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1 Introduction

Let r ≥ 2 and d ≥ 1 be integers. In [1], Beauville constructed an algebraically completely
integrable Hamiltonian system on the space of the gauge equivalence classes of r× r polynomial
matrices whose degree is less than or equal to d. This system is a generalization of the Mumford
system [6], and the general level set is isomorphic to the complement of the theta divisor in the
Jacobian variety of the spectral curve. Employing Beauville’s approach, a variant is constructed
in [5], which gives a generalization of the even Mumford system introduced by Vanhaecke [11, 12].
The remarkable difference with Beauville’s system is that the general level set is isomorphic to
the complement of the intersection of r translates of the theta divisor. We call these systems
the Beauville system and the Beauville–Vanhaecke (BV) system in this paper.

The Poisson structures of these systems depend on a monic polynomial of degree d+2 having
only simple roots. Our first aim in this article is to understand them in terms of the multi-
Hamiltonian structure (see [9, § 4 and § 12]). This is achieved by extending them to those
parameterized by a polynomial φ(x) of degree at most d+ 2; φ(x) need not be monic nor have
simple roots, and deg φ(x) can be less than d+2 (Propositions 1 and 3). It then turns out that the
Poisson structures corresponding to φ(x) = 1, x, . . . , xd+2 give the integrable multi-Hamiltonian
system (Theorems 1 and 2).

Since the Beauville system and the BV system are given by the quotient construction, it is
an important problem to construct their spaces of representatives and to describe the vector
fields and the Poisson structures on them. For the Beauville system, a space of representatives
was constructed by Donagi and Markman for a certain subspace [2]. The vector fields on it
was computed by Fu [4] and the multi-Hamiltonian structure was constructed in [8] using the
group-theoretic approach. For the BV system, spaces of representatives were given in [5] and
the vector fields for r = 2 and 3 were also given.
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Our second aim is to study the family of Poisson structures on the space of representatives.
For the Beauville system, we introduce a new space of representatives for a certain subspace of
codimension one which includes Donagi–Markman’s result (Proposition 5). In the simplest case
of r = 2 we write down the Poisson structures on this space and on the spaces of representatives
for the BV system (Propositions 2 and 4) and compare them with previously known Poisson
structures on the Mumford system and the even Mumford system [3, 7, 8].

This article is organized as follows. In Sections 2 and 3, we study Poisson structures and multi-
Hamiltonian structures for the Beauville system and the BV system. We also give expressions
of the Poisson structures on the spaces of representatives in the case r = 2 and compare them
with those of the Mumford system and the even Mumford system. Section 4 is devoted to the
construction of the new space of the representatives for the subset of the Beauville system.

2 Multi-Hamiltonian structure on the Beauville system

We fix numbers r ∈ Z≥2 and d ∈ Z≥1. Throughout this paper, we use the following notations:
Sd ⊂ C[x] denotes the set of polynomials of degree at most d. Eij ∈Mr(C) is the matrix whose
(i, j)-th entry is one and other entries are zero. For a matrix A(x) ∈Mr(C[x]) with polynomial
entries,

Aij(x) ∈ C[x] : the (i, j)-th entry of A(x),

Aij;k ∈ C : the coefficient of xk in Aij(x),

Ak ∈Mr(C) : the coefficient of xk in A(x).

Let W be a nonsingular algebraic variety.

Definition 1. A Poisson algebra structure on a sheaf of rings F on W is a morphism {·, ·} :
F × F → F satisfying skew-symmetry, the Leibniz rule, and the Jacobi identity. A Poisson
structure on W is a Poisson algebra structure on the structure sheaf OW .

2.1 The Beauville system

Let V (r, d) be the set

V (r, d) = {P (x, y) = yr + s1(x)yr−1 + · · ·+ sr(x) ∈ C[x, y] | si(x) ∈ Sdi}.

For P (x, y) ∈ V (r, d), let CP be the spectral curve obtained by taking the closure of the affine
curve P (x, y) = 0 in the Hirzebruch surface Fd = P(OP1 ⊕OP1(d)) of degree d. Consider the set
Mr(Sd) of r × r matrices with entries in Sd and let ψ be the map:

ψ : Mr(Sd) → V (r, d), A(x) 7→ det(yIr −A(x)).

The group PGLr(C) acts on Mr(Sd) by conjugation:

PGLr(C) 3 g : A(x) 7→ g(A(x)) = g−1A(x)g.

Define a subset Mr(Sd)ir of Mr(Sd) as

Mr(Sd)ir = {A(x) ∈Mr(Sd) | Cψ(A(x)) is irreducible}.

Note that the PGLr(C)-action is free on Mr(Sd)ir. Let η : Mr(Sd)ir → Mr(Sd)ir/PGLr(C) be
the quotient map. The phase space of the Beauville system is M(r, d) = Mr(Sd)ir/PGLr(C). It
was shown in [1] that if P ∈ V (r, d) defines a smooth spectral curve CP , then ψ−1(P )/PGLr(C)
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is isomorphic to the complement of the theta divisor in Picg−1(CP ), where g = 1
2(r− 1)(rd− 2)

is the genus of CP .
Define the vector fields Y (k)

i on Mr(Sd) by

dk−1∑
i=0

aiY
(k)
i (A(x)) =

1
x− a

[A(x), A(a)k], for k = 1, . . . , r − 1. (1)

Here we have identified the tangent space at each A(x) ∈ Mr(Sd) with Mr(Sd). In [1], it was
shown that η∗Y

(k)
i generate the g-dimensional space of translation invariant vector fields on

Picg−1(CP ).

2.2 Poisson structure

We use the following shorthand notations:

M• = Mr(Sd+1), M = Mr(Sd), Mir = Mr(Sd)ir, M = M(r, d), , G = PGLr(C).

Extending the result of [1, § 5], we are to equipM with a family of compatible Poisson structures
depending on a polynomial φ(x) ∈ Sd+2:

φ(x) =
d+2∑
i=0

σix
i.

Note that a Poisson structure on M is equivalent to a Poisson algebra structure on the sheaf
of G-invariant functions OG

Mir
on Mir. Moreover, a Poisson algebra structure on OG

M induces
that on OG

Mir
since Mir is an open subset of M .

Consider the following Poisson structure on M•:

{Aij(x), Akl(y)} = δi,l
Akj(x)φ(y)− φ(x)Akj(y)

x− y
− δk,j

Ail(x)φ(y)− φ(x)Ail(y)
x− y

. (2)

Let ι : M ↪→ M• be the closed immersion. Let IM be the ideal sheaf of ι. Writing α for the
natural projection OM• → OM•/IM = ι∗OM , we set N := α−1(ι∗OG

M ) ⊂ OM• .

Proposition 1. N is a Poisson subalgebra of OM•. This Poisson algebra structure induces that
on N/N ∩ IM , hence on OG

M .

Proof. Let U be an open subset of M•. Let us write F,H ∈ N (U) as

F = f +
∑

1≤i,j≤r
Aij;d+1fij , H = h+

∑
1≤i,j≤r

Aij;d+1hij ,

with f, h ∈ OM•(U)PGLr(C) and fij , hij ∈ OM•(U). Note that the Hamiltonian vector fields of
Aij;d+1 (1 ≤ i, j ≤ r) are proportional to the vector fields X[Eji] (1 ≤ i, j ≤ r) which generate
the infinitesimal actions corresponding to [Eji] ∈ LiePGLr(C):

{Aij;d+1, ∗} = −σd+2X[Eji] (1 ≤ i, j ≤ r).

Note also that PGLr(C)-invariant functions f, h vanish when one applies X[Eji] as derivations.
Combining these facts, we obtain

{F,H} = {f, h}+
∑

1≤i,j≤r
Aij;d+1lij ,
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where lij ∈ OM•(U). Since (2) is G-invariant, {f, h} ∈ OG
M• . Thus we have

{F,H} ∈ N (U), and α
(
{F,H}

)
= α

(
{f, h}

)
.

Therefore N is a subalgebra of OM• with respect to (2) and this Poisson algebra structure
induces a Poisson algebra structure on N/N ∩ IM . �

Remark 1. The Poisson structure constructed in [1] corresponds to the case when φ(x) is monic
of degree d+2 and has only simple roots. With such φ(x), the Poisson structure (2) on Mr(Sd+1)
is equivalent to the canonical Poisson structure on Mr(C)d+2, on which the discussion in [1] is
based. See Appendix A for the explicit correspondence.

2.3 Multi-Hamiltonian structure

We define a family of Poisson structures on M:

Definition 2. For φ(x) ∈ Sd+2, {·, ·}φ : OM×OM → OM denotes the Poisson structure on M
obtained in Proposition 1. For 0 ≤ i ≤ d+ 2, we write {·, ·}i := {·, ·}φ with φ(x) = xi.

By construction, the Poisson structures are compatible:

{·, ·}c1φ1+c2φ2 = c1{·, ·}φ1 + c2{·, ·}φ2 (c1, c2 ∈ C, φ1(x), φ2(x) ∈ Sd+2).

Define the PGLr(C)-invariant functions H(k)
i (1 ≤ k ≤ r, 0 ≤ i ≤ kd) on Mr(Sd) by

1
k

TrA(x)k =
kd∑
i=0

H
(k)
i xi for A(x) ∈Mr(Sd).

Lemma 1. (Cf. [1, proposition in (5.2)].) The Hamiltonian vector field of H(k)
j (1 ≤ k ≤ r,

0 ≤ j ≤ dk) with respect to the Poisson structure {·, ·}φ is related to the vector fields (1) as
follows:

{H(k)
j , ∗}φ =

min(j,d+2)∑
i=0

σi η∗Y
(k−1)
j−i .

In particular, H(1)
j (0 ≤ j ≤ d) are Casimir functions.

Proof. By direct calculation, we can show that for each φ(x) ∈ Sd+2 and k ≥ 1, the Hamiltonian
vector field of 1

k TrA(a)k (a ∈ P1) on Mr(Sd+1) with respect to the Poisson structure (2) is

φ(a)
x− a

[A(x), A(a)k−1].

It is easy to show that this is tangent to Mr(Sd) and that its restriction to Mr(Sd) is

φ(a)
x− a

[A(x), A(a)k−1] =
d+2∑
i=0

d(k−1)−1∑
j=0

σia
i+jY

(k−1)
j (A(x)). (3)

By Proposition 1, the corresponding Hamiltonian vector field is given by a push forward of (3)
by η. Comparing the coefficients of powers of a, we obtain the lemma. �
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Theorem 1. (i) Each η∗Y
(k)
j is a multi-Hamiltonian vector field with respect to the Poisson

structures {·, ·}i (i = 0, . . . , d+ 2):

η∗Y
(k)
j = {H(k+1)

j , ∗}0 = {H(k+1)
j+i , ∗}i

for 1 ≤ k ≤ r − 1 and 0 ≤ j ≤ kd− 2.
(ii) With respect to {·, ·}i (0 ≤ i ≤ d+2), H(k)

0 , . . . ,H
(k)
i−1and H(k)

d(k−1)+i−1, . . . ,H
(k)
dk (1 ≤ k ≤ r)

are Casimir functions.

Proof. By Lemma 1, we obtain

{H(k+1)
j , ∗}i = η∗Y

(k)
j−i for i ≤ j ≤ dk + i− 1,

{H(k+1)
j , ∗}i = 0 for 0 ≤ j ≤ i− 1 and dk + i ≤ j ≤ d(k + 1).

Moreover, η∗Y
(k)
dk−1 = 0 since Y (k)

dk−1 is tangent to PGLr(C)-orbits by the definition (1). This
proves the theorem. �

2.4 Poisson structure for representatives of M(2, d)

In this subsection, we explicitly write down the Poisson structure {·, ·}φ in the case of r = 2.
We also discuss how this is related to the known Poisson structures on the Mumford system.

Consider the subspace S∞ ⊂M2(Sd) defined by

S∞ =

{
S(x) =

(
vd 0
1 0

)
xd+

(
vd−1 ud−1

wd−1 0

)
xd−1+

(
vd−2 ud−2

wd−2 td−2

)
xd−2+ · · ·

∣∣∣∣∣ud−1 6= 0

}
.

In Section 4, we will see that S∞ is a space of representatives for M∞ which is an open subset
of

M2d =
{
A(x) ∈M2(Sd) | H

(2)
2d = 0

}
.

Lemma 2. If φ(x) ∈ Sd+1, (2) induces a Poisson structure on S∞.

Proof. In this proof we write M for M2(Sd). By Proposition 1, we have the Poisson algebra
structure {·, ·}φ on the sheaf OG

M . Moreover, H(2)
2d is its Casimir function since deg φ ≤ d + 1

(Theorem 1). Therefore the Poisson algebra structure induces that on OG
M/OG

M ∩ IM2d
, where

IM2d
is the ideal sheaf of M2d in M = M2(Sd). Thus (2) induces the Poisson structure on

M∞/G ∼= S∞. �

By a direct calculation (cf. proof of Proposition 4), we obtain the next result.

Proposition 2. For φ(x) = σd+1x
d+1 + · · ·+ σ0 ∈ Sd+1, the Poisson structure {·, ·}φ is written

as follows

{S(x) ⊗, S(y)}φ = φ(y)[r(x, y), S(x)⊗ I2]− φ(x)[r̄(x, y), I2 ⊗ S(y)]
+ [K(x, y), S(x)⊗ I2]− [K̄(x, y), I2 ⊗ S(y)], (4)

where

{S(x) ⊗, S(y)}φ =
∑

1≤i,j,k,l≤r
Eij ⊗ Ekl {Sij(x), Skl(y)}φ
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and

r(x, y) =
1

x− y
P2 +

1
ud−1

(
vd 0
1 0

)
⊗

(
0 0
1 0

)
,

r̄(x, y) = P2 · r(y, x) · P2,

K(x, y) =
1

ud−1

(
yvdσd+1 −ud−1σd+1

−(wd−1 − y)σd+1 + σd 0

)
⊗

(
0 S12(y)

−S21(y) 0

)
,

K̄(x, y) = P2 ·K(y, x) · P2, P2 =
∑

1≤i,j≤2

Eij ⊗ Eji.

We write F (1)
j (j = 0, . . . , d−2) for the vector field on S∞ induced by η∗Y

(1)
j . As a consequence

of Theorem 1 and Proposition 2 we obtain

Corollary 1. Each F (1)
j (j = 0, . . . , d− 2) is the multi-Hamiltonian vector field with respect to

the Poisson structure (4). They are written as the Lax form:

d−2∑
j=0

yjF
(1)
j

(
S(x)

)
=

1
yi

{
H(2)(y), S(x)

}
i
=

[
S(x),

1
x− y

S(y) +
S12(y)
ud−1

(
vd 0
1 0

)]
, (5)

for i = 0, . . . , d+ 1.

Now we derive a Poisson structure of the Mumford system from (4). The phase space SMum

of the Mumford system is the subspace of S∞ defined as

SMum =
{
S(x) ∈ S∞ | TrS(x) = 0, ud−1 = 1

}
.

Lemma 3. (4) induces a Poisson structure on SMum if σd+1 = 0.

Proof. When deg φ(x) ≤ d, H(2)
2d−1 = ud−1 is a Casimir of {·, ·}φ by Theorem 1. Therefore (4)

induces a Poisson structure on SMum. �

This is the same as the Poisson structure in [8, § 5.1]. The Poisson structures in [3, (4)] and [7]
correspond to the case σd+1 = σd = 0 and the case φ(x) = x respectively. The formula (5)
reduces to the Lax form for the Mumford system [3, (7)].

3 Multi-Hamiltonian structure
on the Beauville–Vanhaecke system

3.1 The Beauville–Vanhaecke system

Following [5], we define the set M ′(r, d) and the group Gr as

M ′(r, d) =

{
A(x) ∈Mr(C[x])

∣∣∣∣∣ A(x)11 ∈ Sd, A(x)1j ∈ Sd+1,
A(x)i1 ∈ Sd−1, A(x)ij ∈ Sd,

(2 ≤ i, j ≤ r)

}
,

Gr =

{
g(x) =

(
1 t~b1x+ t~b0
0 B

) ∣∣∣∣∣ B ∈ GLr−1(C), ~b1,~b0 ∈ Cr−1

}
.

Here we use the notation such as~b for a column vector and t~b for a row vector. The group Gr acts
on M ′(r, d) by conjugation. Let ψ : M ′(r, d) → V (r, d) be the map ψ(A(x)) = det(yI − A(x))
and define

M ′(r, d)ir = {A(x) ∈M ′(r, d) | the spectral curve Cψ(A(x)) is irreducible}.
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The Gr-action is free on Mr(Sd)ir [5, Lemma 2.6]. Let η′ : M ′(r, d)ir → M ′(r, d)ir/Gr be the
quotient map. The phase space of the Beauville–Vanhaecke system is M′(r, d) = M ′(r, d)ir/Gr.
It was shown that if P ∈ V (r, d) defines a smooth spectral curve CP , then ψ−1(P )/Gr is
isomorphic to the complement of the intersection of r-translates of the theta divisor in Picg(CP )
[5, Theorem 2.8].

Define the vector fields Y (k)
i on M ′(r, d) by

kd∑
i=0

aiY
(k)
i (A(x)) =

1
x− a

[A(x), A(a)k], for k = 1, . . . , r − 1. (6)

It was shown that η′∗Y
(k)
i generate the g-dimensional space of translation invariant vector fields

on Picg(CP )1.

3.2 Poisson structure

We equip M′(r, d) with a family of Poisson structures, extending the results in [5, § 3]. The key
idea is that (2) induces the Poisson structure on M′(r, d) as in the case of the Beauville system.
However, due to the technical difficulties arising from the Gr-action, we need a modification of
the argument.

We use the following shorthand notations:

M ′ = M ′(r, d), M ′
ir = M ′(r, d)ir, M′ = M′(r, d).

Let us write A(x) ∈M• and A(x) ∈M ′ as

A(x) =
(
v(x) t ~w(x)
~u(x) t(x)

)
,

where

v(x) = A11(x), t ~w(x) = (A12(x), . . . , A1r(x)),
~u(x) =t (A21(x), . . . , Ar1(x)), t(x) =

(
Aij(x)

)
2≤i,j≤r.

Let ι′ : M ′ ↪→M• be the closed immersion and π′ : M• →M ′ be the surjection:

A(x) =


d+1∑
k=0

vkx
k

d+1∑
k=0

t ~wkx
k

d+1∑
k=0

~ukx
k

d+1∑
k=0

tkx
k

 7→


d∑

k=0

vkx
k

d+1∑
k=0

t ~wkx
k

d−1∑
k=0

~ukx
k

d∑
k=0

tkx
k

 .

Note that π′ ◦ ι′ = idM ′ . Let γ be the composition of the morphisms:

Hom((OM•)2,OM•)
π′∗→ Hom((π′∗OM•)2, π′∗OM•) → Hom((OM ′)2,OM ′),

where the second morphism is given by

Φ 7→
[
(OM ′)2

(π′#)2→ (π′∗OM•)2 Φ→ π′∗OM•
π′∗(ι

′#)→ π′∗ι
′
∗OM ′ = OM ′

]
.

1Although Y
(k)

i is not Gr-invariant, η′
∗Y

(k)
i is well-defined because the difference between g(x)∗Y

(k)
i and Y

(k)
i

is tangent to Gr-orbits [5, Lemma 3.2].
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We define {·, ·}BV ∈ Hom((OM ′)2,OM ′) to be the image of (2) by γ. For the coordinate
functions Aij;k of M ′, it is written explicitly as

{Aij(x), Akl(y)}BV =

[
δi,l

Akj(x)φ(y)− φ(x)Akj(y)
x− y

− δk,j
Ail(x)φ(y)− φ(x)Ail(y)

x− y

]
≤dij ,≤dkl

(7)

where [·]≤dij ,≤dkl
means taking the terms whose degree in x is smaller or equal to dij and whose

degree in y is smaller or equal to dkl. Here dij = d, d1j = d+ 1, di1 = d− 1 for 2 ≤ i, j ≤ r and
d11 = d.

Proposition 3. The sheaf OGr
M ′ of Gr-invariant regular functions on M ′ is closed with respect

to (7). Moreover, (7) is a Poisson algebra structure on OGr
M ′.

The proof is delegated to Subsection 3.3. As an immediate consequence of this proposition,
we obtain the Poisson algebra structure on OGr

M ′
ir

, which is equivalent to the Poisson structure
on M′.

Remark 2. The Poisson structure constructed in [5, § 3] corresponds to the case where φ(x) is
monic of degree d+ 2 and has only simple roots.

3.3 Proof of Proposition 3

We prove Proposition 3 in the cases of deg φ(x) = d + 2, deg φ(x) = d + 1 and deg φ(x) ≤ d
separately.

The case of deg φ(x) = d+ 2: We equip M• with the Poisson structure (2). We extend the
Gr-action on M ′ to M• as follows2:

Gr 3 g(x) : A(x) 7→ Ã(x), (8)

where Ã(x) ∈Mr(Sd+1) is the matrix uniquely determined by

g(x)−1A(x)g(x) = Ã(x) + φ(x)Â(x), Â(x) ∈Mr(S1). (9)

By direct calculation, we can show that the Poisson structure (2) is invariant with respect to
this Gr-action.

Let IM ′ be the ideal sheaf of ι′, and set N ′ := α′−1(ι′∗O
Gr
M ′) ⊂ OM• by writing α′ for the

natural projection OM• → OM•/IM ′ = ι′∗OM ′ .

Lemma 4. (1) N ′ is a Poisson subalgebra of OM•.
(2) The Poisson algebra structure of (1) induces that on N ′/N ′ ∩IM ′, hence on OGr

M ′. More-
over, it is given by (7).

Proof. Note that for f ∈ OM•(U) where U is any open subset,

r∑
i=1

{Aii;d+1, f} = 0,

{Aij;d+1, f} = −σd+2XEjif (2 ≤ i, j ≤ r),

{Ai1;d+1, f} = −σd+2XE1if, {Ai1;d, f} = −σd+2XE′
1i
f − σd+1XE1if (2 ≤ i ≤ r).

2In the case φ(x) has only simple roots, this action is the same as the one used in [5]. See Appendix B for
a proof.
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Here XEji , XE1i , XE′
1i

are the vector fields generating the infinitesimal actions corresponding
to Eji, E1i, E′1i = xE1i ∈ LieGr:

XEij (A(x)) = [A(x), Eij ] (2 ≤ i, j ≤ r),

XE1j (A(x)) = [A(x), E1j ] (2 ≤ j ≤ r),

XE′
1j

(A(x)) =
[
xA(x)− σd+1

σd+2
Ad+1, E1j

]
(2 ≤ j ≤ r).

By the same argument as that of Proposition 1, we can show that N ′ is a Poisson subalgebra
of OM ′ and that this induces a Poisson algebra structure on N ′/N ′ ∩ IM ′ , hence on OGr

M ′ .
By construction, the Poisson algebra structure on OGr

M ′ coincides with the restriction of (7)
to OGr

M ′ . �

The Case of deg φ(x) = d + 1: For an open subset U of M ′, a function F ∈ OGr
M ′(U) is

characterized by the condition XEijF = XE1jF = XE′
1j
F = 0 (2 ≤ i, j ≤ r) where XEij , XE1j ,

XE′
1j

are the infinitesimal action on M ′corresponding to Eij , E1j , E
′
1j ∈ LieGr:

XEij (A(x)) = [A(x), Eij ] (2 ≤ i, j ≤ r),

XE1j (A(x)) = [A(x), E1j ] (2 ≤ j ≤ r), (10)

XE′
1j

(A(x)) = [xA(x), E1j ] (2 ≤ j ≤ r).

Using this fact, we can show that OGr
M ′ is closed with respect to {·, ·}BV . We can also show

that the Jacobi identity holds on OGr
M ′ although it does not on OM ′ . Thus {·, ·}BV is a Poisson

algebra structure on OGr
M ′ .

The Case of deg φ(x) ≤ d: When deg φ(x) ≤ d, {·, ·}BV satisfies the Jacobi identity on OM ′

since it gives OM ′ a Poisson subalgebra structure. By using the action (10) of Lie Gr on M ′, we
can show that OGr

M ′ is closed with respect to {·, ·}BV as in the case of deg φ(x) = d+1. Therefore
{·, ·}BV is a Poisson algebra structure on OGr

M ′ .

3.4 Multi-Hamiltonian structure

Definition 3. For φ(x) ∈ Sd+2, {·, ·}′φ : OM′ × OM′ → OM′ denotes the Poisson structure
defined in Proposition 3. For 0 ≤ i ≤ d+ 2, we write {·, ·}′i := {·, ·}′φ with φ(x) = xi.

By construction, these Poisson structures are compatible in the sense of Subsection 2.3.
Define the Gr-invariant functions H(k)

i (1 ≤ k ≤ r, 0 ≤ i ≤ kd) on M ′(r, d) by

1
k

TrA(x)k =
kd∑
i=0

H
(k)
i xi for A(x) ∈M ′(r, d).

Lemma 5. (Cf. [5, Lemma 3.10].) The Hamiltonian vector field of H(k)
j (1 ≤ k ≤ r, 0 ≤ i ≤ dk)

is related to the vector fields (6) as

{H(k)
j , ∗}′φ =

min(j,d+2)∑
i=0

σiη∗Y
(k−1)
j−i .

In particular, H(1)
j (0 ≤ j ≤ d) are Casimir functions of {·, ·}′φ.

This lemma can be proved in the same way as Lemma 1 using Proposition 3. From Lemma 5,
we obtain the following theorem similar to Theorem 1.
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Theorem 2. (i) Each η∗Y
(k)
j is a multi-Hamiltonian vector field with respect to the Poisson

structures {·, ·}′i (i = 0, . . . , d+ 2):

η∗Y
(k)
j = {Hk+1

j , ∗}′0 = {Hk+1
j+i , ∗}

′
i

for 1 ≤ k ≤ r − 1 and 0 ≤ j ≤ kd− 2.
(ii) With respect to {·, ·}′i (0 ≤ i ≤ d+2), H(k)

0 , . . . ,H
(k)
i−1and H(k)

d(k−1)+i−1, . . . ,H
(k)
dk (1 ≤ k ≤ r)

are Casimir functions.

3.5 Poisson structure for representatives of M′(2, d)

We present the Poisson structure {·, ·}′φ in the case r = 2 on the space of representatives S ′∞ of
M′(2, d) constructed in [5, § 4].

The space S ′∞ is written as

S ′∞=

{
S(x) =

(
0 wd+1

0 0

)
xd+1+

(
vd wd
0 0

)
xd+

(
vd−1 wd−1

1 0

)
xd−1+ lower terms in x

}
.

We obtain the following result by a direct calculation.

Proposition 4. For φ(x) = σd+2x
d+2+σd+1x

d+1+· · ·+σ0, the Poisson bracket {·, ·}′φ is written
as follows:

{S(x) ⊗, S(y)}′φ = φ(y)[r(x, y), S(x)⊗ I2]− φ(x)[r̄(x, y), I2 ⊗ S(y)]

+B(x, y)[K(x, y), S(x)⊗ I2]−B(x, y)[K̄(x, y), I2 ⊗ S(y)], (11)

where

r(x, y) =
1

x− y
P2 +

(
vd A(x+ y)
0 0

)
⊗

(
0 1
0 0

)
, r̄(x, y) = P2 · r(y, x) · P2,

K(x, y) =
(

0 B(x, y)
0 0

)
⊗

(
0 −S12(y)

S21(y) 0

)
, K̄(x, y) = P2 ·K(y, x) · P2,

A(x) = wd+1(x− ud−2) + wd,

B(x, y) = σd+2(x2 + y2 + xy + (ud−2 − x− y)ud−2 − ud−3) + σd+1(ud−2 − x− y) + σd.

Proof. In this proof, we write A(x) ∈M ′ as

A(x) =


d∑
i=0

ṽix
i

d+1∑
i=0

w̃ix
i

d−1∑
i=0

ũix
i

d∑
i=0

t̃ix
i


and regard ṽi (0 ≤ i ≤ d), w̃i (0 ≤ i ≤ d + 1), ũi (0 ≤ i ≤ d − 1), t̃i (0 ≤ i ≤ d) as coordinate
functions of M ′. (Here we use ˜ to distinguish from vi, wi, ui, ti which we use as coordinates
of S ′∞.) The bracket {·, ·}BV (7) among ṽi, . . . , t̃i are explicitly written as follows:

{ṽ(x), ṽ(y)} = {ũ(x), ũ(y)} = {w̃(x), w̃(y)} = {t̃(x), t̃(y)} = {ṽ(x), t̃(y)} = 0,

{ṽ(x), ũ(y)} = −{t̃(x), ũ(y)} =
ũ(x)φ(y)− φ(x)ũ(y)

x− y

+ σd+2ũ(y)xd+1 + σd+2ũ(x)yd+1 − (σd+1 − σd+2x)ũ(x)yd,
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{ṽ(x), w̃(y)} = −{t̃(x), w̃(y)} = − w̃(x)φ(y)− φ(x)w̃(y)
x− y

− σd+2w̃(y)xd+1,

{ũ(x), w̃(y)} =
(ṽ(x)− t̃(x))φ(y)− φ(x)(ṽ(y)− t̃(y))

x− y

+ σd+2(ṽ(y)− t̃(y))xd+1 − (σd+1 − σd+2y)(ṽ(y)− t̃(y))xd, (12)

where ṽ(x) :=
d∑
i=0

ṽix
i and so on.

Similarly let vi (0 ≤ i ≤ d), wi (0 ≤ i ≤ d+ 1), ui (0 ≤ i ≤ d− 2), ti (0 ≤ i ≤ d− 2) denote
coordinate functions of S ′∞. Let (b1, b0, c) ∈ C2×C∗ be the following coordinate functions of Gr:

Gr 3
(

1 b1x+ b0
0 c

)
.

In the neighborhood of S ′∞, (vi (0 ≤ i ≤ d), wi (0 ≤ i ≤ d + 1), ui (0 ≤ i ≤ d − 2), ti
(0 ≤ i ≤ d − 2), b0, b1, c) forms a local coordinate system of M ′. The transformation between
the two coordinate systems is given by(

ṽ(x) w̃(x)
ũ(x) t̃(x)

)
=

(
1 b1x+ b0
0 c

)−1 (
v(x) w(x)
u(x) t(x)

) (
1 b1x+ b1
0 c

)
. (13)

Substituting the RHS of (13) into (12) and using the Leibniz rule, we obtain the system of
equations for brackets among (v(x), w(x), u(x), t(x), b0, b1, c). Solving this and restricting
to S ′∞ (i.e. setting b0 = b1 = 0, c = 1), we arrive at the result of Proposition 4. �

As in the case of the Beauville system, we write F (1)
j (j = 0, . . . , d − 2) for the vector field

on S ′∞ induced by η∗Y
(1)
j . From Theorem 2 and Proposition 4 we obtain

Corollary 2. Each F (1)
j (j = 0, . . . , d− 2) is the multi-Hamiltonian vector field with respect to

the Poisson structure (11). They are written as the Lax form:

d−2∑
j=0

yjF
(1)
j

(
S(x)

)
=

1
yi
{H(2)(y), S(x)}i

=
[
S(x),

1
x− y

S(y) + S21(y)
(

0 A(x+ y)
0 −vd

)]
,

for i = 0, . . . , d+ 2.

We remark that this Lax form already appeared in [5, (4.9)] for general r.
In closing this subsection, we discuss the Poisson structure on the even Mumford system.

The phase space of the even Mumford system is given by

{S(x) ∈ S ′∞ | TrS(x) = 0, wd+1 = 1}.

Lemma 6. If σd+2 = 0, (11) gives a Poisson structure on the phase space of the even Mumford
system.

Proof. By Theorem 2, wd+1 = H
(2)
2d is Casimir of {·, ·}′φ if deg φ(x) ≤ d+ 1. Therefore in such

a case, (11) induces a Poisson algebra structure on O(S ′∞)/H(2)
2d O(S ′∞). �

The Poisson structure in [3] corresponds to the case σd+2 = σd+1 = σd = 0.
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4 Representatives of the Beauville system

First we introduce some notations. Let us define a subset Mreg of Mr(C):

Mreg = {A ∈Mr(C) | deg(the minimal polynomial of A) = r}.

For A ∈Mr(C), A ∈Mreg is equivalent to the condition that only one Jordan block corresponds
to each eigenvalue of A. For A ∈ Mreg, let α1, . . . , αk (k < r) be the distinct eigenvalues and
ν1, . . . , νk be the size of the corresponding Jordan blocks. Define the subspace of Cr as

Wαi:j = {~u ∈ Cr | (A− αi Ir)j~u = 0}

for 0 ≤ i ≤ k, j ∈ Z≥0. The spaces Wαi:1 and Wαi:νi are respectively the eigenspace and the
generalized eigenspace of A. There is the filtration

Wαi:νi ⊃Wαi:νi−1 ⊃ · · · ⊃Wαi:1 ⊃Wαi:0 = {~0}.

By the assumption of A, dim(Wαi:j/Wαi:j−1) = 1 for all αi and j = 1, . . . , νi. We fix a base
~vαi(A) of Wαi:1. Let Παi be the projection map Παi : Cr →Wαi:νi , and define

V (A) = {~u ∈ Cr |Παi(~u) /∈Wαi:νi−1 for i = 0, . . . , k}.

Now we introduce the subspaces M∞ and S∞ of Mr(Sd):

M∞ =
{
A(x) =

d∑
k=0

Akx
k ∈Mr(Sd)

∣∣∣Ad ∈Mreg, detAd = 0, Ad−1~v0(Ad) ∈ V (Ad)
}
,

S∞ =
{
A(x) ∈Mr(Sd) |A(x) = ωxd + ρxd−1 + lower terms in x, ω ∈ Ω, ρ ∈ T

}
, (14)

where

Ω =

{
−β1 · · · −βr−1 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 ∈Mr(C)
∣∣∣β1, · · · , βr−1 ∈ C

}

T = {ρ ∈Mr(C) | ρ1r 6= 0, ρjr = 0 for j = 2, . . . , r}.

The main result of this section is as follows:

Proposition 5. (i) S∞ ⊂M∞.
(ii) The action of PGLr(C) on M∞ induces an isomorphism S∞ × PGLr(C) ' M∞. Thus

the space S∞ is a set of representatives of M∞/PGLr(C).

Remark 3. One can define Mc and Sc for c ∈ C as

Mc =
{
A(x) ∈Mr(Sd)

∣∣∣A(c) ∈Mreg, detA(c) = 0, A′(c)~v0(A(c)) ∈ V (A(c))
}
,

Sc = {A(x) ∈Mr(Sd) |A(x) = ω + ρ(x− c) + higher terms in (x− c), ω ∈ Ω, ρ ∈ T
}
.

Then Proposition 5 also holds for (Mc,Sc).

Let us recall the following lemmas on linear algebra.
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Lemma 7. Let A ∈Mreg. For ~u ∈ Cr, the followings are equivalent
(i) ~u ∈ V (A);
(ii) t~vα(tA) · ~u 6= 0 for all eigenvalues α of A;
(iii) the vectors ~u,A~u, . . . , Ar−1~u generate Cr.

The proof is left for readers.
For A ∈Mreg, set

ξi(A) = Ai + β1(A)Ai−1 + · · ·+ βi(A) Ir ∈Mr(C) (i = 1, . . . , r − 1),

where β1(A), . . . , βr(A) are coefficients of the characteristic polynomial of A, det(yIr − A) =
yr + β1(A)yr−1 + · · ·+ βr(A).

Lemma 8. Let A ∈Mreg and ~u ∈ V (A).
(i) The matrix g(~u,A) = (~u, ξ1(A)~u, . . . , ξr−1(A)~u) ∈ Mr(C) is invertible. Moreover, it

satisfies

g(~u,A)−1Ag(~u,A) =


−β1(A) · · · −βr−1(A) −βr(A)

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

(ii) g(~u,A) makes B ∈Mr(C) into the following form

g(~u,A)−1Bg(~u,A) =


∗ · · · ∗ ∗
∗ · · · ∗ 0
...

...
...

...
∗ · · · ∗ 0

 ,

if and only if ~u is an eigenvector of Bξr−1(A). Moreover the (1, r)-th entry of the RHS is equal
to the eigenvalue.

Proof. (i) The invertibility of g follows from Lemma 7. Another claim is checked by a direct
computation.

(ii) Let B̃ = g(~u,A)−1Bg(~u,A). If B̃ has the form of the RHS, we obtain Bξr−1(A)~u = B̃1r~u
by comparing the r-th columns of Bg and gB̃. Conversely if ~u is an eigenvalue of Bξr−1(A), then
we see by direct calculation that B̃1r is equal to its eigenvalue and B̃jr = 0 for 2 ≤ j ≤ r. �

Lemma 9. Let A ∈Mreg, B ∈Mr(C) and assume that detA = 0.
(i) ξr−1(A) = c~v0(A)⊗ t~v0(tA) for some c ∈ C×.
(ii) B~v0(A) is an eigenvector of Bξr−1(A).

Proof. (i) By the assumption on A, the rank of ξr−1(A) is one, and ξr−1 satisfies Aξr−1(A) =
ξr−1(A)A = 0. Thus ξr−1(A) have to be written as c~v0(A)⊗ t~v0(tA) with some c ∈ C×.

(ii) By (i), any ~w ∈ Cr satisfy ξr−1(A)~w = c~v0(A) with some c ∈ C×. By multiplying the
both sides by B from the left and setting ~w = B~v0(A), we see that B~v0(A) is an eigenvector
of Bξr−1(A). �

Proofs of Proposition 5. (i) We write S(x) = Sdx
d + Sd−1x

d−1 + · · ·+ S0 ∈ S∞ as

S(x) =


−β1 · · · −βr−1 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

xd +


∗ · · · ∗ β
∗ · · · ∗ 0
...

...
...

...
∗ · · · ∗ 0

xd−1 + lower terms in x, (15)
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where β 6= 0. Then it is easy to see detSd = 0, and we can set ~v0(Sd) = t(0, . . . , 0, 1). A direct
calculation shows that ~u := Sd−1~v0(Sd) = t(β, 0, . . . , 0) and Sd satisfy

det(~u, Sd~u, . . . , Sr−1
d ~u) = det(diag(β, . . . , β)) = βr 6= 0.

Thus we see ~u ∈ V (Sd) due to Lemma 7, and the claim follows.
(ii) It is easy to see that M∞ is invariant under the action of PGLr(C), thus the map

µ : S∞ × PGLr(C) →M∞; (S(x), g) 7→ gS(x)g−1

is well-defined. In the following we show that µ is bijection.
First we show the surjectivity of µ. For A(x) = Adx

d + Ad−1x
d−1 + · · · + A0 ∈ M∞, set

g = g(Ad−1~v0(Ad), Ad). By Lemma 7, g is invertible and g−1Adg ∈ Ω by Lemma 8(i). By
Lemma 7 and 9, Ad−1~v0(Ad) is an eigenvector of Ad−1ξr−1(Ad) belonging to a nonzero eigenvalue.
Thus g−1Ad−1g ∈ T by Lemma 8(ii). Consequently we obtain S(x) = gA(x)g−1 ∈ S∞, i.e.
µ(S(x), g) = A(x).

To check the injectivity of µ, we only have to check the following: for any S(x) ∈ S∞,
g ∈ GLr(C) satisfies g−1S(x)g ∈ S∞ only when g is a scalar matrix. When S(x) is given
by (15), we get

ξr−1(Sd) = t(0, . . . , 0, 1) · (1, β1, . . . , βr−1),(
ξk(Sd)

)
j1

= δk,j−1 for k = 1, . . . , r − 2.

The first equation implies that
(
Sd−1ξr−1(Sd)

)
ij

= δi,1δj,1β. This matrix has only one nonzero
eigenvalue β and the corresponding eigenvector is t(a, 0, . . . , 0) for some a ∈ C×. By Lemma 8(ii),
we only have to show that g(t(a, 0, . . . , 0), Sd) = cIr for some c ∈ C×. This follows from the
second equation. �

In closing, we give some remarks. The space M∞ (14) is an affine subspace of

{A(x) ∈Mr(Sd) |H
(r)
rd = 0}

which is the codimension one subspace of M(r, d). As a generalization of Lemma 2, we easily
obtain the following:

Lemma 10. If φ(x) ∈ Sd+1, then (2) induces the Poisson structure on M∞/PGLr(C) ' S∞.

The space of representatives introduced by Donagi and Markman [2, Lemma 4.1] is a subspace
of S∞ (14) defined by

{S(x) = Sdx
d + · · ·+ S0 ∈ S∞ |TrS(x) = 0, β1(Sd) = · · · = βr−1(Sd) = 0}.

The phase space discussed in [10, § 3.2] is obtained by removing the first condition in the above.

A On the Poisson structure (2)

Assume that φ(x) is a monic polynomial with only simple roots, a1, . . . , ad+2. Consider the
following isomorphism ϕ [1, (5.6)]:

ϕ : Mr(Sd+1) →Mr(C)⊕d+2, A(x) 7→
(
c1A(a1), . . . , cd+2A(ad+2)

)
, (16)
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where cα =
∏
β 6=α

(aα − aβ)−1. The inverse of ϕ−1 is given by the Lagrange interpolation formula:

ϕ−1 : Mr(C)d+2 →Mr(Sd+1),
(
A(1), . . . , A(d+2)

)
7→

d+2∑
α=1

A(α)
∏
β 6=α

(x− aβ).

Then the pullback by ϕ of the canonical Poisson structure on Mr(C)⊕d+2:

{A(α)
ij , A

(β)
kl } = δα,β

(
δj,kA

(α)
il − δi,lA

(α)
kj

)
for (A(1), . . . , A(d+2)) ∈Mr(C)⊕d+2,

is equal to (2). This is easily checked if one uses the elementary identity

A(x)φ(y)− φ(x)A(y) = (y − x)
d+2∑
α=1

A(α)
∏
µ 6=α

(x− aµ)(y − aµ).

B On the Gr-action (8)

In the construction of Poisson structures in [5], the isomorphism ϕ given in (16) and the following
Gr-action on Mr(C)⊕d+2 were used:

Gr 3 g(x) :
(
A(1), . . . , A(d+2)

)
7→

(
g(aα)−1A(α) g(aα)

)
1≤α≤d+2

, (17)

where aα 6= aβ if α 6= β. We show that this action is compatible with the Gr-action (8) under

the isomorphism ϕ when φ(x) =
d+2∏
α=1

(x− aα).

From (17), we have

(ϕ−1 ◦ g(x) ◦ ϕ)A(x) =
d+2∑
α=1

cα g(aα)−1A(aα)g(aα)
∏
µ 6=α

(x− aµ).

On the other hand, substituting x = aα into (9), we have Ã(aα) = g(aα)−1A(aα)g(aα). Then
expressing Ã(x) by the Lagrange interpolation formula, we see that Ã(x) = (ϕ−1 ◦g(x)◦ϕ)A(x).
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