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Abstract. We have constructed new formulae for generation of solutions for the nonlinear
heat equation and for the Burgers equation that are based on linearizing nonlocal trans-
formations and on nonlocal symmetries of linear equations. Found nonlocal symmetries
and formulae of nonlocal nonlinear superposition of solutions of these equations were used
then for construction of chains of exact solutions. Linearization by means of the Legendre
transformations of a second-order PDE with three independent variables allowed to obtain
nonlocal superposition formulae for solutions of this equation, and to generate new solutions
from group invariant solutions of a linear equation.
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1 Introduction

Nonlocal symmetries of nonlinear equations of mathematical physics stay in the center of at-
tention of many authors [1, 2, 3, 4, 5]. Methods used for investigation of differential equa-
tions (DEs) include application of a wide spectrum of nonclassical and nonlocal symmetries of
DEs [6, 7, 8, 9, 10, 11].

Knowing the symmetries we can construct exact solutions for the equations and then proceed
with their generating, as well as describe sets of conserved quantities, reduce the initial equation
to the equations with smaller number of variables and solve other problems related to these
equations.

The method of studying of the group invariance properties of the DEs, created by S. Lie,
has been further developed by G. Birkhoff, L.V. Ovsyannikov, P.J. Olver, W.I. Fushchych,
N.H. Ibragimov, G. Bluman, J.D. Cole, P. Winternitz and many others.

In the 1970s V.A. Fok [16] found the symmetry of hydrogen atom in Coulomb field, which,
as became clear later, could not be found by the Lie method. Then other similar facts started to
arise, and it required an adequate explanation. Resumption of interest to Bäcklund transforma-
tions [17] in the 1950s and discovery of the Miura transformation allowed explaining of existence
of an infinite set of conservation laws for Korteweg–de Vries equation, and active period of
finding of further generalizations of S. Lie theory had started.

One of such generalizations, conditional symmetries of DEs [23], that are referred the li-
terature also as nonclassical or weak symmetries [6, 7, 12], may be found by adding of some
condition to the equation with this conditional symmetry being the symmetry of the resulting
system. Usually this condition is an equation of a surface invariant under infinitesimal operator
admitted by the equation under investigation [13, 14].
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Theory of Lie–Bäcklund group transformations was developed by R.L. Anderson and N.H. Ib-
ragimov in the 1970s [5, 10, 11, 15]. Such transformations forming a one-parametrical group
depend on derivatives

x̃i = f i(x, u, u
1
, . . . , u

k
; ε), ũa = ga(x, u, u

1
, . . . , u

k
; ε). (1)

In these formulae and elsewhere x = (x0, x1, . . . , xn) is a set of independent variables, and
u = (u1, u2, . . . , um) is a set of dependent variables. The corresponding infinitesimal operator
has the following form:

X = ξi(x, u, u
1
, . . . , u

k
)∂i + ηa(x, u, u

1
, . . . , u

k
)∂ua , i = 0, 1, . . . , n, a = 1, 2, . . . ,m.

Lie–Bäcklund symmetries defined in such a way present the same concept as generalized vector
fields in P.J. Olver’s terminology [18]. Dependence of expressions in (1) on derivatives is a reason
for regarding such symmetry as nonlocal. Note that reversion of the transformation (1) requires
integration procedure.

Further in the paper we use the following standard notations:

uµ =
∂u

∂xµ
≡ ∂µu, µ = 0, 1, 2, . . . , n− 1, u

1
= {uµ},

uµν =
∂2u

∂xµ∂xν
≡ ∂µ∂νu, µ, ν = 0, 1, 2, . . . , n− 1, u

2
= {uµν}.

Another direction in investigation of nonlocal symmetries is based on representation of the
equation

F1(x, u, u
1
, . . . , u

k
) = 0

in the form of a conservation law

Fi(x, u, u
1
, . . . , u

k
) = D1φ

1(x, u, u
1
, . . . , u

r
) + D2φ

2(x, u, u
1
, . . . , u

r
) = 0

and on introduction of a new potential variable by the relation

D2v = φ1(x, u, u
1
, . . . , u

r
).

It allows studying of a “potential symmetry” of the equation as a classical symmetry of sys-
tem [1, 3]

Fi(x, u, u
1
, . . . , u

k
) = 0, D2v = φ1(x, u, u

1
, . . . , u

r
), D1v = φ2(x, u, u

1
, . . . , u

r
).

It may be noted that in the described method for investigation of nonlocal symmetries of DE an
important place belongs to the recursion operator for an equation introduced by P.J. Olver [18].

Further development of this approach was obtained in [19, 20] via reversion of the recursion
operator. Nonlocal symmetries of the pseudopotential type in sense of prolongation structures
of Estabrook and Wahlquist were considered in [21]. It was discovered in the paper [22] that
the Jacobi identity for characteristics of nonlocal vector fields “appears to fail for the usual
characteristic computations” that led to the notion called “ghost symmetries”. That also showed
impossibility of discussion of Lie algebraic properties for general nonlocal symmetries of DEs.

Utilization of the method of external differential forms by E. Cartan allowed K. Harrison and
C.J. Papachristou [4] to calculate classical point (internal or geometrical) symmetry by means
of so-called isovectors generated by a vector field

V = ξi(x, u)∂i + ηa(x, u)∂ua .
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So the internal symmetry of DE was determined by the requirement of invariance of an ideal of
external differential forms of the system γi that was generated by the equation under action of
the Lie derivative £V with respect to vector field V

£V γi = bi
kγk + Λi

kγk + γkMi
k.

Nonlocal symmetry of the given equation was studied in [4] with dependence of factors V on
derivatives included into this scheme.

Geometrical theory of nonlocal symmetries of DEs has been developed by A.M. Vinogradov
and I.S. Krasil’shchik [9] and formulated in the language of jet fiber bundles for the functions
being solutions of the given equation.

In this paper we continue investigation of nonlocal symmetries of PDEs [34, 24] by means of
nonlocal transformations of variables

Bp(x, u, u
1
, . . . , u

k
; y, v, v

1
, . . . , v

t
) = 0,

p = 1, 2, . . . , n + m, u = {ua}, a = 1, 2, . . . ,m

or, in a simpler form

τ :

{
xi = hi(y, v, v

1
, . . . , v

k
),

ua = Ha(y, v, v
1
, . . . , v

k
).

Under the transformation τ the equation

F1(x, u, u
1
, . . . , u

n
) = 0

is transformed into the new equation

Φ(y, v, v
1
, . . . , v

m
) = 0

of the order m = n + k. Let us present the obtained equation in the form of equality

F1(x, u, u
1
, . . . , u

n
) = λF2(y, v, v

1
, . . . , v

s
) = 0.

Here λ is the differential operator of the order r: r + s = n + k (so it is possible to carry out
factorization of the equation Φ(y, v, v

1
, . . . , v

m
) = 0 by means of F2(y, v, v

1
, . . . , v

s
) = 0). In this

case we say that the equations

F1(x, u, u
1
, . . . , u

n
) = 0 and F2(y, v, v

1
, . . . , v

s
) = 0

are connected by the nonlocal transformation τ.
If invariance algebras of these equations have different dimensions, we can put “extra” sym-

metries of one equation into correspondence with nonlocal symmetry of another equation. We
use nonlocal transformations of variables τ for construction of formulae for generation of solu-
tions both in the case of nonlocal invariance of the equation

F1(x, u, u
1
, . . . , u

n
) = F1(y, v, v

1
, . . . , v

n
) = 0

and for other equations. If the equation

F2(y, v, v
1
, . . . , v

s
) = 0
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is linear and homogeneous, the transformation τ allows construction of nonlinear nonlocal su-
perposition formulae for solutions of the equation

F1(x, u, u
1
, . . . , u

n
) = 0.

The approach to investigation of nonlocal symmetries of DEs described above allows treating
them as a basis for an algorithm enabling construction of new solutions from one or more given
solutions.

In the following section we discuss in more detail application of nonlocal symmetries to
construction of explicit superposition formulae.

2 On symmetries and superposition principles
of nonlinear heat equations

Nonlinear equations of the class

ut − ∂x[h(u) + g(u)ux] = f(x, u)

were studied in a number of papers, e.g. [12, 14, 25, 26, 27, 28].
Nonclassical (conditional) symmetries of nonlinear heat equations of the general form

ut = uxx + f(u)

were completely described in [14]. In [12] nonclassical partial symmetries of equations from the
family

ut = (g(u)ux)x + f(u)

are constructed. These symmetries are actually conditional symmetries of the considered equa-
tions [6, 7, 23].

Nonlocal symmetries of some equations from the class

ut − ∂x[φ(u, ux)] = 0

were found by V.V. Pukhnachev [25, 26] (in particular, the conditions on the function φ, under
which the transformation maps the equation into itself). The initial equation can be transformed
by the Lagrange transformation

ξ =
∫ x

0
u(y, t)dy +

∫ t

0
φ(u(0, s), ux(0, s))ds, ω(ξ, t) = [u(x, t)]−1

into an equation from the same class

ωt = [−ωφ(ω−1,−ω−3ωξ)]ξ.

Further we will review different approaches to superposition principles for solutions of non-
linear differential equations.

One of examples of superposition principles for nonlinear differential equations is given by
the Bianchi permutability theorem for the sine-Gordon equation, which is adduced e.g. in [32].
Permutability of auto-Bäcklund transformations with different parameters allows constructing of
an infinite family of soliton-like solutions for the sine-Gordon equation by means of extension of
two one-soliton solutions which correspond to different values of parameters. The same method
was applied by H.D. Wahlquist and F.B. Estabrook for the Korteveg–de Vries equation [33].
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The idea proposed by S.E. Johnes and W.F. Ames [30] was developed in [29]. Two solutions
(1)
u and

(2)
u of the nonlinear equation

F (x, u, u
1
, . . . , u

n
) = 0

may be used by means of a procedure

Λ(
(1)
u ,

(2)
u ) =

(1)
u ∗

(2)
u

to construct a new solution
(3)
u of the same equation:

Λ : (
(1)
u ,

(2)
u ) →

(3)
u .

(Here ∗ denotes a procedure combining these two solutions into a new one.)
It was noted in [29] that a superposition principle is a symmetry of the system of two copies

of the same equation

F (x,
(1)
u ,

(1)
u
1

, . . . ,
(1)
u
n

) = 0, F (x,
(2)
u ,

(2)
u
1

, . . . ,
(2)
u
n

) = 0. (2)

They looked for symmetry operators of system (2) of the form

Γ = η(
(1)
u ,

(2)
u )∂(1)

u
(3)

whereas the representation symmetry operators of a single equation in the classical approach
are

Γ = η(x,
(1)
u )∂(1)

u
.

The corresponding algorithm for generation of solutions is implemented by means of calculating
of the one-parameter invariance group of system (2)

(3)
u =

(1)
u ′ = f(

(1)
u ,

(2)
u ; a),

associated with the operator (3). Here a is the group parameter. The algorithm actually repre-
sents a realization of the solution superposition principle for the equation under consideration.

The nonlinear heat equations of the class

u0 + ∂1(C1(u) + C2(u)u1) = 0 (4)

remained an object of interest for many authors [2, 3, 14] for a long time. In particular, this
class of equations (4) includes the Burgers equation

u0 + uu1 − u11 = 0 (5)

and the nonlinear heat equation

u0 − ∂1(u−2u1) = 0, (6)

which admit linearization by nonlocal transformation of variables. It is well known that the
equation (5) is connected with linear heat equation

v0 − v11 = 0 (7)
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by the Cole–Hopf substitution

u = −2(ln v)1.

The nonlocal transformation which provides linearization of equation (6) was first found in [39]
and then re-discovered in [40]. It can be presented in the form [8]

u(x0, x1) =
1

v1(y0, y1)
, x1 = v(y0, y1), x0 = y0.

Here x = (x0, x1) and y = (y0, y1) are tuples of old and new independent variables correspond-
ingly. This fact was utilized for constructing of the nonlocal generating formulae and formulae
of nonlinear superposition principle for equation (6) in [8] and for (5) in this paper. These
generating formulae are constructed with symmetry operators of the linear heat equation (7).

The invariance algebra of the linear heat equation (7) was first calculated by S. Lie and is
adduced in the standard texts e.g. by Ovsiannikov [37] and Olver [18]. A basis of this algebra
consists of the operators:

P0 = ∂0, P1 = ∂1, I = v∂v, D = 2y0∂0 + y1∂1,

G = y0∂1 − 1
2y1v∂v, F = y2

0∂0 − y0y1 − 1
4(y2

1 + 2y0)v∂v, Sb = b(y0, y1)∂v, (8)

where b = b(y0, y1) is an arbitrary solution of (7), i.e. b0 = b11.
The operators P1 and G were applied in [8] to construction of generating formulae for equa-

tion (5). The operators P0 and P1 were used for the same purposes for equation (6).
In the present paper new formulae for generating of solutions for equations (5) and (6) were

found. We also constructed new solutions of equation (5) and (6) with the nonlocal superposition
formulae

(3)
u (x0, x1) = −2∂1 ln(

(1)
τ +

(2)
τ ), −2∂1 ln(

(k)
τ ) =

(k)
u ,

−2∂0 ln
(k)
τ =

(k)
u1 − 1

2(
(k)
u )2, k = 1, 2. (9)

for the Burgers equation and [8]

(3)
u (x0, x1) =

(1)

u−1(x0,
(1)
τ ) +

(2)

u−1(x0,
(2)
τ ),

(1)
u (x0,

(1)
τ )d

(1)
τ =

(2)
u (x0,

(2)
τ )d

(2)
τ ,

x1 =
(1)
τ +

(2)
τ ,

(k)
τ0 =

(k)

τ1
−2 (k)

τ11

(k)

u−2(x0,
(k)
τ ), k = 1, 2. (10)

for equation (6) . Here τ ’s denote the functional parameters to be excluded from these formulae.

3 Formulae for generating of solutions

We can construct new formulae for generating of solutions of linearizable equations by means
of combining symmetry operator formulae for generating of solutions of linear equations and
linearizing transformations.

Namely, let L be a linear differential equation, F a nonlinear differential equation and τ
a nonlocal transformation which linearizes the equation F to the equation L. If L admits a Lie
symmetry operator X being a vector field on the space of independent and dependent variables
then the corresponding differential operator Q acting in the space of unknown functions of L

maps any solution
(1)
v of L to the other solution

(2)
v = Q

(1)
v . (11)
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Then the nonlocal mapping τ allows us to obtain a new solution
(2)
u = τ−1(2)

v of F from its

known solution
(1)
u = τ−1(1)

v . Here τ−1 is treated in a certain way. Therefore, in the case of
direct utilization of the transformation τ for generating of new solutions of F we have to make

several steps
(1)
u →

(1)
v →

(2)
v →

(2)
u . At the same time, it is possible to derive a formula for

generating of new solutions of F without involving solutions of linear equations. This way is
preferable since it allows to avoid cumbersome calculations and to produce solutions in one step.

Thus, combining the Cole–Hopf substitution linearizing the Burgers equation (5) to the linear
heat equation (7) and the action of the Lie symmetry operator P0 = ∂0 on solutions of (7), we
obtained the following result.

Theorem 1. The generating formula for equation (5), which is associated with the Lie symmetry
operator P0 of (7), has the form

(2)
u =

(1)
u +

(1)
u0

−1
2

(1)
u1 + 1

4(
(1)
u )2

. (12)

Applying the formula (12) iteratively, we construct chains of solutions of the Burgers equa-
tion (5):

1.
2

e−x0−x1 − 1
→ −2 → · · · → −2 → · · · ;

2. − 2
[
1 +

1
x1 + 2x0 + k

]
→ −2

[
1 +

1
x1 + 2x0 + k + 2

]
→ −2

[
1 +

1
x1 + 2x0 + k + 4

]
→ · · · ,

here k is an arbitrary constant;

3.
x1

x0
→

x1

(
6x0 − x2

1

)
x0

(
2x0 − x2

1

) → x1

(
60x2

0 − 20x0x
2
1 + x4

1

)
x0

(
12x2

0 − 12x0x2
1 + x4

1

)
→

x1

(
840x3

0 − 420x2
0x

2
1 + 42x0x

4
1 − x6

1

)
x0

(
120x3

0 − 180x2
0x

2
1 + 30x0x4

1 − x6
1

) → · · · ;

4. − 1− 2 tanh(x0 + x1)→−13 + 14 tanh(x0 + x1)
5 + 4 tanh(x0 + x1)

→−121 + 122 tanh(x0 + x1)
41 + 40 tanh(x0 + x1)

→ · · · .

Consider the Lie symmetry operator P0 +P1 = ∂0 +∂1 of (7) and the corresponding operator
formulae for generating of solutions of the linear heat equation

(2)
v = (∂0 + ∂1)

(1)
v .

Theorem 2. The generating formula for equation (5), which is associated with the Lie symmetry
operator P0 + P1 of (7), has the form

(2)
u =

(1)
u − 2

(1)
u0 +

(1)
u1

(1)
u1 − 1

2(
(1)
u )2 +

(1)
u

. (13)

Similarly to the previous case, chains of solutions of equation (5) can be obtained by for-
mula (13):

1. C → C → · · · ;
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2.
2

e−x0−x1 − 1
→ −2 → −2 → · · · ;

3. − 2
[
1 +

1
x1 + 2x0 + k

]
→ −2

[
1 +

2
2x1 + 4x0 + 2k + 3

]
→ −2

[
1 +

1
x1 + 2x0 + k + 3

]
→ −2

[
1 +

2
2x1 + 4x0 + 2k + 9

]
→ · · · ;

4.
x1

x0
→ −−6x0x1 + x3

1 − 2x2
1x0 + 4x0

x0(2x0 − x2
1 + 2x1x0)

→ 24x1x
3
0 + 48x3

0 − 4x3
1x

2
0 − 48x2

1x
2
0 − 60x1x

2
0 + 4x4

1x0 + 20x3
1x0 − x5

1

x0(8x3
0 − 4x2

1x
2
0 − 24x1x2

0 − 12x2
0 + 4x3

1x0 + 12x2
1x0 − x4

1)
→ · · · ;

5. − 1− 2 tanh(x0 + x1)→−23 + 22 tanh(x0 + x1)
7 + 8 tanh(x0 + x1)

→−337 + 338 tanh(x0 + x1)
113 + 112 tanh(x0 + x1)

→ · · · .

We also combine action of the Lie symmetry operator P0 + P1 on solutions of (7) with the
linearizing transformation of equation (6) to the linear heat equation (7).

Theorem 3. The generating formula for equation (6), which is associated with the Lie symmetry
operator P0 + P1 of (7), has the form

(2)
u (x0, x1) = (

(1)
u )5

[
(
(1)
uτ )2 −

(1)
u0(

(1)
u )3 −

(1)
uτ (

(1)
u )2

]−1

,

x1 = −
(1)
uτ (

(1)
u )−3 + (

(1)
u )−1. (14)

After applying formula (14) to the stationary solution

(1)
u (x0, x1) =

−1
C1x1 + C2

of equation (6), we obtain the solution

(2)
u (x0, x1) =

−1
C1x1

.

Therefore, this solution is fixed under action of (14).
The next chosen operator from the Lie algebra (8) is D = 2y0∂0 + y1∂1. It acts on solutions

of equation (7) as
(2)
v = 2y0

(1)
v0 + y1

(1)
v1.

Theorem 4. The generating formula for equation (6), which is associated with the Lie symmetry
operator D of (5), has the form

(2)
u =

(1)
u +

2x0
(1)
u0 +

(1)
u + x1

(1)
u1

−x0(
(1)
u1 − 1

2(
(1)
u )2)− x1

2

(1)
u

. (15)

The following chains of solutions of equation (5) are obtained with the formula (15):

1. C → C +
1

C
2 x0 − 1

2x1

→ C +
4C2x0 − 4Cx1 + 4

C3x2
0 − 2C2x0x1 + 4Cx0 + Cx2

1 − 2x1
→ · · · ;

2.
2

e−x0−x1 − 1
→ −2

[
1 +

1
x1 + 2x0

]
→ −2

[
1 +

4x0 + 2x1 + 1
4x2

0 + 4x0 + 4x0x1 + x2
1 + x1

]
→ · · · ;

3.
x1

x0
→ x1

x0
→ · · · ;
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4. − 1− 2 tanh(x0 + x1) → −13x0 + 5x1 + 2 + (14x0 + 4x1 + 4) tanh(x0 + x1)
5x0 + x1 + (4x0 + 2x1) tanh(x0 + x1)

→ · · · .

Now we construct new solutions of the equation (5) by application of the superposition
principle (9).

1. For the solutions
(1)
u = x1

x0
and

(2)
u = 1 + 2

x0−x1
we have

(3)
u =

C1x1e
− x2

1
4x0 − C2e

x0
4
−x1

2 (x
5
2
0 − x

3
2
0 x1 + 2x

3
2
0 )

x0(C1e
−

x2
1

4x0 − C2e
x0
4
−x1

2 (x
3
2
0 − x

1
2
0 x1))

.

2. If
(1)
u = x1

x0
,

(2)
u = −1− 2 tanh(x0 + x1) then

(3)
u = −C1x1e

− x2
1

4x0 + iC2e
5x0
4

+
x1
2 x

3
2
0 (2 sinh(x0 + x1) + cosh(x0 + x1))

x0(−C1e
−

x2
1

4x0 + iC2 cosh(x0 + x1)e
5x0
4

+
x1
2 x

1
2
0 )

.

3. The solutions
(1)
u = x1

x0
,

(2)
u = 2

e−x0−x1
generate the solution

(3)
u =

C1x1e
− x2

1
4x0 − 2C2e

x0+x1x
3
2
0

x0(C1e
−

x2
1

4x0 − C2x
1
2
0 + C2x

1
2
0 ex0+x1)

.

In a similar way, we construct new solutions of equation (6) with superposition principle (10).

Thus, from the stationary solutions
(1)
u = − 1

x1
and

(2)
u = − 1

2x1
we obtain the solution

(3)
u =

2C1e
2x0

−1− 4C1x1e2x0 +
√

1 + 4C1x1e2x0
.

With other two stationary solutions
(1)
u = 1

x1
,

(2)
u = − 1

x1+C we get

(3)
u =

[
−x1 + 2e

(
LambertW

(
− 1

2
(x1+C)ex0−

C1
2

)
−x0+

C1
2

)
− C

]−1

.

Note that the constructed solutions are not stationary.
All obtained solutions can be extended to parametric families of solutions with Lie symmetry

transformations or by using other known formulae of generating of solutions. For instance, for
any real value r and any solution v of the Burgers equation (5)

(2)
v = −2

(1)
vx

(1)
v + r

is a solution of the same Burgers equation.

4 Classical and nonlocal symmetries of equation Slid(uµν) = 0

Consider the equation

u11u22 − u2
12 − (u00u22 − u2

02)− (u00u11 − u2
01) = 0. (16)
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It is an essentially nonlinear second order scalar PDE in three independent variables, which can
be linearized to the (1+2)-dimensional d’Alembert equation. Its left hand side is the sum of
algebraic complements to the diagonal elements of the adjoint matrix to the Hesse matrix (uµν)
with the metric tensor (gµν) = diag(1,−1,−1) of the Minkowski space R1,2. This equation was
first investigated in [34]. One of the authors of [34] (W.I. Fushchych) suggested the notation

Slid(uµν) := gµνA
µν = 0.

Here Aµν is the algebraic complement to the element uµν of the Hessian matrix. Hereafter the
indices µ and ν run from 0 to 2, and we assume summation over repeated indices. To the best
of our knowledge, the Lie symmetries of equation (16) had not been studied. We search for the
maximal Lie invariance algebra A of equation (16) by the classical technique [18, 37].

In view of the infinitesimal invariance criterion, any operator

X = ξµ(x, u)∂µ + η(x, u)∂u, x = (x0, x1, x2),

from A satisfies the equation

X(2)(Slid(uµν))
∣∣
M

= 0,

where X(2) is the standard second-order prolongation of X, M is the manifold determined by
equation (16) in the second-order jet space. This is a necessary and sufficient condition for
infinitesimal invariance of equation (16). We confine to the manifold M e.g. with the equality

u22 =
u00u11 − u2

01 − u2
02 + u2

12

u11 − u00
.

and then split the obtained expression with respect to the unconstrained derivatives uµν , (µ, ν) 6=
(2, 2), and uµ. After solving the derived system of determining equations, we find the general
form of coefficients of operators from A:

ξ0 = C1x0 + C2x1 + C3x2 + C4,

ξ1 = C2x0 + C1x1 − C5x2 + C6,

ξ2 = C3x0 + C5x1 + C1x2 + C7,

η = C8x0 + C9x1 + C10x2 + C11u + C12.

Therefore, the maximal Lie invariance algebra A of equation (16) is 12-dimensional. A basis
of A consists of the operators

P0 = ∂0, P1 = ∂1, P2 = ∂2, P3 = ∂u, I = u∂u,

J01 = x0∂1 + x1∂0, J02 = x0∂2 + x2∂0, J12 = −x2∂1 + x1∂2,

D = x0∂0 + x1∂1 + x2∂2, Q0 = x0∂u, Q1 = x1∂u, Q2 = x2∂u. (17)

The algebra A can be used for finding of exact solutions of equation (16). Exhaustive
investigation of Lie reductions of equation (16) includes the following steps: 1) construction of
optimal systems of one- and two-dimensional subalgebras of the algebra A and corresponding
sets of ansatzes of codimensions one and two; 2) reduction of the initial equations with these
ansatzes to partial differential equations in two independent variables or ordinary differential
equations; 3) solving of the reduced equations.

Here we restrict ourselves to particular reductions with respect to one-dimensional subal-
gebras. Below we list basis operators of these subalgebras, corresponding ansatzes, reduced
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equations for the new unknown function ϕ in two independent variables and some exact solu-
tions of the initial equation, which are found in the following way.

1) P1 + Q0:

u = x0x1 + ϕ(x0, x2), ϕ2
02 − ϕ00ϕ22 + 1 = 0;

u = x0x1 + 1
2x2

2 + 1
2x2

0 + C1x0 + C2. (18)

2) P1 + Q1:

u = 1
2x2

1 + ϕ(x0, x2), ϕ2
02 − ϕ00ϕ22 + ϕ22 − ϕ00 = 0;

u = 1
2x2

1 ∓ 1
2

√
(x2

2 − x2
0)(x

2
2 − x2

0 + 4C1)

∓ C1 ln
(

2C1 + x2
2 − x2

0 +
√

(x2
2 − x2

0)(x
2
2 − x2

0 + 4C1)
)
− 1

2(x2
2 − x2

0) + C2.

3) J02:

u = ϕ(ω, x1), ω = x2
0 − x2

2, ω(ϕ2
ω1 − ϕωωϕ11) + 2ωϕωϕωω − ϕωϕ11 + ϕ2

ω = 0;

u = −1
2x2

1 ± 1
2

√
(x2

0 − x2
2)(x

2
0 − x2

2 + 4C1)

± C1 ln
(

2C1 + x2
0 − x2

2 +
√

(x2
0 − x2

2)(x
2
0 − x2

2 + 4C1)
)
− 1

2(x2
0 − x2

2) + C2.

4) J02 + J12:

u = ϕ(ω1, ω2), ω1 = x0 + x1, ω2 = x2
2 + x2

1 − x2
0,

ω2
1(ϕ

2
12 − ϕ11ϕ22) + 4ω2ϕ2ϕ22 + 4ω1ϕ2ϕ12 + 3ϕ2

2 = 0;

u = C1

√
x2

2 + x2
1 − x2

0

x0 + x1
, u =

C2(x2
2 + x2

1 − x2
0) + C1

x0 + x1
. (19)

Another way of application of Lie symmetries to construction of exact solutions is generation
of new solutions from known ones by symmetry transformations. We can reconstruct the Lie
symmetry group G of equation (16) from the algebra A via solving of a set of Cauchy problems.
As a result, we obtained that the group G is generated by the following transformations:

translations with respect to x and u: x′
µ = xµ + aµ, u′ = u + a3,

scale transformations with respect to x and u: x′
µ = ea4xµ, u′ = ea5u,

addition of a linear in x term to u: x′
µ = xµ, u′ = u + bµxµ,

rotations in the plane (x1, x2):
x′

0 = x0, x′
1 = x1 cos c1 − x2 sin c1, x′

2 = x1 sin c1 + x2 cos c1, u′ = u,

Lorentz rotations in the plane (x0, x1):
x′

0 = x0 cosh c2 + x1 sinh c2, x′
1 = x0 sinh c2 + x1 cosh c2, x′

2 = x2, u′ = u,

Lorentz rotations in the plane (x0, x2):
x′

0 = x0 cosh c3 + x2 sinh c3, x′
1 = x1, x′

2 = x0 sinh c3 + x2 cosh c3, u′ = u,

where a0, . . . , a5, bµ, c1, c2 and c3 are arbitrary constants.

Parametrical generation of solutions (18) and (19) by means of symmetry transformations
gives, for example, the following new solutions:

u = (x2a + x0)x1

√
1− a2 + 1

2(x0a + x2)2 + 1
2(x2a + x0)2 + C1(x2a + x0) + C2,

u =
C2(x2

2 + x2
1 − x2

0) + C1

x0 cosh c3 + x2 sinh c3 + x1
.

Obtained solutions with parameters can be used in construction of further new solutions, for
instance, by application of the nonlinear superposition principle.
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5 Nonlocal linearization and the formula of superposition
of solutions for equation (16)

As established in [34], the (1+2)-dimensional nonlinear equation Slid(uµν) = 0 can be reduced
to a linear one by the Legendre transformation in the space of variables x = (x0, x1, x2):

u(x0, x1, x2) = y0v0 + y1v1 + y2v2 − v,
x0 = v0,
x1 = v1,
x2 = v2,

v = v(y0, y1, y2). (20)

The Legendre transformation is prolonged to the first and second order derivatives in the space
of variables x in the following way:

u0 = y0, u1 = y1, u2 = y2,

u00 =
v11v22 − v2

12

δ
, u01 = −v01v22 − v20v12

δ
, u11 =

v00v22 − v2
20

δ
,

u02 =
v10v21 − v11v20

δ
, u01 = −v00v21 − v20v10

δ
, u22 =

v00v11 − vv12
10 2

δ
,

where δ = det(vµν) 6= 0.
Substituting the obtained expressions for vµν in (16), we get the linear d’Alembert equation

2u = u00 − u11 − u22 = 0. (21)

Since the Legendre transformation is an involution, i.e. it coincides with its inverse transforma-
tion, application of the Legendre transformation to (21) results in the initial equation (16).

In [8] a nonlinear superposition formula was derived for any nonlinear differential equation
which can be reduced by the Legendre transformation (20) to a linear homogeneous equation.
In the case of equation (16) this formula has the form:

(3)
u (x) =

(1)
u (τ) +

(2)
u (θ),

(1)
uµ(τ) =

(2)
uµ(θ), x = τ + θ, (22)

where x = (x0, x1, x2), the subscript µ of a function u denotes differentiation with respect to
the µ-th argument of u. τ = (τ0, τ1, τ2) and θ = (θ0, θ1, θ2) are tuples of parameter-functions
depending on x.

We apply formula (22) for construction of new solutions of (16) from pairs of its known
solutions. Let us choose the solutions

(1)
u = −

√
−2C1(x2

1 − (x0 + ax2)2 − 2(x0 + ax2)) + 2C1 + C2,

(2)
u = −2

√
−2C1((ax0 + ax1 + x2)2 + (ax1 + ax2 + x0)2) + C2.

They satisfy the condition det(uµν) 6= 0. Therefore, it is possible to use formula (22) for finding
of a new solution of (16). We re-denote the arguments of the first and second solutions as τ
and θ respectively. Replacing τµ by the expression xµ − θµ, we obtain the solution

(3)
u = −

√
−2C1(x1 − θ1)2 + 2C1(a(x2 − θ2) + x0 − θ0)2 − (a(x2 − θ2) + x0 − θ0) + 2C1

− 2
√

2C1((aθ0 + aθ1 + θ2)2 + (aθ1 + aθ2 + θ0)2) + C2.

The functional parameters θ0, θ1 and θ2 are found from the system

R1(−(a(x2 − θ2) + x0 − θ0)− 1) = R2(θ0a
2 + θ1a

2 + 2θ2a + θ1a + θ0),
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R1(x1 − θ1) = R2(θ0a
2 + 2θ1a

2 + θ2a
2 + θ2a + θ0a),

R1(−(a(x2 − θ2) + x0 − θ0)− 1) = R2(θ0a
2 + θ1a

2 + 2θ2a + θ1a + θ0),

where

R1 =
(
−2C1(x1 − θ1)2 + 2C1(a(x2 − θ2) + x0 − θ0)2 − (a(x2 − θ2) + x0 − θ0) + 2C1

)− 1
2 ,

R2 = 2
(
2C1((aθ0 + aθ1 + θ2)2 + (aθ1 + aθ2 + θ0)2)

) 1
2 .

6 Conclusion

In this work we continued investigation of nonlocal symmetries of PDEs by means of nonlocal
transformations of variables. Application of nonlocal symmetries to construction of explicit
superposition formulae and formulae of generation of solutions was discussed. We obtained new
formulae for generation of solutions for the Burgers equation and the nonlinear heat equation.
New superposition principles were constructed for them and then used for obtaining of new
solutions. The formula of nonlinear superposition of solutions for the multidimensional equation

Slid(uµν) = u11u22 − u2
12 − (u00u22 − u2

02)− (u00u11 − u2
01) = 0

was applied to construction of a new solution from two known ones. Such algorithms of gene-
rating of new solutions represent new nonlocal symmetries of nonlinear equations under inves-
tigation.

All obtained solutions can be extended to parametric families by means of Lie symmetry
transformations or by using other formulae for generation of solutions.
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