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Abstract. An exactly solvable position-dependent mass Schrödinger equation in two di-
mensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of
recent theories describing superintegrable two-dimensional systems with integrals of motion
that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra
approach is used together with a realization in terms of deformed parafermionic oscillator
operators. In this process, the importance of supplementing algebraic considerations with
a proper treatment of boundary conditions for selecting physical wavefunctions is stressed.
Some new results for matrix elements are derived. This example emphasizes the interest of
a quadratic algebra approach to position-dependent mass Schrödinger equations.
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1 Introduction

Quantum mechanical systems with a position-dependent (effective) mass (PDM) have attracted
a lot of attention and inspired intense research activities during recent years. They are indeed
very useful in the study of many physical problems, such as electronic properties of semiconduc-
tors [1] and quantum dots [2], nuclei [3], quantum liquids [4], 3He clusters [5], metal clusters [6],
etc.

Looking for exact solutions of the Schrödinger equation with a PDM has become an interesting
research topic because such solutions may provide a conceptual understanding of some physical
phenomena, as well as a testing ground for some approximation schemes (for a list of references
see, e.g., [7]). For such a purpose, use has been made of methods known in the constant-mass
case and extended to a PDM context, such as point canonical transformations [8, 9, 10], Lie
algebraic methods [11, 12, 13, 14], as well as supersymmetric quantum mechanical (SUSYQM)
and shape-invariance techniques [15, 16].

Although mostly one-dimensional equations have been considered up to now, several works
have recently paid attention to d-dimensional problems [7, 17, 18, 19, 20, 21, 22]. In [7] (hence-
forth referred to as I and whose equations will be quoted by their number preceded by I), we
have analyzed d-dimensional PDM Schrödinger equations in the framework of first-order in-
tertwining operators and shown that with a pair (H,H1) of intertwined Hamiltonians we can
associate another pair (R,R1) of second-order partial differential operators related to the same
intertwining operator and such that H (resp. H1) commutes with R (resp. R1). In the context
of SUSYQM based on an sl(1/1) superalgebra, R and R1 can be interpreted as SUSY partners,
while H and H1 are related to the Casimir operator of a larger gl(1/1) superalgebra.
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In the same work, we have also applied our general theory to an explicit example, depicting
a particle moving in a two-dimensional semi-infinite layer. This model may be of interest in the
study of quantum wires with an abrupt termination in an environment that can be modelled
by a dependence of the carrier effective mass on the position. It illustrates the influence of
a uniformity breaking in a quantum channel on the production of bound states, as it was
previously observed in the case of a quantum dot or a bend [23, 24].

From a theoretical viewpoint, our model has proved interesting too because it is solvable
in two different ways: by separation of variables in the corresponding Schrödinger equation
or employing SUSYQM and shape-invariance techniques. The former method relies upon the
existence of an integral of motion L, while, as above-mentioned, the latter is based on the use
of R. In other words, the three second-order partial differential operators H, L and R form a set
of algebraically independent integrals of motion, which means that the system is superintegrable.

Let us recall that in classical mechanics [25], an integrable system on a d-dimensional mani-
fold is a system which has d functionally independent (globally defined) integrals of motion in
involution (including the Hamiltonian). Any system with more that d functionally independent
integrals of motion is called superintegrable. It is maximally superintegrable if it admits the
maximum number 2d − 1 of integrals of motion. The latter form a complete set so that any
other integral of motion can be expressed in terms of them. In particular, the Poisson bracket
of any two basic integrals, being again a constant of motion, can be written as a (in general)
nonlinear function of them. Such results can be extended to quantum mechanics [26], so that
for quantum counterparts of maximally superintegrable systems we get (in general) nonlinear
associative algebras of algebraically independent observables, all of them commuting with H.

The simplest case corresponds to the class of two-dimensional superintegrable systems with
integrals of motion that are linear and quadratic functions of the momenta. The study and
classification of such systems, dating back to the 19th century and revived in the 1960ties [27,
28, 29], have recently been the subject of intense research activities and substantial progress has
been made in this area (see [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]
and references quoted therein). In particular, it has been shown that their integrals of motion
generate a quadratic Poisson algebra (in the classical case) or a quadratic associative algebra
(in the quantum one) with a Casimir of sixth degree in the momenta and the general form
of these algebras has been uncovered [36, 45, 46, 47, 48]. Algebras of this kind have many
similarities to the quadratic Racah algebra QR(3) (a special case of the quadratic Askey–Wilson
algebra QAW(3)) [31, 32]. They actually coincide with QR(3) whenever one of their parameters
vanishes. The eigenvalues and eigenfunctions of the superintegrable system Hamiltonian can be
found from the finite-dimensional irreducible representations of these algebras. The latter can
be determined by a ladder-operator method [31, 32, 33, 34] or through a realization [35, 36]
in terms of (generalized) deformed parafermionic operators [49], which are a finite-dimensional
version of deformed oscillator operators [50].

Since our two-dimensional PDM model belongs to this class of superintegrable systems, it is
interesting to analyze it in the light of such topical and innovative theories. This is one of the
purposes of the present paper, which will therefore provide us with a third method for solving the
PDM Schrödinger equation. In such a process, we will insist on the necessity of supplementing
algebraic calculations with a proper treatment of the wavefunction boundary conditions imposed
by the physics of the problem – a point that is not always highlighted enough.

Another purpose of this work is to stress the interest of a quadratic algebra approach to
PDM Schrödinger equations. If the presence of such an algebra was already noted before in
a one-dimensional example [51], this is indeed – as far as the author knows – the first case where
an algebra of this kind is used as a tool for solving a physical problem in a PDM context.

This paper is organized as follows. In Section 2, the two-dimensional PDM model of I is
briefly reviewed and some important comments on its mathematical structure are made in
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conjunction with the physics of the problem. In Section 3, a quadratic algebra associated
with such a model is then introduced and its classical limit is obtained. The finite-dimensional
irreducible representations of the algebra are determined in Section 4. Finally, Section 5 contains
the conclusion.

2 Exactly solvable and superintegrable PDM model
in a two-dimensional semi-infinite layer

In I we considered a particle moving in a two-dimensional semi-infinite layer of width π/q,
parallel to the x-axis and with impenetrable barriers at the boundaries. The variables x, y vary
in the domain

D : 0 < x <∞, − π

2q
< y <

π

2q
,

and the wavefunctions have to satisfy the conditions

ψ(0, y) = 0, ψ

(
x,± π

2q

)
= 0. (2.1)

The mass of the particle is m(x) = m0M(x), where the dimensionless function M(x) is given by

M(x) = sech2 qx. (2.2)

In units wherein ~ = 2m0 = 1, the Hamiltonian of the model can be written as

H(k) = −∂x
1

M(x)
∂x − ∂y

1
M(x)

∂y + V
(k)
eff (x), (2.3)

where we adopt the general form (I2.2) and

V
(k)
eff (x) = −q2 cosh2 qx+ q2k(k − 1) csch2 qx (2.4)

is an effective potential. This function includes some terms depending on the ambiguity para-
meters [52], which allow any ordering of the noncommutating momentum and PDM operators
(see equation (I2.3)). In (2.4), the constant k is assumed positive and we have set an irrelevant
additive constant v0 to zero.

As shown in I, both the operators

L = −∂2
y

and

R(k) = η(k)†η(k)

= − cosh2 qx sin2 qy ∂2
x + 2 sinh qx cosh qx sin qy cos qy ∂2

xy − sinh2 qx cos2 qy ∂2
y

+ q sinh qx cosh qx(1− 4 sin2 qy)∂x + q(1 + 4 sinh2 qx) sin qy cos qy∂y

+ q2(sinh2 qx− sin2 qy − 3 sinh2 qx sin2 qy)− q2k(1 + csch2 qx sin2 qy)

+ q2k2 csch2 qx sin2 qy,

where

η(k)† = − cosh qx sin qy ∂x + sinh qx cos qy ∂y − q sinh qx sin qy − qk csch qx sin qy,

η(k) = cosh qx sin qy ∂x − sinh qx cos qy ∂y + q sinh qx sin qy − qk csch qx sin qy,

commute with H(k), although not with one another. Hence one may diagonalize either H(k)

and L or H(k) and R(k) simultaneously. This leads to two alternative bases for the Hamiltonian
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eigenfunctions, corresponding to the eigenvalues

E
(k)
N = q2(N + 2)(N + 2k + 1), N = 0, 1, 2, . . . , (2.5)

with degeneracies

deg(N) =
[
N

2

]
+ 1, (2.6)

where [N/2] stands for the integer part of N/2.
The first basis is obtained by separating the variables x, y in the PDM Schrödinger equation

and its members, associated with the eigenvalues (l + 1)2q2 of L, read

ψ
(k)
n,l (x, y) = φ

(k)
n,l (x)χl(y), n, l = 0, 1, 2, . . . , (2.7)

with N = 2n+ l,

φ
(k)
n,l (x) = N (k)

n,l (tanh qx)k(sech qx)l+2P
(k− 1

2
,l+1)

n (1− 2 tanh2 qx),

χl(y) =


√

2q
π

cos[(l + 1)qy] for l = 0, 2, 4, . . .,√
2q
π

sin[(l + 1)qy] for l = 1, 3, 5, . . .,

(2.8)

and N (k)
n,l a normalization constant given in equation (I3.18).

The second basis, resulting from the intertwining relation

η(k)H(k) = H
(k)
1 η(k), H

(k)
1 = H(k+1) + 2q2k,

and its Hermitian conjugate, can be built by successive applications of operators of type η(k)†,

Ψ(k)
N,N0

(x, y) = N̄ (k)
N,N0

η(k)†η(k+1)† · · · η(k+ν−1)†Ψ(k+ν)
N0,N0

(x, y), (2.9)

on functions Ψ(k+ν)
N0,N0

(x, y), annihilated by η(k+ν) and given in Eqs. (I3.28), (I3.32) and (I3.34).
In (2.9), N0 runs over 0, 2, 4,. . . , N or N − 1, according to whether N is even or odd, while ν,
defined by ν = N −N0, determines the R(k) eigenvalue

r(k)
ν = q2ν(ν + 2k), ν = 0, 1, 2, . . . . (2.10)

Although an explicit expression of the normalization coefficient N̄ (k)
N,N0

is easily obtained (see

equation (I3.41)), this is not the case for Ψ(k)
N,N0

(x, y) (except for some low values of N and N0),

nor for the expansion of Ψ(k)
N,N0

(x, y) into the first basis eigenfunctions ψ(k)
n,l (x, y), which is given

by rather awkward formulas (see equations (I3.46), (I3.51), (I3.55) and (I3.56)).
Before proceeding to a quadratic algebra approach to the problem in Section 3, it is worth

making a few valuable observations, which were not included in I.
Mathematically speaking, the separable Schrödinger equation of our model admits four lin-

early independent solutions obtained by combining the two independent solutions of the second-
order differential equation in x with those of the second-order differential equation in y. Among
those four functions, only the combination ψ(k)

n,l (x, y), considered in (2.7), satisfies all the bound-
ary conditions and is normalizable on D. It is indeed clear that the alternative solution to the
differential equation in x is not normalizable, while that to the differential equation in y,

χ̄l(y) ∝

{
sin[(l + 1)qy] for l = 0, 2, 4, . . .,
cos[(l + 1)qy] for l = −1, 1, 3, 5, . . .,

(2.11)
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violates the second condition in equation (2.1). Hence the three remaining combinations provide
unphysical functions.

Some mathematical considerations might also lead to another choice than L and R(k) for the
basic integrals of motion complementing H(k). First of all, instead of L, one might select the
operator py = −i∂y, which obviously satisfies the condition [H(k), py] = 0. This would result
in a linear and a quadratic (in the momenta) integrals of motion, generating a much simpler
quadratic algebra than that to be considered in Section 3. It should be realized, however, that
the eigenfunctions eimy (m ∈ Z) of py, being linear combinations of the physical and unphysical
functions (2.8) and (2.11), are useless from a physical viewpoint. We are therefore forced to
consider the second-order operator L instead of py.

Furthermore, it is straightforward to see that another pair of first-order differential operators

η̄(k)† = − cosh qx cos qy ∂x − sinh qx sin qy ∂y − q sinh qx cos qy − qk csch qx cos qy, (2.12)

η̄(k) = cosh qx cos qy ∂x + sinh qx sin qy ∂y + q sinh qx cos qy − qk csch qx cos qy, (2.13)

intertwines with H(k) and H(k)
1 , i.e., satisfies the relation

η̄(k)H(k) = H
(k)
1 η̄(k), H

(k)
1 = H(k+1) + 2q2k, (2.14)

and its Hermitian conjugate. Such operators correspond to the choice a = c = g = 0, b = d = 1
in equation (I2.29).

As a consequence of (2.14), the operator

R̄(k) = η̄(k)†η̄(k)

= − cosh2 qx cos2 qy ∂2
x − 2 sinh qx cosh qx sin qy cos qy ∂2

xy − sinh2 qx sin2 qy ∂2
y

+ q sinh qx cosh qx(1− 4 cos2 qy)∂x − q(1 + 4 sinh2 qx) sin qy cos qy∂y

+ q2(sinh2 qx− cos2 qy − 3 sinh2 qx cos2 qy)− q2k(1 + csch2 qx cos2 qy)

+ q2k2 csch2 qx cos2 qy,

commutes with H(k) and is therefore another integral of motion. It can of course be expressed
in terms of H(k), L and R(k), as it can be checked that

H(k) = L+R(k) + R̄(k) + 2q2k.

However, we have now at our disposal three (dependent) integrals of motion L, R(k) and R̄(k)

in addition to H(k), so that we may ask the following question: what is the best choice for the
basic integrals of motion from a physical viewpoint?

This problem is easily settled by noting that the zero modes of η̄(k),

ω̄(k)
s (x, y) = (tanh qx)k(sech qx)s+1(sin qy)s,

violate the second condition in equation (2.1) for any real value of s and therefore lead to
unphysical functions. This contrasts with what happens for the zero modes ω(k)

s (x, y) of η(k),
given in (I3.28), which are physical functions for s > 0 and can therefore be used to build the
functions Ψ(k)

N,N0
(x, y) considered in (2.9), as it was shown in (I3.32). We conclude that the

physics of the model imposes the choice of L and R(k) as basic integrals of motion.
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3 Quadratic associative algebra and its classical limit

It has been shown [36, 47] that for any two-dimensional quantum superintegrable system with
integrals of motion A, B, which are second-order differential operators, one can construct a
quadratic associative algebra generated by A, B, and their commutator C. This operator is
not independent of A, B, but since it is a third-order differential operator, it cannot be written
as a polynomial function of them. The general form of the quadratic algebra commutation
relations is

[A,B] = C, (3.1)

[A,C] = αA2 + γ{A,B}+ δA+ εB + ζ, (3.2)

[B,C] = aA2 − γB2 − α{A,B}+ dA− δB + z. (3.3)

Here {A,B} ≡ AB +BA,

δ = δ(H) = δ0 + δ1H, ε = ε(H) = ε0 + ε1H, ζ = ζ(H) = ζ0 + ζ1H + ζ2H
2,

d = d(H) = d0 + d1H, z = z(H) = z0 + z1H + z2H
2,

and α, γ, a, δi, εi, ζi, di, zi are some constants. Note that it is the Jacobi identity [A, [B,C]] =
[B, [A,C]] that imposes some relations between coefficients in (3.2) and (3.3).

Such a quadratic algebra closes at level 6 [47] or, in other words, it has a Casimir operator
which is a sixth-order differential operator [36],

K = C2 + 2
3aA

3 − 1
3α{A,A,B} −

1
3γ{A,B,B}+

(
2
3α

2 + d+ 2
3aγ

)
A2

+
(

1
3αγ − δ

)
{A,B}+

(
2
3γ

2 − ε
)
B2 +

(
2
3αδ + 1

3aε+ 1
3dγ + 2z

)
A

+
(
−1

3αε+ 2
3γδ − 2ζ

)
B + 1

3γz −
1
3αζ

= k0 + k1H + k2H
2 + k3H

3, (3.4)

where ki are some constants and {A,B,C} ≡ ABC +ACB +BAC +BCA+ CAB + CBA.
For our two-dimensional PDM model, described by the Hamiltonian defined in equations

(2.2)–(2.4), we shall take

A = R, B = L, (3.5)

where, for simplicity’s sake, we dropped the superscript (k) because no confusion can arise
outside the SUSYQM context.

To determine their commutation relations, it is worth noting first that their building blocks,
the first-order differential operators ∂y, η† and η, generate another quadratic algebra together
with the other set of intertwining operators η̄†, η̄, given in (2.12) and (2.13). Their commutation
relations are indeed easily obtained as

[∂y, η] = qη̄, [∂y, η̄] = −qη, [η, η̄] = q∂y, (3.6)

[η, η†] = 2q2k(1 + ξ2), [η̄, η̄†] = 2q2k(1 + ξ̄2), [η, η̄†] = −q∂y + 2q2kξξ̄, (3.7)

and their Hermitian conjugates. In (3.7), we have defined

ξ = −(2qk)−1(η + η†) = csch qx sin qy, ξ̄ = −(2qk)−1(η̄ + η̄†) = csch qx cos qy.

Interestingly, ∂y, η and η̄ (as well as ∂y, η† and η̄†) close an sl(2) subalgebra.
From these results, it is now straightforward to show that the operator C in (3.1) is given by

C = q{∂y, η
†η̄ + η̄†η}
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and that the coefficients in (3.2) and (3.3) are

α = γ = 8q2, δ = 8q2[q2(2k − 1)−H], ε = 16q4(k − 1)(k + 1),

ζ = 8q4(k − 1)(2q2k −H), a = 0, d = 16q4, z = 8q4(2q2k −H). (3.8)

On inserting the latter in (3.4), we obtain for the value of the Casimir operator

K = −4q4[2q2(7k − 6)− 3H](2q2k −H).

It is worth noting that since a = 0 in (3.3), we actually have here an example of quadratic Racah
algebra QR(3) [31].

Before proceeding to a study of its finite-dimensional irreducible representations in Section 4,
it is interesting to consider its classical limit. For such a purpose, since we have adopted units
wherein ~ = 2m0 = 1, we have first to make a change of variables and of parameters restoring
a dependence on ~ (but keeping 2m0 = 1 for simplicity’s sake) before letting ~ go to zero.

An appropriate transformation is

X = ~x, Y = ~y, PX = −i~∂X , PY = −i~∂Y , Q =
q

~
, K = ~k.

On performing it on the Hamiltonian given in equations (2.2)–(2.4), we obtain

H = −~2(∂X cosh2QX∂X + ∂Y cosh2QX∂Y )− ~2Q2 cosh2QX +Q2K(K − ~) csch2QX,

yielding the classical Hamiltonian

Hc = lim
~→0

H = cosh2QX(P 2
X + P 2

Y ) +Q2K2 csch2QX.

A similar procedure applied to the intertwining operators leads to

ηc = lim
~→0

η = i coshQX sinQY PX − i sinhQX cosQY PY −QK cschQX sinQY,

η̄c = lim
~→0

η̄ = i coshQX cosQY PX + i sinhQX sinQY PY −QK cschQX cosQY,

together with η∗c = lim
~→0

η† and η̄∗c = lim
~→0

η̄†, while the operators quadratic in the momenta give

rise to the functions

Lc = lim
~→0

L = P 2
Y ,

Rc = lim
~→0

R = cosh2QX sin2QY P 2
X − 2 sinhQX coshQX sinQY cosQY PXPY

+ sinh2QX cos2QY P 2
Y +Q2K2 csch2QX sin2QY,

R̄c = lim
~→0

R̄ = cosh2QX cos2QY P 2
X + 2 sinhQX coshQX sinQY cosQY PXPY

+ sinh2QX sin2QY P 2
Y +Q2K2 csch2QX cos2QY,

satisfying the relation

Hc = Lc +Rc + R̄c.

The quadratic associative algebra (3.1)–(3.4) is now changed into a quadratic Poisson alge-
bra, whose defining relations can be determined either by taking the limit lim

~→0
(i~)−1[O,O′] =

{Oc, O
′
c}P or by direct calculation of the Poisson brackets {Oc, O

′
c}P:

{Ac, Bc}P = Cc,
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{Ac, Cc}P = αcA
2
c + 2γcAcBc + δcAc + εcBc + ζc,

{Bc, Cc}P = acA
2
c − γcB

2
c − 2αcAcBc + dcAc − δcBc + zc.

Here

Cc = lim
~→0

C

i~
= 2QPY (η∗c η̄c + η̄∗cηc)

and

αc = γc = −8Q2, δc = 8Q2Hc, εc = −16Q4K2, ζc = ac = dc = zc = 0.

Such a Poisson algebra has a vanishing Casimir:

Kc = lim
~→0

K = 0.

4 Finite-dimensional irreducible representations
of the quadratic associative algebra

The quadratic algebra (3.1)–(3.4) can be realized in terms of (generalized) deformed oscillator
operators N , b†, b, satisfying the relations [50]

[N , b†] = b†, [N , b] = −b, b†b = Φ(N ), bb† = Φ(N + 1),

where the structure function Φ(x) is a ‘well-behaved’ real function such that

Φ(0) = 0, Φ(x) > 0 for x > 0. (4.1)

This deformed oscillator algebra has a Fock-type representation, whose basis states |m〉, m = 0,
1, 2, . . .,1 fulfil the relations

N|m〉 = m|m〉,

b†|m〉 =
√

Φ(m+ 1) |m+ 1〉, m = 0, 1, 2, . . . ,
b|0〉 = 0,

b|m〉 =
√

Φ(m) |m− 1〉, m = 1, 2, . . . .

(4.2)

We shall be more specifically interested here in a subclass of deformed oscillator operators,
which have a (p + 1)-dimensional Fock space, spanned by |p,m〉 ≡ |m〉, m = 0, 1, . . . , p, due to
the following property

Φ(p+ 1) = 0 (4.3)

of the structure function, implying that

(b†)p+1 = bp+1 = 0.

These are so-called (generalized) deformed parafermionic oscillator operators of order p [49].
The general form of their structure function is given by

Φ(x) = x(p+ 1− x)(a0 + a1x+ a2x
2 + · · ·+ ap−1x

p−1),

1We adopt here the unusual notation |m〉 in order to avoid confusion between the number of deformed bosons
and the quantum number n introduced in (2.7).
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where a0, a1, . . . , ap−1 may be any real constants such that the second condition in (4.1) is
satisfied for x = 1, 2, . . . , p.

A realization of the quadratic algebra (3.1)–(3.4) in terms of deformed oscillator operators
N , b†, b reads [36]

A = A(N ), (4.4)

B = σ(N ) + b†ρ(N ) + ρ(N )b, (4.5)

where A(N ), σ(N ) and ρ(N ) are some functions of N , which, in the γ 6= 0 case, are given by

A(N ) =
γ

2

[
(N + u)2 − 1

4
− ε

γ2

]
, (4.6)

σ(N ) = −α
4

[
(N + u)2 − 1

4

]
+
αε− γδ

2γ2
− αε2 − 2γδε+ 4γ2ζ

4γ4

1
(N + u)2 − 1

4

, (4.7)

ρ2(N ) =
1

3 · 212γ8(N + u)(N + u+ 1)[2(N + u) + 1]2
, (4.8)

with the structure function

Φ(x) = −3072γ6K[2(N + u)− 1]2

− 48γ6(α2ε− αγδ + aγε− dγ2)[2(N + u)− 3][2(N + u)− 1]4[2(N + u) + 1]

+ γ8(3α2 + 4aγ)[2(N + u)− 3]2[2(N + u)− 1]4[2(N + u) + 1]2

+ 768(αε2 − 2γδε+ 4γ2ζ)2

+ 32γ4(3α2ε2 − 6αγδε+ 2aγε2 + 2γ2δ2 − 4dγ2ε+ 8γ3z + 4αγ2ζ)

× [2(N + u)− 1]2[12(N + u)2 − 12(N + u)− 1]

− 256γ2(3α2ε3 − 9αγδε2 + aγε3 + 6γ2δ2ε− 3dγ2ε2 + 2γ4δ2 + 2dγ4ε+ 12γ3εz

− 4γ5z + 12αγ2εζ − 12γ3δζ + 4αγ4ζ)[2(N + u)− 1]2. (4.9)

These functions depend upon two (so far undetermined) constants, u and the eigenvalue of the
Casimir operator K (which we denote by the same symbol).

Such a realization is convenient to determine the representations of the quadratic algebra
in a basis wherein the generator A is diagonal together with K (or, equivalently, H) because
the former is already diagonal with eigenvalues A(m). The (p+ 1)-dimensional representations,
associated with (p+ 1)-fold degenerate energy levels, correspond to the restriction to deformed
parafermionic operators of order p [36]. The first condition in (4.1) can then be used with
equation (4.3) to compute u and K (or E) in terms of p and of the Hamiltonian parameters. A
choice is then made between the various solutions that emerge from the calculations by imposing
the second restriction in (4.1) for x = 1, 2, . . . , p.

In the present case, for the set of parameters (3.8), the complicated structure function (4.9)
drastically simplifies to yield the factorized expression

Φ(x) = 3 · 230q20(2x+ 2u+ k − 1)(2x+ 2u+ k − 2)(2x+ 2u− k)(2x+ 2u− k − 1)
×

(
2x+ 2u− 1

2 + ∆
) (

2x+ 2u− 3
2 + ∆

) (
2x+ 2u− 1

2 −∆
) (

2x+ 2u− 3
2 −∆

)
,

where

∆ =

√(
k − 1

2

)2

+
E

q2
.
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Furthermore, the eigenvalues of the operator A become

A(m) = q2(2m+ 2u− k)(2m+ 2u+ k).

Since A = R is a positive-definite operator, only values of u such that A(m) ≥ 0 for m = 0,
1, . . . , p should be retained.

On taking this into account, the first condition in (4.1) can be satisfied by choosing either
u = k/2 or u = (k + 1)/2, yielding

A(m) = 4q2m(m+ k) (4.10)

or

A(m) = 4q2
(
m+ 1

2

) (
m+ k + 1

2

)
, (4.11)

respectively. For u = k/2, equation (4.3), together with the second condition in (4.1), can be
fulfilled in two different ways corresponding to ∆ = 2p+ k + 1± 1

2 or

E = q2
(
2p+ 3

2 ±
1
2

) (
2p+ 2k + 1

2 ±
1
2

)
. (4.12)

The resulting structure function reads

Φ(x) = 3 · 238q20x(p+ 1− x)
(
x− 1

2

) (
p+ 1± 1

2 − x
) (
x+ k − 1

2

)
(x+ k − 1)

×
(
x+ p+ k + 1

4 ±
1
4

) (
x+ p+ k − 1

4 ±
1
4

)
. (4.13)

Similarly, for u = (k + 1)/2, we obtain

E = q2
(
2p+ 5

2 ±
1
2

) (
2p+ 2k + 3

2 ±
1
2

)
(4.14)

and

Φ(x) = 3 · 238q20x(p+ 1− x)
(
x+ 1

2

) (
p+ 1± 1

2 − x
)
(x+ k)

(
x+ k − 1

2

)
×

(
x+ p+ k + 5

4 ±
1
4

) (
x+ p+ k + 3

4 ±
1
4

)
. (4.15)

Our quadratic algebra approach has therefore provided us with a purely algebraic derivation
of the eigenvalues of H and R in a basis wherein they are simultaneously diagonal. It now
remains to see to which eigenvalues we can associate physical wavefunctions, i.e., normalizable
functions satisfying equation (2.1). This will imply a correspondence between |p,m〉 and the
functions ΨN,N−ν(x, y), defined in (2.9).

On comparing A(m) to the known (physical) eigenvalues rν of R, given in (2.10), we note
that the first choice (4.10) for A(m) corresponds to even ν = 2m (hence to even N), while the
second choice (4.11) is associated with odd ν = 2m+1 (hence with odd N). Appropriate values
of p leading to the level degeneracies (2.6) are therefore p = N/2 and p = (N−1)/2, respectively.
With this identification, both equations (4.12) and (4.14) yield the same result

E = q2
(
N + 3

2 ±
1
2

) (
N + 2k + 1

2 ±
1
2

)
. (4.16)

Comparison with (2.5) shows that only the upper sign choice in (4.16) leads to physical wave-
functions ΨN,N−ν(x, y).

Restricting ourselves to such a choice, we can now rewrite all the results obtained in this
section in terms of N and ν instead of p and m. In particular, the two expressions (4.13)
and (4.15) for the structure function can be recast in a single form Φ(m) → Φν , where

Φν = 3 · 230q20ν(ν − 1)(ν + 2k − 1)(ν + 2k − 2)(N + ν + 2k)(N + ν + 2k + 1)
× (N − ν + 2)(N − ν + 3). (4.17)
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More importantly, our quadratic algebra analysis provides us with an entirely new result,
namely the matrix elements of the integral of motion L in the basis wherein H and R are
simultaneously diagonal. On using indeed the correspondence |p,m〉 → ΨN,N−ν , as well as the
results in equations (4.2), (4.5), (4.7), (4.8) and (4.17), we obtain

LΨN,N−ν = σνΨN,N−ν + τνΨN,N−ν+2 + τν+2ΨN,N−ν−2, (4.18)

where we have reset σ(m) → σν , ρ(m) → ρν and defined τν = sνρν−2

√
Φν . The explicit form of

the coefficients on the right-hand side of (4.18) is given by

σν =
q2

2(ν + k − 1)(ν + k + 1)
{−(ν + k − 1)2(ν + k + 1)2

+ [N2 + (2k + 3)N + 2k2 + 2k + 1](ν + k − 1)(ν + k + 1)
− k(k − 1)(N + k + 1)(N + k + 2)}, (4.19)

τ2
ν =

q4

16(ν + k − 2)(ν + k − 1)2(ν + k)
ν(ν − 1)(ν + 2k − 1)(ν + 2k − 2)

× (N − ν + 2)(N − ν + 3)(N + ν + 2k)(N + ν + 2k + 1). (4.20)

Note that τν is determined up to some phase factor sν depending on the convention adopted for
the relative phases of ΨN,N−ν and ΨN,N−ν+2.

For N = 4, for instance, ν runs over 0, 2, 4, so that equations (4.18)–(4.20) become

LΨ4,0 =
q2

k + 3

[
(13k + 21)Ψ4,0 + 3s4

√
2(k + 1)(2k + 3)(2k + 9)

k + 2
Ψ4,2

]
,

LΨ4,2 = q2

[
3s4
k + 3

√
2(k + 1)(2k + 3)(2k + 9)

k + 2
Ψ4,0 +

17k2 + 76k + 39
(k + 1)(k + 3)

Ψ4,2

+
s2

k + 1

√
10(k + 3)(2k + 1)(2k + 7)

k + 2
Ψ4,4

]
,

LΨ4,4 =
q2

k + 1

[
s2

√
10(k + 3)(2k + 1)(2k + 7)

k + 2
Ψ4,2 + 5(k + 3)Ψ4,4

]
.

As a check, these results can be compared with those derived from the action of L on the
expansions of Ψ4,0, Ψ4,2 and Ψ4,4 in terms of the first basis eigenfunctions ψ0,4, ψ1,2 and ψ2,0

(see, e.g., equations (I3.61) and (I3.49) for Ψ4,0 and Ψ4,4, respectively). This leads to the phase
factors s2 = s4 = −1.

To conclude, it is worth mentioning that had we made the opposite choice in equation (3.5),
i.e., A = L and B = R, we would not have been able to use the deformed parafermionic
realization (4.4), (4.5) to determine the energy spectrum. The counterpart of the parafermionic
vacuum state would indeed have been a function annihilated by L and therefore constructed
from the unphysical function χ̄−1(y) of equation (2.11).

5 Conclusion

In this paper, we have revisited the exactly solvable PDM model in a two-dimensional semi-
infinite layer introduced in I. Here we have taken advantage of its superintegrability with two
integrals of motion L and R that are quadratic in the momenta to propose a third method of
solution in the line of some recent analyses of such problems.
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We have first determined the explicit form of the quadratic associative algebra generated
by L, R and their commutator. We have shown that it is a quadratic Racah algebra QR(3) and
that its Casimir operator K is a second-degree polynomial in H. We have also obtained the
quadratic Poisson algebra arising in the classical limit.

We have then studied the finite-dimensional irreducible representations of our algebra in
a basis wherein K (or H) and R are diagonal. For such a purpose, we have used a simple proce-
dure, proposed in [36], consisting in mapping this basis onto deformed parafermionic oscillator
states of order p. Among the results so obtained for the energy spectrum, we have selected
those with which physical wavefunctions can be associated. This has illustrated once again the
well-known fact that in quantum mechanics the physics is determined not only by algebraic
properties of operators, but also by the boundary conditions imposed on wavefunctions. Our
analysis has provided us with an interesting new result, not obtainable in general form in the
SUSYQM approach of I, namely the matrix elements of L in the basis wherein H and R are
simultaneously diagonal.

As final points, it is worth observing that the approaches followed here are not the only
ones available. First, one could have used a gauge transformation to relate equation (2.3)
to a well-known superintegrable system in a Darboux space ([38, 48] and references quoted
therein). Second, the irreducible representations of QR(3) could have been constructed by the
ladder-operator method employed in [31, 32, 33, 34]. This would have allowed us to express the
transformation matrix elements between the bases ψ(k)

n,l and Ψ(k)
N,N0

(denoted by Z(k)
N0;n,l in I) in

terms of Racah–Wilson polynomials.
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II. The classical two-dimensional Stäckel transform, J. Math. Phys. 46 (2005), 053510, 15 pages.

[47] Kalnins E.G., Kress J.M., Miller W.Jr., Second-order superintegrable systems in conformally flat spaces.
V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.

[48] Kalnins E.G., Kress J.M., Miller W.Jr., Nondegenerate 2D complex Euclidean superintegrable systems and
algebraic varieties, J. Phys. A: Math. Theor. 40 (2007), 3399–3411.

[49] Quesne C., Generalized deformed parafermions, nonlinear deformations of so(3) and exactly solvable poten-
tials, Phys. Lett. A 193 (1994), 245–250.

[50] Daskaloyannis C., Generalized deformed oscillator and nonlinear algebras, J. Phys. A: Math. Gen. 24 (1991),
L789–L794.

[51] Roy B., Roy P., Effective mass Schrödinger equation and nonlinear algebras, Phys. Lett. A 340 (2005),
70–73.

[52] von Roos O., Position-dependent effective masses in semiconductor theory, Phys. Rev. B 27 (1983), 7547–
7552.

http://arxiv.org/abs/hep-th/0011209
http://arxiv.org/abs/quant-ph/9907037

	1 Introduction
	2 Exactly solvable and superintegrable PDM model in a two-dimensional semi-infinite layer
	3 Quadratic associative algebra and its classical limit
	4 Finite-dimensional irreducible representations of the quadratic associative algebra
	5 Conclusion
	References

