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A Journey Between Two Curves?
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Abstract. A typical solution of an integrable system is described in terms of a holomorphic
curve and a line bundle over it. The curve provides the action variables while the time
evolution is a linear flow on the curve’s Jacobian. Even though the system of Nahm equa-
tions is closely related to the Hitchin system, the curves appearing in these two cases have
very different nature. The former can be described in terms of some classical scattering
problem while the latter provides a solution to some Seiberg–Witten gauge theory. This
note identifies the setup in which one can formulate the question of relating the two curves.
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1 Introduction

The Nahm Equations [1] and the Hitchin Equations [2, 3] are two integrable systems of equations
that play increasingly important role in string theory and gauge theory literature. Solutions of
Seiberg–Witten gauge theories in four [4, 5] and in three dimensions [6], dynamics of a five
brane on a holomorphic curve [7, 8], D-brane dynamics [9, 10], aspects of the Generalized
Geometry [12], physics version of Langlands duality [13], domain walls [14], topological Yang–
Mills and nonlinear Schrödinger [15], to name a few, can be described in their terms.

The two systems are closely related. In fact, one can think of the Nahm equations as a limit
of those of Hitchin. As integrable systems each can be solved in terms of a holomorphic curve
and a point or a linear flow on its Jacobian. Yet, these two solutions are tantalizingly different.

Each system can be mapped to a different problem by the Nahm transform. The Nahm
transform on a four-torus is presented beautifully in [16]; a general review of the Nahm transform
can be found in [17]. A solution to the Nahm equations is mapped to a monopole [18, 19], i.e.
solutions of the Bogomolny equation. In turn, a solution to the Hitchin equations defined on
a torus is mapped to a doubly-periodic instanton [20]. A reduction of the instanton equation
leads to the Bogomolny equation. Since instanton and Bogomolny equations are, naturally, also
integrable, one can find the respective curves describing their solutions. Yet again, the two
curves differ drastically from each other.

In the context of monopoles and the Hitchin system respectively both curves S and Σ were
introduced by Hitchin and both are often referred to as Hitchin Spectral Curves. To distinguish
these curves we shall refer to S as the Twistor Curve and to Σ as the Higgs Curve. The two are
of the very different nature, nevertheless, they are closely related. As we hope to demonstrate
here, this relation is deeper than originating from the same mind.

?This paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integ-
rable Systems (July 17–19, 2006, University of Coimbra, Portugal). The full collection is available at
http://www.emis.de/journals/SIGMA/Coimbra2006.html
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2 The physics of the Higgs Curve Σ and the Twistor Curve S

Our motivation for posing the problem comes from the deep significance of both curves in the
study of gauge theories with eight supercharges. A solution to this problem would also provide
a glimpse at the nonperturbative dynamics of the M theory five-brane.

2.1 Σ in Seiberg–Witten theory

The solution of the N = 2 gauge theory found by Seiberg and Witten [21, 22] is formulated in
terms of an auxiliary curve. This is a holomorphic curve corresponding to a choice of a vacuum of
the theory. It is referred to as the Seiberg–Witten curve. As demonstrated in [4], Seiberg–Witten
curve is exactly the Higgs Curve Σ, as outlined in Section 4.1 below.

M theory significance of the Seiberg–Witten curve was uncovered in [7, 11, 8]. In [8] the
curve Σ emerges as a curve on which the M theory five-brane is wrapped. The five brane
dynamics is equivalent to that of a type IIA string theory brane configuration of Chalmers–
Hanany–Witten [9] and [10]. In turn, the low energy dynamics of this brane configuration is
described by a Seiberg–Witten gauge theory. Thus, what appeared to be an auxiliary curve of
Seiberg and Witten acquired new meaning as the shape of the M theory five-brane.

Another path to this M theory interpretation was discovered earlier in [7, 11]. In this Geomet-
ric Engineering scenario the Seiberg–Witten gauge theory emerges from the compactification of
the IIA string theory on a Calabi–Yau space with a prescribed singular structure along a curve in
it. After local T-duality this Calabi–Yau space is mapped to a five-brane wrapped on a Seiberg–
Witten curve.

2.2 Three-dimensional Gauge theories and S

The gauge theory relevant to this section is N = 4 supersymmetric gauge theory in three
dimensions. The case of pure N = 4 Yang–Mills was considered in [6], where the geometry of
its moduli space of vacua is identified with the Atiyah–Hitchin moduli space [23]. Chalmers,
Hanany, and Witten in [9] and [10] have identified the brane configuration that allows one to
associate the above quantum field theory problem with a problem of the classical dynamics of
monopoles. It also makes the relation to the corresponding Nahm data transparent. It even
allows one to re-derive the Nahm transform from the string theory [24]. Using these ideas one
can identify the exact monopole problem solving three-dimensional N = 4 QCD [25]. One can
also derive the Kähler potential on the moduli space [26]. The auxiliary curve S plays central
role in this derivation. Moreover, using the information encoded in S (and a bundle L → S) one
can obtain the explicit metric on the moduli space [27]. From the point of view of the original
quantum gauge theory this metric contains all of the nonperturbative corrections.

The physical significance of the twistor curve S is much less clear. It is also much harder to
find it explicitly, since one has to satisfy the transcendental constraint, as stated in Section 3.3.
However, the curve S contains complete information about the moduli space, as well as about
the solutions of the associated monopole and Nahm problems themselves.

2.3 Σ in Seiberg–Witten theories on R3 × S1

Supersymmetric N = 2 gauge theories on a space with one compact direction considered in [6]
are rather revealing, since they interpolate between the four- and three-dimensional theories.
From the geometric point of view, they also have much more interesting moduli spaces of vacua.

Applying the techniques of the previous section one can identify the Chalmers–Hanany–
Witten type brane configuration corresponding to the quantum gauge theory. From this one can
read off the corresponding Hitchin system [28] and via T-duality obtain the periodic monopole
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description [29]. Both lead to the curve Σ which is the Seiberg–Witten curve of the quantum
gauge theory problem.

Most importantly, the curve Σ is relatively easy to find explicitly. It contains a wealth of
information about the Seiberg–Witten gauge theory on R3×S1; however, it is far from sufficient
to know Σ in order to find the effective low energy theory in this case. Physically, the main
difference between the quantum field theory on R4 and a theory on R3 × S1 is that in addition
to the instanton corrections the latter also has monopole corrections, since in that case a self-
dual configuration independent of S1 has finite action. The Seiberg–Witten curve Σ accounts
for all perturbative and instanton corrections to the effective theory, but not the monopole
contributions.

Let us comment on the M theory significance of the problem we suggest. As explained in [8],
in the extreme infra-red the effective field theory of a Seiberg–Witten theory is given by the
low energy dynamics of an M theory five-brane wrapped on a curve Σ. The reduction of the
M theory action produces the Seiberg–Witten solution [30]. However, if the gauge theory is
considered on R3×S1 the five brane dynamics receives membrane instanton corrections. In this
case the five-brane wraps Σ×S1 and for some one-cycle Γ ⊂ Σ an instanton membrane of finite
volume can have Γ × S1 as its boundary. Such a membrane instanton produces corrections to
the five-brane dynamics. At low energies, these can be interpreted as monopole corrections in
the corresponding gauge theory.

The main purpose of this paper is to highlight the relation between S and Σ. Seiberg–
Witten theories on a space with one compact direction provide a perfect framework to pose this
question. In physics terms, a vacuum of such a theory defines a curve Σ, it also defines what
we call a Twistor Curve Sp. Thus, we expect these two to be related. Moreover, we expect the
family of Sp curves to contain the complete information about the moduli space of vacua.

3 Two Descriptions of the Twistor Curve S:
monopoles and Nahm equations

There is a well established relation, discovered by Werner Nahm in [1, 18, 19], between solutions
(A,Φ) of the Bogomolny equation

?F = DΦ (1)

and solutions of the system of the Nahm equations

d

ds
T1(s) + i[T0(s), T1(s)] = −i[T2(s), T3(s)],

d

ds
T2(s) + i[T0(s), T2(s)] = −i[T3(s), T1(s)], (2)

d

ds
T3(s) + i[T0(s), T3(s)] = −i[T1(s), T2(s)].

This relation provides a one-to-one map between solutions of equation (1) and solutions of the
system of equations (2). It is a nonlinear version of the Fourier transform called the Nahm
transform.

3.1 The monopole Spectral Curve

Before we begin, let us recall the notion of the minitwistor space T, which, in the case of a flat
three-dimensional space, is the space of lines in R3. A line in R3 can be written in the form
~x = t~n + ~v, where ~n is a unit direction vector and ~v is the displacement vector orthogonal to ~n.
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Each oriented line is uniquely specified by the pair (~n,~v) with |~n| = 1 and ~v · ~n = 0. Thus the
space of lines in R3 forms the tangent space to a two-sphere, where ~n specifies the point on the
two-sphere and ~v specifies a point in the tangent space at it. Identifying the two-sphere with
the Riemann sphere with a coordinate ζ, we give the minitwistor space T a natural complex
structure. Thus T = TP1 and locally we introduce coordinate η in the fiber, so that η ∂

∂ζ ∈ TP1.
As proposed by Nigel Hitchin in [31], to every solution (A,Φ) of the Bogomolny equation one

can associate a scattering problem. For each line consider a differential equation

(D~n + Φ) Ψ = 0, (3)

where D~n is the covariant derivative along the line and Ψ is a section of the restriction of the
bundle E to this line. For some lines this problem has a bound state, i.e. a square integrable
solution Ψ. We call such a line spectral. Given a monopole solution of charge N for any unit vec-
tor ~n generically there will be exactly N spectral lines along ~n. Since every line in R3 corresponds
to a point in T, the set of points corresponding to spectral lines forms a curve S in T. Thanks to
the fact that (A, Φ) satisfied Bogomolny equation, this curve S is holomorphic. Moreover, since
a point on this curve corresponds to a line in R3 with a nontrivial square integrable solution Ψ
of equation (3), we obtain a line bundle L over S. See [31] and [32] for details.

So far we have outlined a map which for every monopole (A,Φ) produces a pair (S,L) of the
curve and the bundle. These satisfy certain conditions formulated below in Section 3.3. So long
as these conditions are satisfied the map is one-to-one [31, 23]. For a monopole of charge N the
curve S ⊂ TP1 is an N fold cover of the base P1. In other words, knowing S ⊂ TP1 and L → S
we can, in principle, reconstruct a unique monopole solution (up to a gauge transformation).

3.2 Nahm Spectral Curve

The Nahm transform is a one-to-one map, mapping a monopole of charge N to a solution of
the Nahm equations where Tj(s) are functions of the variable s with N ×N Hermitian matrix
values. Now we briefly outline how the same curve S and the line bundle L emerge from the
corresponding Nahm data (T0(s), T1(s), T2(s), T3(s)).

Introducing an auxiliary parameter ζ define

A = iT0 + T3 + ζ(T1 + iT2),

L = −T1 + iT2 + 2iζT3 + ζ2(T1 + iT2),

then the system of the Nahm equations (2) can be written as

d

ds
L + [A,L] = 0.

The above equation implies that the eigenvalues of L are independent of s, thus any solution of
the Nahm equations defines a spectral curve S ⊂ TotO(2) = TP1 given by

S : det(L− η) = 0.

Since the curve is the curve of eigenvalues the corresponding eigenspaces form a line bundle L.
These are exactly the same as the curve and the bundle of the corresponding monopole con-
structed in the previous section.

3.3 The Twistor Curve constraints

The constraint that every twistor curve satisfies is formulated in terms of a line bundle L over
the minitwistor space T. In terms of the coordinates (ζ, η) introduced above the line bundle
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Lx(m) is defined by its transition function ζ−me−xη/ζ . There is a natural restriction of this
bundle L|S to any curve S. In case of a regular SU(2) monopole of charge K the “vanishing
theorem” of [32] states that the twistor curve satisfies the following conditions:

Lx(k − 2)|S is nontrivial for 0 < x < 2,

L2|S is trivial. (4)

4 Two descriptions of the Spectral Curve Σ:
the Hitchin system and instantons

The Hitchin system of equations is written for a Hermitian gauge field A = A1dx1 + A2dx2 and
a pair of Higgs fields Φ1 and Φ2 on some Riemann surface X. The corresponding connection is
Dj = ∂j + iAj and the equations are

[D1, D2] = −[Φ1,Φ2],
[D1,Φ1] = −[D2,Φ2], (5)
[D1,Φ2] = [D2,Φ1].

The Nahm transform maps any solutions of the Hitchin system on a torus T 2 to a doubly-periodic
instanton [20, 33].

4.1 The Higgs Curve Σ from the Hitchin system

The Hitchin system can be written in the following form

[D, D̄] = −[Φ,Φ†],
[D̄,Φ] = 0, (6)

if we put D = D1 − iD2, Φ = Φ1 − iΦ2, so that D̄ = D1 + iD2 and Φ† = Φ1 + iΦ2. The second
one of these, equations (6), implies that the curve Σ ⊂ T ∗X defined by

Σ : det(Φ− w) = 0,

is holomorphic. We shall refer to this curve as the Higgs Curve or the Brane Curve. Since Σ is
a curve of eigenvalues it comes with the line bundle N → Σ. Each fiber ofN is the corresponding
eigenspace.

Thanks to the Donaldson’s theorem [34] extended to this case (Σ,N ) define the solution of
the Hitchin system uniquely (up to a gauge transformation).

4.2 The Higgs Curve from doubly-periodic instantons

A doubly-periodic instanton is a self-dual connection on R2 × T 2. Let us introduce complex
coordinates z ∈ C ' R2 and w ∈ T 2 ' C/(Z× Z). Instanton equations can be written as

[Dz, Dw] = 0,

[Dz, D̄z] = [Dw, D̄w]. (7)

As demonstrated in [33], following the ideas of [35, 36], a spectral curve is associated to any
solution of these equations in the following manner. For any point z ∈ C we can consider
monodromies of a flat connection on the torus T 2

z with the holomorphic combination equal
to Dw of the instanton. If the instanton bundle is of rank K, then the eigenvalues of these
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monodromies correspond to K points in the dual torus Ť 2. Thus the set of all these points for
all values of z defines a curve Σ which is a K fold covering of R2. Thanks to the fact that the
initial connection satisfied the first equation in (7), this curve Σ is holomorphic.

It is no coincidence that the curves of Section 4.2 and Section 4.1 are both denoted by Σ. As
proved in [33], if a doubly-periodic instanton (7) is related via the Nahm transform to a solution
of the Hitchin system (6) the corresponding curves coincide.

5 A bridge between S and Σ: periodic monopoles

One might consider various limits in order to relate the two curves. For example, in a certain
limit the Hitchin system degenerates to a system of the Nahm equations and doubly-periodic
instanton become a monopole. In this section, however, we explore the case where the curves of
both kinds appear in the same problem.

Let us consider periodic monopoles [29], i.e. solutions of Bogomolny equation (1) on R2×S1.
What are the corresponding curves in this situation?

5.1 The Higgs Curve Σ for periodic monopoles

Identifying the R2 of R2 × S1 with a complex plane C with a coordinate z we consider the
monodromy W (z) of the modified connection D + Φ around the circle S1

z . In other words, if
w(z, 0) = 1 and(

∂

∂ϕ
+ iAϕ + Φ

)
w(z, φ) = 0, (8)

then W (z) = w(z, R). Here R is the period of the coordinate ϕ along the S1 at z. As argued
in [29], the curve defined by the following equation is holomorphic.

Σp : det (W (z)− t) = 0.

Since t is an eigenvalue of a monodromy matrix it is nonzero, thus t ∈ C∗ and z ∈ C, and
Σp ⊂ C× C∗.

5.2 The Twistor Curve S for periodic monopoles

In order to define the scattering problem in this case, we start with describing the minitwistor
space of R2 × S1. We can view R2 × S1 as the quotient of R3 with respect to integer shifts by
a vector ~R ∈ R3, with R = |~R|. A point in R3 determines a section of TP1 in the following way.
The set of all oriented lines passing through ~R forms a sphere. Each of these lines corresponds
to a unique point in T = TP1, thus ~R corresponds to a section p~R of the tangent bundle TP1.
Let p(ζ) = −x1 + ix2 + 2x3ζ + (x1 + ix2)ζ2. In terms of the local coordinates (ζ, η), that we
defined above, p~R : η = p(ζ).

Shifting R3 by ~R maps a point (ζ0, η0) of TP1 to (ζ0, η0+p(ζ0)). Thus the minitwistor space Tp

of R2×S1 is TP1/Zp~R. Here the subscript p in Tp stands for ‘periodic’. Note that the the fiber
above ζ such that p(ζ) 6= 0 is C/Z ' C∗, while the fibers above ζ1 and ζ2 are Cζ1 = C and
Cζ2 = C. Now we have the minitwistor space Tp for R2×S1. Alas, the space Tp is not Hausdorff.
In order to avoid this problem for now, let us consider the compliment of the two fibers above
the roots ζ1 and ζ2 of p(ζ). We shall denote it by TReg

p . In other words TReg
p = T \ (Cζ1 ∪Cζ2).

Without loss of generality we can choose the vector ~R to be along the third axis and work away
from ζ = 0 and ζ = ∞.

From the point of view of the geodesics on R2 × S1 one can see why the roots of p(ζ) are
so special. A generic geodesic is infinitely long and projects to a line in R2. There is a set of
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geodesics, however, that are circles each of which projects to a point on R2, namely, these are
the geodesics directed along ~R. Clearly, for any two of the circular geodesics we can find a long
geodesic that is arbitrarily close to both. Excluding the circular geodesics for now, we avoid this
problem.

For any long geodesic we can again consider the scattering problem of Hitchin. A geodesic is
called spectral if, as in the case of monopoles, it has a square integrable solution Ψ of

(D~n + Φ)Ψ = 0. (9)

The set of spectral geodesics forms a curve Sp ⊂ TReg
p . This cure is holomorphic, which is

a consequence of the Bogomolny equation.

6 The Hitchin system

The Nahm transform of a periodic monopole is a Hitchin system on R × S1. Here we describe
the curves Σp and Sp in terms of this Hitchin data (A, Φ).

The Higgs curve Σp of the eigenvalues of Φ1 − iΦ2 is defined in the same way as for the
general Hitchin system of Section 4.1. In our case the Hitchin data is defined on R × S1 ' C∗
and thus the resulting curve lies in T ∗C∗ = C× C∗.

In order to define the Twistor Curve Sp let us follow [37] and introduce the so-called λ-con-
nection

Dζ = D + ζΦ, D̄ζ = D̄ +
1
ζ
Φ†,

where the auxiliary parameter ζ ∈ C∗. Then the Hitchin equations (5) are equivalent to flatness
of this connection: [Dζ , D̄ζ ] = 0 for all values of ζ ∈ C∗. The monodromy of a flat connection
on R× S1 along a closed path winding once around the S1 has eigenvalues independent of the
choice of the path. Thus, for any nonzero ζ we obtain a set of points in C∗. This defines the
curve Sp ⊂ TReg

p .

Clearly the curve Sp and the bundle L thus obtained satisfy some nontrivial conditions. In
particular, in the limit of the zero radius of the S1 factor of the R × S1, the Hitchin system
degenerates into the system of the Nahm equations. In this limit Sp becomes S of Section 3.2.
Thus whatever the conditions the curve Sp has to satisfy should degenerate to the constraint of
equation (4).

7 The question

For a generic periodic monopole, we expect the same theorems to hold as in the case of
a monopole in R3 and in the case of doubly-periodic instantons. Namely, each pair (Σp,N )
of the curve Σp and a line bundle N is in one-to-one correspondence with a periodic monopole.
On the other hand, each pair (Sp,L) satisfying certain conditions is also in one-to-one corre-
spondence with a periodic monopole. Thus there should be a one-to-one map mapping a pair
(Σp,N ) to the pair (Sp,L).

Since the Nahm transform relates periodic monopoles with the solutions of the Hitchin system
on R×S1 [28, 29], periodic monopoles in the above argument can be substituted with that Hitchin
system.

Now we are in a position to formulate the question: what is the explicit map relating the
Higgs curve Σ to the Twistor Curve S?



8 S.A. Cherkis

Appendix. Speculations

Let us come back to the minitwistor space Tp. The curve Sp was defined on the compliment of
the ‘problematic’ fibers Cζ=0 and Cζ=∞. The fiber Cζ=0 can be identified with the R2 factor of
the space R2×S1 on which the periodic monopole is defined. (The fiber Cζ=∞ is identified with
the same R2 factor but with the opposite orientation.) Each point in this fiber corresponds to
a closed geodesic S1. It is exactly these geodesics that are used to define the Higgs Curve Σp.
Moreover, one cannot fail to notice that the operator in equation (8) is exactly the same as in
the scattering problem equation (9). (Note, however, that Ψ in equation (9) is a section, while
w in equation (8) is a parallel transport operator.) Thus, in some sense, the curve Σp (or rather
its zeros with t = 0) is a limit of Sp at the special fiber at ζ = 0 (and ζ = ∞).

These is a potentially important difference between the role the curves Σ and Sp play in
the integrable system. A particular doubly-periodic monopole solution (or a corresponding
solution to the Hitchin system) is determined in terms of a curve Σ and a point in its Jacobian
Jac(Σ), while in terms of the curve Sp such solution is determined by Sp and a linear flow on
its Jacobian Jac(Sp). These two cases correspond to a two different views on the monopole (or
Hitchin equations). In the earlier case the solution is viewed as a point in the configuration
space of an integrable system. In the latter case, the same solution is interpreted as an evolution
trajectory of an integrable system.
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