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Abstract. We discuss the notion of criticality of semilinear differential equations and
systems, its relations to scaling transformations and the Noether approach to Pokhozhaev’s
identities. For this purpose we propose a definition for criticality based on the S. Lie
symmetry theory. We show that this definition is compatible with the well-known notion
of critical exponent by considering various examples. We also review some related recent
papers.
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1 Introduction

It is well known that the so-called critical exponents are found as critical powers for embedding
theorems of Sobolev type. They can be also viewed as numbers which divide existence and
nonexistence of solutions for various semilinear differential equations and systems involving
power nonlinearities. Such equations appear when the Frechét derivatives of Sobolev and Lp

norms are considered.
The aim of this paper is to discuss a notion of criticality of differential equations, its rela-

tions to scaling transformations and the Noether approach to Pokhozhaev’s identities [13]. Our
interpretation is based on the S. Lie symmetry theory of differential equations [5, 29, 30, 24]
and the criticality is considered in terms of group invariance. In this sense we propose a defi-
nition of criticality. Then we show that it is compatible with the notion of critical exponent
by considering various examples. Although these examples are semilinear differential equations
and systems, we believe that this point of view can trace new directions and provide deeper
understanding of more general differential equations and systems.

To begin with, we recall some results already discussed in [6]. Let us first consider the
following class of ordinary differential equations for v = v(r), r > 0:

−
(
rα|v′(r)|βv′(r)

)
= µrγ |v(r)|p−1v(r), (1.1)

where α, β, γ, µ and p are real numbers and v′ = dv
dr . This class was introduced in [4] and studied

by Clemént, de Figueiredo and Mitidieri in [15]. It contains various differential equations, e.g.
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the equations which are radial forms of PDE involving the Laplace, p-Laplace or k-Hessian
operators, the Lane–Emden equation, Emden–Fowler equation, etc. Such equations come from
mechanics, astrophysics, general relativity, theories of gravitation, atomic physics and quantum
mechanics. We shall assume that the parameters satisfy the inequalities

µ > 0, β > −1, α− β − 1 > 0,

and

β + 1 < p ≤ q∗ − 1,

where

q∗ =
(γ + 1)(β + 2)

α− β − 1

is the critical exponent for (1.1). See [15].
For this class it has been observed in [10] that a Lie point symmetry of (1.1) is a variational

symmetry if and only if p + 1 = q∗, the critical exponent. This fact suggests that the critical
exponent for (1.1) may as well be defined as the only exponent for which any Lie point symmetry
of (1.1) is a variational symmetry. This is a way to define the critical exponent without involving
functional analysis. That is, using directly the ordinary differential equation which occurs in the
most cases when reducing the proof of the embedding theorems to radially symmetric functions.
We shall come back to this point later. We just observe that for the radial form

ϕ′′ +
n− 1

r
ϕ′ + |ϕ|p−1ϕ = 0

of the partial differential equation

∆u + |u|p−1u = 0 (1.2)

in Rn, n ≥ 3, we have α = γ = n− 1, β = 0 and the critical exponent is exactly

p =
n + 2
n− 2

,

the well-known Sobolev exponent. The latter property explains why the Lane–Emden equation

v′′ +
2
r
v′ + v5 = 0,

for v = v(r), describing a star as a ball of condensed gases, can be explicitly solved (since
the critical exponent in spatial dimension 3 is exactly 5 and hence any Lie point symmetry
is variational reducing the order of integration procedure by two). We also recall that the
equation (1.2) admits positive solutions if and only if p ≥ (n + 2)/(n− 2). See [20, 14].

The symmetry approach was applied in [11] to the radial Lane–Emden system in Rn, n ≥ 3,

u′′ +
n− 1

2
u′ + |v|q−1v = 0,

v′′ +
n− 1

2
v′ + |u|p−1u = 0. (1.3)

The obtained result states that a Lie point symmetry is a variational symmetry of (1.3) if and
only if the positive numbers p and q are such that the point (p, q) belongs to the critical hyperbola

1
p + 1

+
1

q + 1
=

n− 2
n

. (1.4)
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By the results of Mitidieri [25, 26, 27] and Serrin–Zou [36, 37, 38] it follows that (1.4) divides
existence and nonexistence of positive solutions of (1.3). Hence the name critical hyperbola.
Related existence and nonexistence results for higher order equations and systems are contained
in [32, 34, 39] and [28]. For further details concerning Noether symmetries for (1.1) and (1.3)
see the review paper [6] and the references therein. We point out that similar ideas and results
pertaining to semilinear wave equations have appeared in the recent papers [1] and [2].

One can observe that in all these cases the symmetries are dilations of the independent and the
dependent variables. The scaling transformations of this type play an important role since the
invariance with respect to such transformations is equivalent to an application of a dimensional
analysis argument [5, 29].

In this paper we shall show that similar properties are valid for partial differential equations
and systems which have a variational structure. This will allow to define the notion of criticality
for such differential equations and systems. For this purpose we consider the Euler–Lagrange
equations

E(L) = 0 (1.5)

for the functional

J [u] =
∫

Ω
L
(
x, uα, uα

(k)

)
dx, (1.6)

where x ∈ Ω ⊆ Rn, n ≥ 1, uα(x), α = 1, 2, . . . ,m, are Ck(Ω) functions, k ≥ 1, the Function of
Lagrange L = L(x, uα, uα

(k)) depends on x, uα and the partial derivatives of uα up to order k,
and E = (E1, . . . , Em) is the Euler operator.

Now we present the basic definition regarding the criticality of the systems (1.5) in the
semilinear case.

Definition 1. Suppose that (1.5) is a semilinear system. We say that it is critical if there exists
a dilation

X = aixi
∂

∂xi
+ bαuα ∂

∂uα
(1.7)

such that

X(k)L + L

n∑
i=0

ai = 0, (1.8)

where ai, i = 1, . . . , n, bα, α = 1, 2, . . . ,m, are real constants and X(k) is the k-th order
prolongation of X.

Above and throughout this paper we assume summation over a repeated index: the Latin
indices vary from 1 to n, while the Greek ones – from 1 to m.

The first immediate observation is that the relation (1.8) means that X is a variational
symmetry, that is a symmetry of the action functional (1.6) [5, 29, 30]. This conclusion follows
from the infinitesimal criterion of invariance [29, 30]. In this way it is clear that the left-hand
side of (1.8) is the left-hand side of the Noether identity [24, 23] for the particular case of
dilations X. The Noether identity was discussed in [13] and used to obtain Pokhozhaev type
identities. The choice of critical values in the Noether identity allows to obtain the ‘right’ form
of the Pokhozhaev’s identity [13] and the corresponding nonexistence results in appropriate
functional spaces for problems which obey certain type of homogeneity.

We note that in the present paper we shall deal only with dilations which, as we shall show,
cover the known cases of critical semilinear differential equations and systems. Indeed, all
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considered examples admit dilations as symmetries. In regard to more general differential equa-
tions and systems another possible definition of criticality based on the property established and
discussed in [10, 11, 6, 7] relating the variational/divergence symmetries of critical differential
equations and the Sobolev theorem would be the following

Definition 2. We say that the system (1.5) is critical if any its generalized (Lie–Bäcklund)
symmetry is variational or divergence symmetry.

However, in order to apply the Definition 2 one needs a complete group classification of the
considered differential equations or systems which for the present is not available for some of the
examples. The group analysis of these cases itself is a subject of another work and applications
of Definition 2 will be treated elsewhere.

By a straightforward calculation of the extended infinitesimals of the dilation X one can see
that in more detail the equation (1.8) reads

aixi
∂L

∂xi
+ bαuα ∂L

∂uα
+ (bα − ai)uα

i

∂L

∂uα
i

+ · · ·

+

(
bα −

k∑
s=1

ais

)
uα

i1i2...ik

∂L

∂uα
i1i2...ik

+ L

n∑
i=0

ai = 0. (1.9)

Although the general solution of the first order linear partial differential equation (1.9) can be
easily found, we shall proceed in a different way. Namely, we shall consider various concrete
differential equations and systems, and for each of them we shall find the criticality condition in
terms of its specific parameters. Typical examples are the following theorems, which are among
the main new results obtained in the present paper.

Theorem 1. Let F = F (u1, . . . , um) ∈ C1(Rm). Then the system

−∆u1 = F
u1 ,

−∆u2 = F
u2 ,

· · · · · · · · · · · · · · ·
−∆um = Fum (1.10)

is critical if and only if
m∑

i=1

uiF
ui = σF, where σ =

2n

n− 2
. (1.11)

Observe that the equality (1.11) is the Euler identity for F . Hence we have

Corollary 1. The potential system (1.10) is critical if and only if F is a homogeneous function
of degree σ = 2n

n−2 .

A further result can be stated as

Theorem 2. Let H = H(u1, . . . , um, v1, . . . , vm) ∈ C1(Rm). Then the system of 2m equations

−∆u1 = Hv1 ,

−∆v1 = Hu1 ,

· · · · · · · · · · · · · · ·
−∆um = Hvm ,

−∆vm = Hum (1.12)
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is critical if and only if

aαuαHuα + (1− aα)vαHvα = θH, (1.13)

where θ = n
n−2 and aα, α = 1, . . . ,m, are real positive constants.

Corollary 2. The system (1.12) is critical if and only if H = H(u1, . . . , um, v1, . . . , vm) is a sum
of homogeneous functions and identity (1.13) holds.

In this paper we adopt the following terminology. Let L be a linear elliptic differential
operator in divergence form and L∗ – its formally adjoint operator. An Euler–Lagrange system
of type

Lu = Fu(u, v), L∗v = Fv(u, v)

will be called elliptic potential system, while a system of the form

Lu = Hv(u, v), L∗v = Hu(u, v)

will be called elliptic Hamiltonian system. (Such terminology has been used in analysis, e.g. [16]
and [17].) Thus the system (1.10) is an elliptic potential system and the system (1.12) is an
elliptic Hamiltonian system.

Nonexistence results for Hamiltonian systems (1.12) were obtained by Mitidieri in [25, 26, 27]
using Rellich type identities established in the same articles. See also [39].

This work is a natural continuation of the preceding one [6] presented at the 6th International
Conference “Symmetry in Nonlinear Mathematical Physics”, June 20–26, 2005, Kyiv, Ukraine.
Here in Sections 4, 6, 8 we shall illuminate some more or less known results. The results obtained
in Sections 7, 9–13 are new. We shall also review some recent papers [13, 8, 9]. In particular, in
Section 3, we shall comment on the role of the critical exponents in establishing of Pokhozhaev’s
identities which will complement the discussion in [13]. The exposition in some parts follows
closely the text of the original articles. It corresponds to the talk one of us (Y.B.) is going to
give during the 7th International Conference “Symmetry in Nonlinear Mathematical Physics”,
June 24–30, 2007, Kyiv, Ukraine.

This paper is organized as follows. In the next section we introduce notations and prelimi-
naries. Then in Section 3 we comment on the Noether approach to Pokhozhaev identities [13].
In the subsequent sections we apply the basic definition to the following partial differential
equations and systems: nonlinear Poisson equations, p-Laplace equations, equations involving
polyharmonic, Baouendi–Grushin and Kohn–Laplace operators, elliptic systems of potential,
Hamiltonian and mixed type, hyperbolic Hamiltonian systems and unbounded Hamiltonian sys-
tems. For each case we find the corresponding criticality conditions. If the nonlinearities are
of power type we show that the proposed definition is compatible with the notions of critical
exponent and critical hyperbola. In this regard we consider some model equations and systems.
Theorems 1 and 2 are proved in Sections 9 and 10 respectively.

2 Preliminaries

In this section we outline very briefly some basic notions and formulae regarding variational
properties of differential equations and systems as well as Lie groups generators and their exten-
sions. For further details, systematic and profound expositions the interested reader is directed
to [5, 24, 29, 30].

We shall suppose that all considered functions, vector fields, tensors, functionals, etc. are
sufficiently smooth in order for the derivatives we write to exist. The independent variable
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x ∈ Ω ⊆ Rn – a bounded or unbounded domain. In this work we are mainly interested in group
invariance properties of the considered differential equations and systems. For this reason we
shall not treat the boundary terms and the regularity of solutions.

The partial derivatives of a smooth function v = v(x) are denoted by subscripts:

vi :=
∂v

∂xi
, vij :=

∂2v

∂xi∂xj
,

etc. We shall also assume summation over a repeated index. The Latin indices vary from 1 to n,
while the Greek ones – from 1 to m. The latter will denote collections of functions, e.g. vα(x).

We introduce the total derivative operator

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · ·+ uα
ii1i2...il

∂

∂uα
i1i2...il

+ · · · ,

where uα(x) are given functions. (See [5, 29].) If v is a function of x, uα and the derivatives of
uα up to order k, then

Div =
∂v

∂xi
+ uα

i

∂v

∂uα
+ uα

ij

∂v

∂uα
j

+ · · ·+ uα
ii1i2...il

∂v

∂uα
i1i2...ik

.

The Euler–Lagrange equations, corresponding to the functional

J [u] =
∫

Ω
L
(
x, uα, uα

(k)

)
dx,

are given by

Eα(L) =
∂L

∂uα
−Di

∂L

∂uα
i

+ DiDj
∂L

∂uα
ij

+ · · ·+ (−1)kDi1Di2 · · ·Dik

∂L

∂uα
i1i2...ik

= 0,

where the operator

Eα =
∂

∂uα
−Di

∂

∂uα
i

+ DiDj
∂

∂uα
ij

+ · · ·+ (−1)kDi1Di2 · · ·Dik

∂

∂uα
i1i2...ik

+ · · · (2.1)

is the α-th component of the Euler operator E = (E1, . . . , Em) which corresponds to the (un-
known) function uα. See [5, 29].

Further, consider the differential operator

X = ξi ∂

∂xi
+ ηα ∂

∂uα
.

The functions

ξi = ξi(x, u) = ξi(x1, . . . , xn, u1, . . . , um)

and

ηα = ηα(x, u) = ηα(x1, . . . , xn, u1, . . . , um)

are called infinitesimals of the one-parametric group of point transformations generated by X,
that is the transformation

x∗j = x∗j (x, u, ε), u∗α = u∗α(x, u, ε), (2.2)
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where ε is a parameter and

ξi =
∂x∗i
∂ε

∣∣∣∣
ε=0

, ηα =
∂u∗α

∂ε

∣∣∣∣
ε=0

. (2.3)

Given a transformation (2.2) one can calculate ξi and ηα by (2.3). And vice-versa, given xj , uα,
ξi and ηα, the one-parametric group of point transformations (2.2) is determined by the unique
solution of the problem

dx∗j
dε

= ξj(x∗i , u
∗α),

du∗α

dε
= ηα(x∗i , u

∗α),

x∗j |ε=0 = xj , u∗α|ε=0 = uα.

Henceforth we shall identify the Lie point transformation (2.2) and its infinitesimal generator X.
We associate to X its k-th order prolongation X(k) given by

X(k) = ξi ∂

∂xi
+ η

∂

∂u
+ η

(1)α
i

∂

∂uα
i

+ · · ·+ η
(k)α
i1i2...ik

∂

∂uα
i1i2...ik

, (2.4)

where

η
(1)α
i = Diη

α − (Diξ
j)uα

j , i = 1, 2, . . . , n;

η
(l)α
i1i2...il

= Dilη
(l−1)α
i1i2...il−1

− (Dilξ
j)uα

i1i2...il−1j ,

with il = 1, 2, . . . , n for l = 2, 3, . . . , k, k = 2, 3, . . . . See [5, 29] for further details. The functions
η

(l)α
i1i2...il

are called extended infinitesimals.

Definition 3. A vector field X is a divergence symmetry of J [u] if there exists a vector function
B = (B1, B2, . . . , Bn) of x, u and its derivatives up to some finite order, such that

X(m)L + LDiξ
i = DiBi, (2.5)

or equivalently,

∂L

∂xi
ξi +

∂L

∂u
η +

∂L

∂ui
(Diη − ujDiξj) + · · ·

+
∂L

∂ui1i2...im

[Di1Di2 · · ·Dim(η − ujξj) + ξjuji1i2...im ] + LDiξ
i = DiBi. (2.6)

If B = 0, then X is called variational symmetry.

Hence, clearly the relation (1.8) means that the dilation (1.7) is a variational symmetry.

3 On the Noether approach to Pokhozhaev identities

The celebrated Pokhozhaev’s identity [31, 32] is an important tool in the theory of differential
equations. Among a big variety of applications, it is particularly useful in establishing of non-
existence results. Commonly its specific form for each concrete problem is obtained by using ad
hoc procedures.

In [13] we have recently proposed a general unified method to generate Pokhozhaev identities.
This approach is based on the Noether identity and the Lie symmetry theory. It has been
applied in [13] to various nonlinear differential equations and systems choosing transformation
parameters assuming critical values. The essential points of this method can be summarized as
follows.
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Let uα(x), α = 1, 2, . . . ,m, be a set of C2k(Ω) functions, where k ≥ 1 and x ∈ Ω ⊆ Rn, n ≥ 1.
We denote by Ak the space of all locally analytic functions of x, uα and the partial derivatives
of uα up to order k. The elements f(x, uα, uα

(k)) of Ak are called differential functions [5, 24, 29].
Consider a differential operator of the form

X = ξi ∂

∂xi
+ ηα ∂

∂uα

where ξi, ηα ∈ Ak. Let

L = L(x, uα, uα
(k)) ∈ Ak

be an arbitrary differential function. Then the following identity holds

X(k)L + LDiξ
i = Eα(L)(ηα − uα

j ξj) + Di[Lξi + Wi[u, η − ujξ
j ]], (3.1)

where u = (u1, . . . , um), η = (η1, . . . , ηm), ui = (∂u1

∂xi
, . . . , ∂um

∂xi
), X(k) is the k-th order prolonga-

tion of X, E = (E1, . . . , Em) is the Euler operator and the operator Wi is defined in [5].
The identity (3.1) is called the Noether identity [24, 23]. It is the corner stone of the approach

suggested in [13]. The main point of [13] is the observation that the Pokhozhaev’s identity for
solutions of differential equations can be obtained from the Noether identity for functions after
integration and application of the Gauss–Ostrogradskii theorem, with account of the boundary
conditions.

It is clear that the crucial step in establishing of the Pokhozhaev identities is the choice of
the operator X which appears in (3.1). For the semilinear differential equations and systems
considered in [13] X was a dilation whose parameters assume critical values. In the present work
we show how to find such critical parameters. Actually, the use of critical values of the equation
parameters in obtaining the Pokhozhaev’s identities is the main motivation to write this paper.

4 Nonlinear Poisson equations

Let x ∈ Rn, n ≥ 3. It is well known that the equation

∆u + f(u) = 0 (4.1)

has a variational structure. Its function of Lagrange is given by

L =
1
2
u2

j − F (u), F (u) =
∫ u

0
f(z)dz.

We shall look for a constant a such that

X(1)L + nL = 0,

where

X = xi
∂

∂xi
+ au

∂

∂u

and the first order prolongation of X is given by

X(1) = xi
∂

∂xi
+ au

∂

∂u
+ (a− 1)ui

∂

∂ui
.
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By a straightforward calculation

X(1)L + nL =
(

a +
n− 2

2

)
u2

j − auf(u)− nF (u). (4.2)

Let a = (2− n)/2. Then by (4.2) the equation (4.1) is critical if and only if

n− 2
2

uf(u)− nF (u) = 0.

Hence we have proved

Theorem 3. The equation (4.1) is critical if and only if

f(u) = c|u|2∗−1u,

where 2∗ = 2n/(n− 2) and c is an arbitrary constant.

For the equation (4.1) in a bounded domain Ω ⊂ Rn, n ≥ 3, with homogeneous Dirichlet
condition u = 0 on ∂Ω, S.I. Pokhozhaev [31] obtained in 1965 the following identity∫

Ω

[
n− 2

2
uf(u)− nF (u)

]
dx = −1

2

∫
∂Ω
|∇u|2(x, ν)ds,

where ν is the outward unit normal to ∂Ω. This identity immediately follows from (4.2) with
a = (2− n)/2 and the Noether identity.

5 p-Laplace equations

An argument similar to that presented in the preceding section applies to quasilinear equations
involving the p-Laplace operator ∆p, p < n, given by ∆pu := div (|∇u|p−2∇u). The result
states:

Theorem 4. The equation

∆pu + |u|p∗−1u = 0

in Rn, where n > p and p∗ = np/(n − p) is the unique critical quasilinear p-Laplace equation.
(The uniqueness is up to multiplying factors of u.)

Remark. The above equation should be interpreted in a suitable weak form. For identities
related to the equation

∆pu + f(u) = 0

where f : R → R is a given function, we refer the interested reader to [22] where a Pokhozhaev
identity for C1,α-solutions is obtained. See also [34].

6 Polyharmonic equations

In this section we consider the polyharmonic equation

(−∆)ku + f(u) = 0 (6.1)
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in Rn, n > 2k. It was shown in [7] that the dilation

Z = xi
∂

∂xi
+

2k

1− p
u

∂

∂u

is a variational symmetry of

(−∆)ku + |u|p−1u = 0 (6.2)

if and only if

p =
n + 2k

n− 2k
, (6.3)

the critical Sobolev exponent. In this case all symmetries of (6.2) are divergence symmetries [7].
Let k be an even number. Then, as is well known, (6.1) is the Euler–Lagrange equation of

the functional∫
L =

∫ [
1
2
|∆k/2u|2 − F (u)

]
dx, F (u) =

∫ u

0
f(z)dz.

Thus the equation (1.9) with m = 1, u1 = u, a1 = a assumes the following form:

au
∂L

∂u
+ (a− k)ui1i2...ik

∂L

∂ui1i2...ik

+ nL = 0 (6.4)

since L does not depend on the derivatives of u of order less than k. Substituting

∂L

∂ui1i2...ik

= (∆k/2u)δi1i2 · · · δik−1ik

into (6.4) we obtain(
a− k +

n

2

) (
∆k/2u

)2 − auf(u)− nF (u) = 0. (6.5)

We choose a = (2k − n)/2. Then, by (6.5), the equation (6.1) is critical if and only if

n− 2k

2
uf(u)− nF (u) = 0.

Hence (6.1) is critical if and only if

f(u) = cu
n+2k
n−2k ,

where c is an arbitrary constant. Thus the following theorem holds:

Theorem 5. The equation (6.2) with p given by (6.3) is the only critical semilinear polyharmonic
equation (since the constant c can be incorporated into u by the change of the dependent variable
u = µv with µ = c(2k−n)/(4k)).

The case k-odd can be treated in a similar way.
For important results related to (6.1) see [34] and [35].
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7 Baouendi–Grushin equations

Let x ∈ Rn, y ∈ Rm, n ≥ 1,m ≥ 1 and u = u(x, y) ∈ C2(Rn × Rm) be a scalar function. Let
α > 0 be a real number. Then the generalized Baouendi–Grushin operator [3, 21] is defined by

∆Lu = ∆xu + |x|2α∆yu, (7.1)

where ∆xu = uxixi and ∆yu = uyµyµ are the standard Laplacians in Rn and Rm respectively,
and |x| = (x2

i )
1/2.

For recent results and applications of the Baouendi–Grushin operator see [18] and the refe-
rences therein. We just recall here that the critical exponent associated to ∆L is Q+2

Q−2 , where
Q = n + (α + 1)m > 2 is the so-called homogeneous dimension.

We consider the following semilinear equation:

∆Lu + |u|p−1u = 0. (7.2)

Formally it is the Euler–Lagrange equation of the functional J [u] =
∫

F where the function of
Lagrange is given by:

F =
1
2
|∇xu|2 +

1
2
|x|2α|∇yu|2 −

1
p + 1

|u|p+1 =
1
2
u2

xi
+

1
2
|x|2αu2

yµ
− 1

p + 1
|u|p+1.

It is easy to see by a straightforward calculation that the dilation

x∗j = λxj , y∗µ = λα+1yµ, u∗ = λ2/(1−p)u, (7.3)

is admitted by the Baouendi–Grushin equation (7.2), that is, it is a Lie point symmetry of (7.2).
Then using the infinitesimal criterion of invariance [29] or performing in the action integral J [u]
the above change of variables, we obtain that the dilation (7.3) is a variational symmetry of (7.2)
if and only if

p =
Q + 2
Q− 2

.

Clearly, if α = 0 this is the critical Sobolev exponent.
Now we shall study the criticality of the equation

∆Lu + f(u) = 0. (7.4)

We aim to clarify for which functions f this equation would be critical. For this purpose we
consider the dilation

X = xi
∂

∂xi
+ (α + 1)yµ

∂

∂yµ
+ au

∂

∂u
,

where a is a constant to be determined. Then the equation (1.9) assumes the following form:(
a− 1 +

Q

2

)
|∇xu|2 +

(
a− 1 +

Q

2

)
|x|2α|∇yu|2 − auf(u)−QF (u) = 0.

We choose a = (2−Q)/2. Then (7.4) is critical if and only if

Q− 2
2

uf(u)−QF (u) = 0.

That is, f(u) = cu(Q+2)/(Q−2). The following theorem summarizes the above considerations.

Theorem 6. Up to some multiplying factors, the equation

∆Lu + u(Q+2)/(Q−2) = 0

is the only critical semilinear partial dif ferential equation involving the Baouendi–Grushin ope-
rator.
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8 Kohn–Laplace equations

In this section we shall review and comment on some results obtained in [8, 9].
As it is well known the Heisenberg group Hn topologically is the real vector space R2n+1.

endowed with the product

(x, y, t)
(
x1, y1, t1

)
=

(
x + x1, y + y1, t + t1 + 2

n∑
i=1

(
yix

1
i − xiy

1
i

))
,

where (x, y, t),
(
x1, y1, t1

)
∈ Rn ×Rn ×R = Hn. In the last few decades a significant number of

works treats partial differential equations on the Heisenberg group Hn. In this regard various
authors have obtained existence and nonexistence results for equations involving Kohn–Laplace
operators. The following equation

∆Hnu + f(u) = 0, (8.1)

or equivalently

uxixi + uyiyi + 4
(
x2

i + y2
i

)
utt + 4yiuxit − 4xiuyit + f(u) = 0

will be called the Kohn–Laplace equation. Here the Kohn–Laplace operator ∆Hn is the natural
subelliptic Laplacian on Hn defined by

∆Hn =
n∑

i=1

(
X2

i + Y 2
i

)
,

where

Xi =
∂

∂xi
+ 2y

∂

∂t
, Yi =

∂

∂yi
− 2x

∂

∂t
.

Recall that in [19] Garofalo and Lanconelli established existence, regularity and nonexistence
results for the Kohn–Laplace equation in an open bounded or unbounded subset of Hn with
homogeneous Dirichlet boundary condition. The existence of weak solutions is proved in [19] pro-
vided the nonlinear term satisfies some growth conditions of the form f(u) = o(|u|(Q+2)/(Q−2))
as |u| → ∞, where Q = 2n + 2 is the homogeneous dimension of Hn ([19]). The exponent
(Q + 2)/(Q − 2) is the critical exponent for the Stein’s Sobolev space [19]. The nonexistence
results follow from remarkable Pokhozhaev identities established in [19] for the solutions of
Kohn–Laplace equations on the Heisenberg group. General nonexistence results for solutions of
semilinear differential inequalities on the Heisenberg group were obtained by Pokhozhaev and
Veron in [33]. In [8] a complete group classification of Kohn–Laplace equations on H1 is carried
out.

We observe that the Kohn–Laplace equation is formally the Euler–Lagrange equation of the
functional

J [u] =
∫

L,

with

L =
1
2
(Xiu)2 +

1
2
(Yiu)2 −

∫ u

0
f(s)ds

=
1
2
u2

xi
+

1
2
u2

yi
+ 2
(
x2

i + y2
i

)
u2

t + 2yiuxiut − 2xiuyiut −
∫ u

0
f(s)ds.
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Then using the definition of Lie point symmetry of a differential equation, one can show that
the scaling transformation

x∗j = λxj , y∗j = λyj , t∗ = λ2t, u∗ = λ
2

1−p u

is admitted by the equation

∆Hnu + |u|p−1u = 0. (8.2)

Further, following [9] and performing this change of variables in the functional J , it is easy
to see that the dilation

Z = xi
∂

∂xi
+ yi

∂

∂yi
+ 2t

∂

∂t
+

2
1− p

u
∂

∂u

is a variational symmetry if and only if

p =
n + 2

n
=

Q + 2
Q− 2

.

Thus the equation (8.2) admits the variational symmetry group generated by Z if and only if
p assumes the critical value. Hence one concludes as in Sections 3 and 5 that the following
theorem holds.

Theorem 7. The equation (8.2) with p = (n + 2)/n is the only critical Kohn–Laplace equation.

9 Elliptic potential systems

In this section we prove Theorem 1.
The function of Lagrange for the potential system (1.10) is given by

L =
1
2
uα

j uα
j − F (u1, . . . , um). (9.1)

Let a be a constant and consider a dilation of the form

X = xi
∂

∂xi
+ auα ∂

∂uα
.

Our aim is to find out a constant a such that X is a variational symmetry of (1.10), and,
hence (1.10) would be critical (see Introduction). Substituting (9.1) into the equation (1.9) we
obtain that (1.10) is critical if and only if(

a− 1 +
n

2

)
uα

j uα
j − auαFuα − nF = 0. (9.2)

Choosing a = (2− n)/2 we conclude from (9.2) that (1.10) is critical if and only if (1.11) holds.

10 Elliptic Hamiltonian systems

In this section we prove Theorem 2 and some corollaries.
The Function of Lagrange for the Hamiltonian system (1.12) is given by

L =
1
2
uα

j vα
j −H

(
u1, . . . , um, v1, . . . , vm

)
. (10.1)



14 Y. Bozhkov and E. Mitidieri

In order to satisfy the basic definition (see Introduction) we shall look for a dilation of type

X = xi
∂

∂xi
+ Aαuα ∂

∂uα
+ Bαvα ∂

∂vα
, (10.2)

where Aα, Bα, α = 1, . . . ,m, are constants to be determined later. By (1.9) and (10.1) we
obtain:

X(1)L + nL = (Aα + Bα − 2 + n)uα
j vα

j −AαuαHuα −BαvαHvα − nH. (10.3)

Let Aα + Bα = 2 − n for α = 1, . . . ,m. Then by (10.3) and the Definition 1, the Hamiltonian
system (1.12) is critical if and only if

−AαuαHuα −BαvαHvα = nH,

which implies (1.13) if we denote aα = −Aα(n− 2). This completes the proof of Theorem 2.
Further we consider the particular case m = 1, u1 = u, v1 = v, aα = a. The condition (1.13)

reads

auHu + (1− a)vHv = θH. (10.4)

The general solution of this linear first order partial differential equation is

H = uθ/aφ(u1−av−a),

where φ is an arbitrary function and θ = n/(n− 2). If

H =
1

q + 1
|u|q−1u +

1
p + 1

|v|p−1v

by (10.4) we have that the corresponding Lane–Emden system

−∆u = |v|p−1v, −∆v = |u|q−1u, (10.5)

is critical if and only if

auq+1 + (1− a)vp+1 =
n

n− 2

(
1

q + 1
uq+1 +

1
p + 1

vp+1

)
.

Hence the following theorem holds:

Theorem 8. The system (10.5) is critical if and only if

1
p + 1

+
1

q + 1
=

n− 2
n

,

that is, if and only if (p, q) belongs to the critical hyperbola (1.4).

11 Mixed systems

Analogously to the previous two sections we prove
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Theorem 9. The mixed Hamiltonian-potential system consisting of 2m + r equations

−∆u1 = Hv1 ,

−∆v1 = Hu1 ,

· · · · · · · · · · · · · · ·
−∆um = Hvm ,

−∆vm = Hum ,

−∆w1 = Hw1 ,

· · · · · · · · · · · · · · ·
−∆wr = Hwr , (11.1)

where H = H(u1, . . . , um, v1, . . . , vm, w1, . . . , wr), H(0, . . . , 0) = 0, is critical if and only if

aαuαHuα + (1− aα)vαHvα +
1
2
wαHwα =

n

n− 2
H,

where α = 1, . . . ,m and β = 1, . . . , r.

12 Hyperbolic Hamiltonian systems

Theorem 10. The nonlinear hyperbolic system of Hamiltonian type

utt −∆u + Hv(u, v) = 0,

vtt −∆v + Hu(u, v) = 0

is critical if and only if

auHu + (1− a)vHv =
n + 1
n− 1

H.

This result is obtained by the same argument as before and we omit the corresponding details
pointing out that in the particular case of power nonlinearity

H =
1

q + 1
|u|q−1u +

1
p + 1

|v|p−1v

the latter condition reads
1

p + 1
+

1
q + 1

=
n− 1
n + 1

.

The Pokhozhaev’s identity corresponding to the hyperbolic Hamiltonian system in Theo-
rem 10 was obtained in [13] using the Noetherian approach. For a discussion on specific numbers
concerning the scalar case see [1, 2].

13 Unbounded Hamiltonian systems

Theorem 11. The system

ut −∆u = Hv(u, v),
−vt −∆v = Hu(u, v)

is critical if and only if

auHu + (1− a)vHv =
n + 2

n
H.



16 Y. Bozhkov and E. Mitidieri

Again this result as well as the corresponding Pokhozhaev’s identity [13] is obtained by the
same arguments as before and we omit further details. We observe that in the particular case
of power nonlinearity

H =
1

q + 1
|u|q−1u +

1
p + 1

|v|p−1v

the criticality condition reads

1
p + 1

+
1

q + 1
=

n

n + 2
.

The latter condition appears in [16], see also [17].
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