
σ (v, u);

2)
[
r12
σ (u, v), r13

σ (u, w)
]
+
[
r12
σ (u, v), r23

σ (v, w)
]
+
[
r13
σ (u, w), r23

σ (v, w)
]

= 0.

Proof. Let us note, that t21
0 = t1, t211 = t0. Then

r21
σ (v, u) =

1
2

t1 + t0
v − u

+
1
2

t1 − t0
v + u

= −rσ(u, v).

The 1) is proved. Property 2) follows from the fact that the element r defined above satisfies
the classical Yang–Baxter equation. Actually, the function r(u, v) = t0+t1

u−v = t
u−v satisfies the

classical Yang–Baxter equation (CYBE) (see [18, 1]):[
r12(u, v), r13(u, w)

]
+
[
r12(u, v), r23(v, w)

]
+
[
r13(u, w), r23(v, w)

]
= 0. (3)

Let s = −id. Let us apply to the left-hand side of (3) the operator id⊗ sk ⊗ sl (k, l ∈ Z2) and
substitute (−1)k ·v, (−1)l ·w for v, w, respectively. Taking then the sum over k, l ∈ Z2 and using
(s⊗ s)(t) = −t we will obtain the left-hand side of expression from item 2 of proposition. �

3 Quantization

The definition of quantization of Lie bialgebras from [1] can be naturally extended on Lie
bisuperalgebras. Quantization of Lie bisuperalgebras D is such Hopf superalgebra A~ over ring
of formal power series C[[~]] that satisfies the following conditions:
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1) A~/~A~ ∼= U(D), as a Hopf algebra (where U(D) is an universal enveloping algebra of the
Lie superalgebra D);

2) the superalgebra A~ isomorphic to U(D)[[~]], as a vector space;

3) it is fulfilled the following correspondence principle: for any x0 ∈ D and any x ∈ A~ equal
to x0: x0 ≡ x mod ~ one has

~−1(∆(x)−∆op(x)) mod ~ ≡ ϕ(x) mod ~,

where ∆ is a comultiplication, ∆op is an opposite comultiplication (i.e., if ∆(x) =
∑

x′i⊗x′′i ,
then ∆op(x) =

∑
(−1)p(x′

i)p(x′′
i )x′′i ⊗ x′i).

Let us describe the quantization of Lie bisuperalgebra (g[u]σ̃, δ). I recall (see (2)) that

g[u]σ̃ =
∞⊕

k=0

(
g0 · u2k ⊕ g1 · u2k+1

)
is graded by degrees of u Lie superalgebra,

δ : a(u) →

a(u)⊗ 1 + 1⊗ a(v),
1
2

∑
k∈Z+

(σk ⊗ id) · t
u− εk · v

 , (4)

where t is a Casimir operator and δ is a homogeneous map of degree −1.
Let us apply the additional conditions upon quantization.

1) Let A be a graded superalgebra over graded ring C[[~]], deg(~) = 1.

2) The grading of A and the grading of g[u]σ̃ induce the same gradings of U(g[u]σ̃), i.e.

A/~A = U(g[u]σ̃)

as graded superalgebra over C.

I recall (see also [1]) that Hopf superalgebra A over C[[~]] such that A/~A ∼= B, where B
is a Hopf superalgebra over C, is called a formal deformation of B. Let p : A → A/~A ∼= B
be a canonical projection. If p(a) = x, then an element a is called a deformation of element x.
There exist theorems that prove existence and uniqueness of quantization (or formal deforma-
tion) in many special cases as well as in our one. But, we will not use these theorems. Let
mi ∈ {hi, ki, x

±
i , x̂±i } be generators of the Lie superalgebra Qn. We will denote the deforma-

tions of the generators mi · uk of the Lie superalgebra A(n, n)[u]σ̃ by mi,k. As generators of
associative superalgebra mi, mi · uk generate the superalgebra U(A(n, n)[u]σ̃), its deformations
mi,0, mi,1 generate the Hopf superalgebra A. We are going to describe the system of defining
relations between these generators. This system of defining relations is received from conditions
of compatibility of superalgebra and cosuperalgebra structures of A (or from condition that co-
multiplication is a homomorphism of superalgebras). First, we describe the comultiplication on
generators mi,1. It follows from condition of homogeneity of quantization 2) comultiplication is
defined only by of values of ∆ on generators mi,1. Describe values of ∆ on generators hi,1. Note
that condition of homogeneity of quantization implies the fact that U(g0) embeds in A as a Hopf
superalgebra. It means that we can identify generators mi,0 with generators of Lie superalgebra
g0 = Qn−1. Calculate the value of cocycle δ on the generators hi · u, i = 1, . . . , n− 1.

Proposition 2. Let A be a Lie superalgebra with invariant scalar product (·, ·); {ei}, {ei} be
a dual relatively this scalar product bases. Then for every element g ∈ A we have equality:[

g ⊗ 1,
∑

ei ⊗ ei
]

= −
[
1⊗ g,

∑
ei ⊗ ei

]
. (5)
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Proof. Note that following the definition of bilinear invariant form, we have the equality:
([g, a], b) = −(−1)deg(g) deg(a)([a, g], b) = −(−1)deg(g) deg(a)(a, [g, b]) for ∀ a, b ∈ A. Therefore

([g, ei], ei) = −(−1)deg(g) deg(a)([ei, g], ei) = −(−1)deg(g) deg(a)(ei, [g, ei]). (6)

The scalar product given on vector space V defines isomorphism between V and V ∗, and,
therefore, between V ⊗ V and V ⊗ V ∗. Summing over i equality (6) we get∑

i

([g, ei], ei) =
∑

i

−(−1)deg(g) deg(a)(ei, [g, ei]).

Note the equality of functionals follows from the equality of values of functionals on elements of
base and thus we have an equality:∑

i

[g, ei]⊗ ei =
∑

i

−(−1)deg(g) deg(a)ei ⊗ [g, ei]

or
[
g ⊗ 1,

∑
ei ⊗ ei

]
= −

[
1⊗ g,

∑
ei ⊗ ei

]
or equality (5). �

Proposition 3. Let A = A0 ⊕ A1 be a Lie superalgebra with such nondegenerate invariant
scalar product that A0, A1 are isotropic subspaces, A0, A1 are nondegenerately paired, A0 is
a subsuperalgebra, A1 is a module over A0. (For example, the scalar product (1) satisfies these
conditions.) Let also {ei}, {ei} be the dual bases in A0, A1, respectively, and t0 =

∑
i ei ⊗ ei,

t1 =
∑

i e
i ⊗ ei. Then for all a ∈ A0, b ∈ A1 we have the following equalities:

[a⊗ 1, t0] = −[1⊗ a, t0], [a⊗ 1, t1] = −[1⊗ a, t1],
[b⊗ 1, t0] = −[1⊗ b, t1], [b⊗ 1, t1] = −[1⊗ b, t0].

Now we can calculate the value δ (see (4)) on hi · u

δ(hi · u) =
[
hi · v ⊗ 1 + 1⊗ hi · u,

1
2

t0 + t1

u− v
+

1
2

t0 − t1

u + v

]
=
[
hi · v ⊗ 1− hi · u⊗ 1,

1
2

t0 + t1

u− v

]
+
[
hi · v ⊗ 1 + hi · u⊗ 1,

1
2

t0 − t1

u + v

]
=
[
hi ⊗ 1,

1
2
(t0 + t1)

]
+
[
hi ⊗ 1,

1
2
(t0 − t1)

]
= [hi ⊗ 1, t0] = −[1⊗ hi, t1].

Similarly, it is possible to calculate the values of cocycle on other generators

δ(ki · u) = −[ki ⊗ 1, t0] = [1⊗ ki, t1],

δ(x±i · u) = −[x±i ⊗ 1, t0] = [1⊗ x±i, t1],

δ(x̂±i · u) = −[x̂±i ⊗ 1, t0] = [1⊗ x̂±i, t1].

It follows from homogeneity condition that

∆(hi,1) = ∆0(hi,1) + ~F (xα ⊗ x−α, x̂α ⊗ x̂−α + hi ⊗ hj + ki ⊗ kj).

It follows from correspondence principle (item 3) of definition of quantization) that

~−1(∆(hi,1)−∆op(hi,1) = F − τF = [1⊗ hi, t0].

Let

t̄0 =
∑

α∈∆+

xα ⊗ x−α − x̂α ⊗ x̂−α +
1
2

n−1∑
i=1

ki ⊗ ki,

∆+ is a set of positive roots of Lie algebra An−1 = sl(n).
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Define ∆(hi,1), by formula

∆(hi,1) = ∆0(hi,1) + ~[1⊗ hi, t̄0].

Let us check that correspondence principle is fulfilled in these cases too:

~−1(∆(hi,1)−∆op(hi,1)) =

1⊗ hi,
∑

α∈∆+

xα ⊗ x−α − x̂α ⊗ x̂−α +
1
2

n−1∑
i=1

ki ⊗ ki


−

hi ⊗ 1,
∑

α∈∆+

x−α ⊗ xα − x̂−α ⊗ x̂α +
1
2

n−1∑
i=1

ki ⊗ ki


=

1⊗ hi,
∑

α∈∆+

xα ⊗ x−α − x̂α ⊗ x̂−α

−
hi ⊗ 1,

∑
α∈∆+

x−α ⊗ xα − x̂−α ⊗ x̂α

 .

Show that[
hi ⊗ 1,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
=
[
1⊗ hi,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
.

Actually,[
hi ⊗ 1,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
=
∑

[hi, x−α]⊗ xα + [hi, x̂−α]⊗ x̂α.

On the other hand[
1⊗ hi,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
=
∑

x−α ⊗ [hi, xα] + x̂−α ⊗ [hi, x̂α].

It follows in the standard way, that

[hi, xαi−αj ] = −(δik + δjk − δi,k+1 − δj,k+1)xαi−αj ,

[ki, x̂αi−αj ] = (δik − δjk − δi,k+1 + δj,k+1)x̂αi−αj .

Therefore

[hi, x−α]⊗ xα = −x−α ⊗ [hi, xα], [hi, x̂−α]⊗ x̂α = x̂−α ⊗ [hi, x̂α].

Hence,[
hi ⊗ 1,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
=
[
1⊗ hi,

∑
x−α ⊗ xα + x̂−α ⊗ x̂α

]
and equality

~−1(∆(hi,1)−∆op(hi,1)) =

1⊗ hi,
∑

α∈∆+

xα ⊗ x−α − x̂α ⊗ x̂−α


−

hi ⊗ 1,
∑

α∈∆+

x−α ⊗ xα − x̂−α ⊗ x̂α

 = [1⊗ hi, t0] = δ(hi · u)

is proved.
Similarly we can define comultiplication on other generators. We get

∆(x+
i,1) = ∆0(x+

i,1) + ~[1⊗ x+
i , t̄0], ∆(x−i,1) = ∆0(x−i,1) + ~[x−i ⊗ 1, t̄0].
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The following relations hold and comultiplication preserves them

[hi,1, x
±
j,0] = ±(α,αj)x±j,1, [ki,1, x

±
j,0] = ±(α,αj)x̂±j,1,

[hi,1, x̂
±
j,0] = ±(̃α,αj)x̂±j,1, [ki,1, x̂

±
j,0] = ±(α,αj)x±j,1.

Let us prove these relations. It is sufficient to check one of them. Let us prove the first
relation

[∆(hi,1),∆(x±j,0)] = ±(αi, αj)∆(x±j,1).

Actually,

[∆(hi,1),∆(x±j,0)] = [∆0(hi,1) + ~[1⊗ hi, t̄0], x±j,0 ⊗ 1 + 1⊗ x±j,0]

= [hi,1, x
±
j,0]⊗ 1 + 1⊗ [hi,1, x

±
j,0] + ~[[1⊗ hi, t̄0], x±j,0 ⊗ 1] + ~[[1⊗ hi, t̄0], 1⊗ x±j,0]

= [∆(hi,0),∆(x±j,1)] = ±(αi, αj)∆(x±j,1).

Now we can describe the Hopf superalgebra A = Ah, which is a deformation (quantization) of
the Lie bisuperalgebra (gσ̃, δ). Let us introduce new notations. Let {a, b} be an anticommutator
of elements a, b. Let m ∈ {0, 1} and

k̄i,m =
1
n

(
−

i−1∑
r=0

rkr,m +
n−1∑
r=i

(n− r)kr,m

)
,

h̄i,m =
1
n

(
−

i−1∑
r=0

rhr,m +
n−1∑
r=i

(n− r)hr,m

)
.

Let also, {α1, · · · , αn−1} be a set of simple roots of sl(n), ˜(αi, αj) := (δi,j+1 − δi+1,j).

Theorem 1. Hopf superalgebra A = Ah over C[[~]] is generated by generators hi,0, x±i,0, ki,0,
x̂±i,0, hi,1, x±i,1, ki,1, x̂±i,1, 1 ≤ i ≤ n−1 (h, x are even, k, x̂ are odd generators). These generators
satisfy the following defining relations:

[hi,0, hj,0] = [hi,0, hj,1] = [hi,1, hj,1] = 0, [hi,0, kj,0] = [ki,1, kj,0] = 0,

[hi,0, x
±
j,0] = ±(αi, αj)x±j,0, [ki,0, x

±
j,0] = ± ˜(αi, αj)x̂±j,0,

[ki,0, kj,0] = 2(δi,j − δi,j+1)h̄i,0 + 2(δi,j − δi,j−1)h̄i+1,0,

ki,1 =
1
2
[hi+1,1 − hi−1,1, ki,0], [x+

i,0, x
−
j,0] = δijhi,0,

[x+
i,1, x

−
j,0] = [x+

i,0, x
−
j,1] = δij h̃i,1 = δij

(
hi,1 +

~
2
h2

i,0

)
,

[x̂+
i,0, x

−
j,0] = [x+

i,0, x̂
−
j,0] = δijki,0, [x+

i,1, x
−
j,0] = δij

(
hi,1 +

~
2
h2

i,0

)
,

[x̂+
i,1, x

−
j,0] = [x+

i,0, x̂
−
j,1] = δijki,1, [x+

i,1, x̂
−
j,0] = −[x̂+

i,0, x
−
j,1] = δij(k̄i,1 + k̄i+1,1),

[x̂+
i,1, x̂

−
j,0] = δij

(
hi,1 +

~
2
h2

i,0

)
, [hi,1, x

±
j,0] = ±(αi, αj)(x±j,1),

[hi,1, x̂
±
j,0] = ± ˜(αi, αj)(x̂±j,1), ki,1 =

1
2
[hi+1,1 − hi−1,1, ki,0],

[ki,1, x
±
j,0] = ±(αi, αj)x̂±j,1, [ki,1, x̂

±
j,0] = ±(αi, αj)x±j,1,

[hi,1, kj,0] = 2(δi,j − δi,j+1)k̄i,1 + 2(δi,j − δi,j−1)k̄i+1,1,
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[x±i,1, x
±
j,0]− [x±i,0, x

±
j,1] = ±~

2
((αi, αj){x±i,0, x

±
j,0}+ ˜(αi, αj){x̂±i,0, x̂

±
j,0}),

[x̂±i,1, x
±
j,0]− [x̂±i,0, x

±
j,1] = ±~

2
(− ˜(αi, αj){x̂±i,0, x

±
j,0}+ ˜(αi, αj){x±i,0, x̂

±
j,0}),

[x̂±i,1, x̂
±
j,0]− [x̂±i,0, x̂

±
j,1] = ±~

2
( ˜(αi, αj){x±i,0, x

±
j,0}+ (αi, αj){x̂±i,0, x̂

±
j,0}),

(adx±i,0)
2(x±j,0) = [x±i,0, [x

±
i,0, x

±
j,0]] = 0, i 6= j,

(ad x̂±i,0)
2(x±j,0) = [x̂±i,0, [x̂

±
i,0, x

±
j,0]] = 0 = [x̂±i,0, [x

±
i,0, x

±
j,0]], i 6= j,

(adx±i,0)
2(x̂±j,0) = [x±i,0, [x

±
i,0, x̂

±
j,0]] = 0, i 6= j,

[x̂±i,0, x̂
±
j,0] = [x±i,0, x

±
j,0], [x̂±i,0, x

±
j,0] = [x̂±i,0, x

±
j,0],∑

σ∈S3

[x±i,σ(s1), [x
±
i,σ(s2), x

±
i,σ(s3)]] = 0,

∑
σ∈S3

[x̂±i,σ(s1), [x
±
i,σ(s2), x

±
i,σ(s3)]] = 0, s1, s2, s3 ∈ {0, 1}.

Here Sn is a permutation group of n elements.
The comultiplication ∆ is defined by the formulas:

∆(hi,0) = hi,0 ⊗ 1 + 1⊗ hi,0, ∆(x±i,0) = x±i,0 ⊗ 1 + 1⊗ x±i,0,

∆(ki,0) = ki,0 ⊗ 1− 1⊗ ki,0, ∆(x̂±i,0) = x̂±i,0 ⊗ 1 + 1⊗ x̂±i,0,

∆(hi,1) = hi,1 ⊗ 1 + 1⊗ hi,1 + [1⊗ hi,0, t̄0] = hi,1 ⊗ 1 + 1⊗ hi,1

+ ~

ki,0 ⊗ (k̄i,0 + k̄i+1,0)−
∑

α∈∆+

(
(αi, α)xα,0 ⊗ x−α,0 + (̃αi, α)x̂α,0 ⊗ x̂−α,0

) ,

∆(x+
i,1) = x+

i,1 ⊗ 1 + 1⊗ x+
i,1 + [1⊗ x+

i,0, t̄0] = x+
i,1 ⊗ 1 + 1⊗ x+

i,1

+ ~

(
x̂+

i,0 ⊗ (k̄i,0 + k̄i+1,0) + x+
i,0 ⊗ hi,0

−
∑

α∈∆+

(
[x+

i,0, xα,0]⊗ x−α,0 + [x+
i,0, x̂−α,0]⊗ x̂−α,0

))
,

∆(x−i,1) = x−i,1 ⊗ 1 + 1⊗ x−i,1 + [x−i,0 ⊗ 1, t̄0]

= x−i,1 ⊗ 1 + 1⊗ x−i,1 + ~

((
k̄i,0 + k̄i+1,0)⊗ x̂−i,0 + hi,0 ⊗ x−i,0

−
∑

α∈∆+

(
xα,0 ⊗ [x−i,0, x−α,0] + x̂α,0 ⊗ [x−i,0, x̂−α,0]

))
,

∆(x̂+
i,1) = x̂+

i,1 ⊗ 1− 1⊗ x̂+
i,1 + ~

(
x+

i,0 ⊗ (k̄i,0 + k̄i+1,0) + x̂+
i,0 ⊗ hi,0

−
∑

α∈∆+

(
[x̂+

i,0, xα,0]⊗ x−α,0 − [x+
i,0, x−α,0]⊗ x̂−α,0

))
,

∆(x̂−i,1) = x̂−i,1 ⊗ 1− 1⊗ x̂−i,1 + [x̂−i,0 ⊗ 1, t̄0]

= x̂−i,1 ⊗ 1 + 1⊗ x̂−i,1 + ~

(
(k̄i,0 + k̄i+1,0)⊗ x−i,0 + hi,0 ⊗ x̂−i,0



10 V. Stukopin

−
∑

α∈∆+

(
xα,0 ⊗ [x̂−i,0, x−α,0] + x̂α,0 ⊗ [x−i,0, x−α,0]

))
,

∆(ki,1) = ki,1 ⊗ 1− 1⊗ ki,1 + [ki,0 ⊗ 1, t̄0]

= ki,1 ⊗ 1 + 1⊗ ki,1 + ~

(
(h̄i,0 + h̄i+1,0)⊗ (k̄i,0 + k̄i+1,0)

−
∑

α∈∆+

(
(αi, α)x̂α,0 ⊗ x−α,0 + (̃αi, α)xα,0 ⊗ x̂−α,0

))
.

Let us note that the Hopf superalgebras A~1 and A~2 for fixed ~1, ~2 6= 0 (as superalgebras
over C) are isomorphic. Setting ~ = 1 in these formulas we receive the system of defining
relations of Yangian Y (Qn−1).

4 Current system of generators

Let G = Qn. Let us introduce a new system of generators and defining relations. This system
in the quasiclassical limit transforms to the current system of generators for twisted current Lie
superalgebra ℘1 = G[u]σ̃ of polynomial currents. We introduce the generators h̃i,m, ki,m, x±i,m,
x̃±i,m, i ∈ I = {1, 2, . . . , n− 1}, m ∈ Z+, by the following formulas:

x±i,m+1 = ±1
2
[hi,1, x

±
i,m], (7)

x̂±i,2m+1 =
1
2
[hi+1,1 − hi−1,1, x̂

±
i,2m], (8)

x̂±i,2m+2 = −1
2
[hi+1,1,−hi−1,1, x̂

±
i,2m+1], (9)

ki,m+1 =
1
2
[hi+1,1,−hi−1,1, ki,m], (10)

h̃i,m = [x+
i,m, x−i,0], (11)

k̄i,m =
1
n

(
−

i−1∑
r=0

rkr,m +
n−1∑
r=i

(n− r)kr,m

)
,

h̄i,m =
1
n

(
−

i−1∑
r=0

rh̃r,m +
n−1∑
r=i

(n− r)h̃r,m

)
. (12)

This section results in to the following theorem describing the Y (Qn−1) in a convenient form.

Theorem 2. The Yangian Y (Qn−1) isomorphic to the unital associative superalgebra over C,
generated by generators h̃i,m, ki,m, x±i,m, x̂±i,m, i ∈ I = {1, 2, . . . , n − 1}, m ∈ Z+ (isomorphism
is given by the formulas (7)–(12)), satisfying the following system of defining relations:

[h̃i,m, h̃j,n] = 0, h̃i,m+n = δij [x+
i,m, x−i,n],

[x̂+
i,m, x−j,2k] = [x+

i,2k, x̃
−
j,m] = δijki,m+2k

(
n− 2

n

)k

,

[x̂+
i,m, x−j,2k+1] = [x+

i,2k+1, x̂
−
j,m] = δij(k̄i,m+2k+1 + k̄i+1,m+2k+1)

(
n− 2

n

)k

,

[hi,0, x
±
j,l] = ±(αi, αj)x±j,l, [hi,0, x̃

±
j,l] = ±(αi, αj)x̂±j,l,

[ki,0, x
±
j,l] = ±(αi, αj)x̂±j,l, [ki,0, x̂

±
j,l] = ± ˜(αi, αj)x±j,l,



Yangian of the Strange Lie Superalgebra of Qn−1 Type, Drinfel’d Approach 11

ki,m+1 =
1
2
[hi+1,1,−hi−1,1, ki,m], h̃i,1 = hi,1 +

1
2
h2

i,0,

x̂±i,2m+1 =
1
2
[hi+1,1,−hi−1,1, x̂

±
i,2m], x̂±i,2m+2 =

1
2
[hi+1,1,−hi−1,1, x̂

±
i,2m+1],

[h̃i,m+1, x
±
j,r]− [h̃i,m, x±j,r+1] = ±(αi,αj)

2
{h̃i,m, x±j,r}+ (±δi,j+1 − δi+1,j){ki,m, x̂±j,r},

we use before δ sign “+” in the case m + r ∈ 2Z+, and sign “−” for m + r ∈ 2Z+ + 1;

[x±i,m+1, x
±
j,r]− [x±i,m, x±j,r+1] = ±(αi,αj)

2
{x±i,m, x±j,r}+ (±δi,j+1 − δi+1,j){x̂±i,m, x̃±j,r},

here signs before δ are defined also as in the previous formula;

[x̂±i,m+1, x
±
j,r]− [x̂±i,m, x±j,r+1] = ±

˜(αi, αj)
2

{x̂±i,m, x±j,r} ∓
˜(αi, αj)

2
{x±i,m, x̂±j,r},

[x̂±i,m+1, x̂
±
j,r]− [x̂±i,m, x̂±j,r+1] = ±(αi, αj)

2
{x̂±i,m, x̂±j,r} ∓

(̃αi,αj)
2

{x±i,m, x±j,r},

[ki,m+1, x
±
j,r]− [ki,m, x±j,r+1] = ±(αi,αj)

2
{ki,m, x±j,r}

+ (±δi,j+1 − δi+1,j){(h̄i,m + h̄i+1,m), x̂±j,r},

[h̃i,2m+1, kj,r] = 2((δi,j − δi,j+1)k̄i,2m+r+1 + (δi,j − δi,j−1)k̄i+1,2m+r+1),

[h̃i,2m, kj,2r+1] = 0, [ki,2k, kj,2l] = 2(δi,j − δi,j+1)h̄i,2(k+l) + 2(δi,j − δi,j−1)h̄i+1,2(k+l),

[ki,2m+1, kj,2r] = 0,
∑
σ∈S3

[x±i,σ(s1), [x
±
i,σ(s2), x

±
j,σ(s3)]] = 0,

∑
σ∈S3

[x̂±i,σ(s1), [x
±
i,σ(s2), x

±
j,σ(s3)]] = 0, s1, s2, s3 ∈ Z+.

Note that proof of this theorem is quite complicated and technical. We note only two issues
of the proof:

1) the formulas for even generators are proved similarly to the case of Y (A(m,n)) (see [10]);

2) the defining relations given in the Theorem 1 easily follows from those given in Theorem 2.

In conclusion let us note that the problems of explicit description of quantum double of
Yangian of strange Lie superalgebra and computation of the universal R-matrix are not discussed
in paper and will be considered in further work. This paper makes basis for such research.
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