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Abstract. The Cauchy problem for the Fokker–Plank–Kolmogorov equation with a nonlo-
cal nonlinear drift term is reduced to a similar problem for the correspondent linear equa-
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Key words: symmetry operators; Fokker–Plank–Kolmogorov equation; nonlinear partial
differential equations

2000 Mathematics Subject Classification: 35Q58; 37J15

1 Introduction

By definition, symmetry operators leave invariant the solution set of an equation and allow
to generate new solutions from the known ones (see, e.g. [1, 2]). The finding of symmetry
operators is an important problem, but it rarely can be solved explicitly because the equations
that determine symmetry operators are complicated and nonlinear. Therefore, special types of
symmetry operators are of interest. The most affective approach is developed in the framework
of the group analysis of differential equations [3, 4, 5, 6, 7] where the Lie groups of symmetry
operators are considered. The Lie group generators (related to symmetries) are obtained from
the determining linear equations which can be solved in a regular way when the symmetries are
differential operators. The symmetries of differential equations can be considered in the context
of differential geometry [5, 8, 9].

The calculation of symmetries for integro-differential equations is a more complex problem
because there are no general way of choosing an appropriate structure of symmetries. The
finding of symmetry operators for a nonlocal equation is usually a hopeless task. Under these
circumstances, examples of symmetry operators for a nonlinear equation with nonlocal terms
are of mathematical interest.

In this work we consider an approach that can be used to obtain such examples for the
Fokker–Planck–Kolmogorov equation (FPKE) of special form with a quadratic nonlocal nonli-
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nearity{
− ∂t + ε∆ + ∂~x

(
~V (~x, t) + κ

∫
Rn

~W (~x, ~y, t)u(~y, t)d~y
)}

u(~x, t) = 0, (1.1)

where

~V (~x, t) = K1~x, ~W (~x, ~y, t) = K2~x + K3~y. (1.2)

Here, t ∈ R1, ~x = (x1, . . . , xn)ᵀ ∈ Rn, ~y = (y1, . . . , yn)ᵀ ∈ Rn are independent variables;
(x1, . . . , xn)ᵀ means a transpose to a vector or a matrix; d~x = dx1 · · · dxn; the dependent variable
u(~x, t) is a real smooth function decreasing as ‖~x‖ → ∞; K1, K2, K3 are arbitrary constant
matrices of order n×n; ε and κ are real parameters; ∂t = ∂/∂t; ∂~x = ∂/∂~x is a gradient operator

with respect to ~x; ∆ = ∂~x∂~x =
n∑

i=1
∂2/∂x2

i is a Laplace operator.

The operator of equation (1.1) is quadratic in independent variables and in derivatives and
it has a nonlocal quadratic nonlinear term.

This equation serves as a simple example of a class of “near-linear” nonlocal equations [10],
such that they are nonlinear but the integrability problem for them can be reduced to seeking
a solution of appropriate linear equations. Nonlinear equations of such type regularly depend
on the nonlinearity parameter and they possess solutions which go into solutions of the linear
equation as the nonlinearity parameter tends to zero.

Equation (1.1) arises in mathematical problems and it can be used in physical applications.
In particular, the FPKE (1.1), (1.2) describes the leading term of the asymptotic solutions
constructed in [11] in the framework of the formalism of semiclassical asymptotics [12, 13] for
equation (1.1), in which ~V (~x, t) and ~W (~x, t) are real vector functions of general form.

The semiclassical approximation is widely used in nonlinear mathematical physics, providing
a possibility of constructing explicit asymptotic solutions for mathematical physics equations
coefficients of which can be arbitrary smooth functions and derivatives of dependent variables
are assumed small. Most of the equations solved by semiclassical methods are not exactly
integrable. For these equations, semiclassical methods offer a unique opportunity to investigate
them analytically.

A method of semiclassical asymptotics based on the formalism of the Maslov complex germ
[12, 13, 14, 15, 16] has been developed for a many-dimensional nonstationary Hartree type equa-
tion with nonlocal nonlinearity in a class of functions localized in a neighborhood of some phase
curve [17, 18, 19, 20]. This class of functions has been called the class of trajectory-concentrated
functions (TCF). The Hartree type equation whose operator is quadratic in independent vari-
ables and derivatives provides another example of the class of “near-linear” nonlinear equations
similar to the FPKE (1.1).

The symmetry analysis area may be augmented by the study of the symmetry features of
the semiclassical approximation as the semiclassical methods are hoped to result in a new kind
of symmetries for mathematical physics equations. The group properties of the semiclassical
approximation were considered in quantum mechanics and in some models of the quantum field
theory [21]. The semiclassical method for solving the Cauchy problem in the class of TCF’s has
been developed for the Hartree type equation [17, 18, 19, 20] and for the one-dimensional FPKE
[11, 22, 23]. For the Hatree type equation, symmetry operators have been found in the TCF
class.

A nonlinear FPKE was used to analyze stochastic processes in various physical phenomena.
In this connection, the following works where the Fokker–Plank–Kolmogorov equation with
the nonlinear drift term similar to that in (1.1) was considered deserve mention (see also [10]
and references therein). M. Shiino and K. Yoshida studied noise effects and phase transitions
effects involving chaos-nonchaos bifurcations [24] in the framework of nonlinear Fokker–Plank
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equations. These equations are shown to exhibit the property of H theorem with a Lyapunov
functional that takes the form of free energy involving generalized entropies of Tsallis [25].
In [26] the stochastic resonance phenomenon is discussed; in [27] binary branching and dying
processes were studied. The evolution of quantum systems was described by means of nonlinear
FPKE’s [28] where the nonlinearity reflects the quantum constraints imposed by the Bose and
Fermi statistics.

The paper is organized as follows. In Section 2 the nonlinear FPKE is presented with ne-
cessary notations and definitions. The Cauchy problem for the nonlinear FPKE is reduced
to a similar problem for the corresponding linear FPKE in the class of functions decreasing at
infinity via the Cauchy problem for the first moment vector of a solution of the nonlinear FPKE.
With the help of the Cauchy problem solution we construct a nonlinear evolution operator and
the corresponding left inverse operator in explicit form for the nonlinear FPKE.

In Section 3 a general class of nonlinear symmetry operators is considered for the nonli-
near FPKE. The symmetry operators are introduced in different ways, in particular using the
evolution operator and the left inverse operator. Examples of one-dimensional symmetry opera-
tors are given in explicit form as an illustration. In Conclusion the results are discussed in the
framework of symmetry analysis.

2 The Cauchy problem and the evolution operator

In our consideration, the key part is played by the Cauchy problem for the FPKE (1.1), (1.2)
in the class of functions u(~x, t) decreasing as ‖~x‖ → ∞ at every point of time t > 0. To be
specific, we assume that u(~x, t) belongs to the Schwartz space S in the variable ~x ∈ Rn and
regularly depends on t, i.e. u(~x, t) is expanded as a power series in t about t = 0. Obviously,
equation (1.1) can be written in the form of the balance equation

∂tu(~x, t) = ∂~x
~B(~x, t, u),

where

~B(~x, t, u) = ε∂~xu(~x, t) + ~V (~x, t)u(~x, t) + κ
∫

Rn

~W (~x, ~y, t)u(~y, t)d~yu(~x, t).

Then according to the divergence theorem, we obtain that the integral
∫

Rn u(~x, t)d~x conserves
in time t for every solution u(~x, t) of equation (1.1). Therefore, taking the initial function
u(~x, 0) = γ(~x) to be normalized,

∫
Rn γ(~x)d~x = 1, we can assume∫

Rn

u(~x, t)d~x = 1, t > 0, (2.1)

without loss of generality. We do not pay special attention to the positive definiteness of solutions
of the FPKE (1.1), leaving this requirement for specific examples (see [29] for details).

Let us write equations (1.1), (1.2) in equivalent form

{−∂t + Ĥnl(~x, t; ~Xu(t))}u(~x, t) = 0, (2.2)

where the operator Ĥnl reads

Ĥnl(~x, t; ~Xu(t)) = ε∆ + ∂~x

(
Λ~x + κK3

~Xu(t)
)
, (2.3)

the matrix Λ is

Λ = K1 + κK2,
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and the vector

~Xu(t) =
∫

Rn

~xu(~x, t)d~x (2.4)

is the first moment of the function u(~x, t). With the obvious notation ~̇Xu(t) = d ~Xu(t)/dt, we
obtain immediately from (2.2)–(2.4), and (2.1)

~̇Xu(t) = −(Λ + κK3) ~Xu(t). (2.5)

Equation (2.5) can be considered the first equation of the Einstein–Ehrenfest system (EES) that
describes the evolution of the moments and centered high-order moments of a solution u(~x, t) of
the FPKE (1.1) with the vector functions ~V (~x, t) and ~W (~x, t) of general form. The total EES
for moments of all orders was derived in constructing approximate semiclassical solutions for a
one-dimensional FPKE in [11].

2.1 Solution of the Cauchy problem

Let us set the Cauchy problem for equation (2.2):

u(~x, 0) = γ(~x), γ(~x) ∈ S,

∫
Rn

γ(~x)d~x = 1. (2.6)

Then we have the induced Cauchy problem for the vector ~Xu(t)

~Xu(0) = ~Xγ =
∫

Rn

~xγ(~x)d~x (2.7)

determined by (2.5).
The nonlinear Cauchy problem (2.2), (2.6) is reduced to a linear one as follows. For a given

initial function γ(~x) (2.6), we can seek a solution of the Cauchy problem (2.5), (2.7) indepen-
dently of the solution of equation (2.2) and obtain the vector ~Xu(t) having the form of (2.4)
due to the uniqueness of the Cauchy problem solution. Let us introduce a function w(~x, t) by
the equality

u(~x, t) = w(~x− ~Xu(t), t). (2.8)

By substitution of (2.8) in (2.2) we obtain for the function w(~x, t) a linear equation:

−∂tw(~x, t) + L̂w(~x, t) = 0, (2.9)

L̂ = ε∆ + ∂~xΛ~x. (2.10)

From (2.6) and (2.8) we have

w(~x, 0) = γ̃(~x) = γ(~x + ~Xγ) (2.11)

and ∫
Rn

γ̃(~x)d~x = 1. (2.12)

Equation (2.7) results in∫
Rn

~xγ̃(~x)d~x = 0, (2.13)
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i.e. the function γ̃(~x) is centered. Obviously, the integral
∫

Rn w(~x, t)d~x conserves in time t for
any solution w(~x, t) of equation (2.9); then from (2.12) we have∫

Rn

w(~y, t)d~y = 1.

Therefore, the nonlinear Cauchy problem (2.2), (2.3), (2.6) can be solved as follows. First,
for a given initial function γ(~x) (2.6) we solve the linear Cauchy problem (2.9), (2.10), (2.11)
with the initial function γ̃(~x) normalized by condition (2.12) and centered by (2.13). Second,
we find the vector ~Xu(t) by solving the Cauchy problem (2.5), (2.7). Then, the solution of the
nonlinear Cauchy problem (2.2), (2.3), (2.6) is given by (2.8).

Equation (2.9) is known (see, e.g., [2]) to have a solution in the form of a Gaussian wave
packet:

w(~x, t) =

√
det Q(t)
(2πε)n

exp
[
− 1

2ε
~xᵀQ(t)~x

]
, (2.14)

where Q(t) is a symmetric positive-definite matrix of order n× n. Substituting (2.14) in (2.9),
we obtain

~xᵀQ̇(t)~x + 2 ~xᵀ(Q(t))2~x− ~xᵀΛᵀQ(t)~x− ~xᵀQ(t)Λ~x− ε
d

dt
log det Q(t)

+ 2εTr (−Q(t) + Λ) = 0.

Here TrΛ is the trace of the matrix Λ. Equating the coefficients of equal powers of ~x, we have

Q̇(t) + 2(Q(t))2 − ΛᵀQ(t)−Q(t)Λ = 0, (2.15)

− d

dt
log det Q(t) + 2 Tr (−Q(t) + Λ) = 0.

Let us take Q(t) in the form

Q(t) = B(t)(C(t))−1, (2.16)

where B(t) and C(t) are matrices of order n × n. On substitution of (2.16) in (2.15) we can
write

Ḃ(t) = ΛᵀB(t), B(0) = B0,

Ċ(t) = 2B(t)− ΛC(t), C(0) = C0, (2.17)

where B0 and C0 are arbitrary constant matrices of n × n order. We call equations (2.17)
a system in variations in matrix form.

For the one-dimensional case, the linear equation (2.9) takes the form

{−∂t + ε∂2
x + ∂xΛx}w(x, t) = 0, (2.18)

where ∂x = ∂/∂x.
The solution (2.14) of equation (2.18) reads

w(x, t) =

√
B(t)

2πεC(t)
exp

[
− B(t)

2εC(t)
x2

]
,

where B(t) and C(t) are a solution of the system in variations (2.17) in the one-dimensional
case. For t = 0 we have

w(x, 0) = γ̃(x) =
√

B0

2πεC0
exp

[
− B0

2εC0
x2

]
. (2.19)
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Notice that the function γ̃(x) (2.19) is normalized and centered:∫ +∞

−∞
γ̃(x)dx = 1,

∫ +∞

−∞
xγ̃(x)dx = 0.

Then the function

u(x, t) = w(x−Xu(t), t) =

√
B(t)

2πεC(t)
exp

[
− B(t)

2εC(t)
(x−Xu(t))2

]
(2.20)

will be a solution of the nonlinear equation

{−∂t + ε∂2
x + ∂xΛx + κK3Xu(t)∂x}u(x, t) = 0, (2.21)

with the initial condition

u(x, 0) = γ(x) = γ̃(x−Xγ) =
√

B0

2πεC0
exp

[
− B0

2εC0
(x−Xγ)2

]
. (2.22)

The vector Xu(t) =
∫ +∞
−∞ xu(x, t)dx in equation (2.21) satisfies the condition

Ẋu(t) = −(Λ + κK3)Xu(t), Xu(0) = Xγ . (2.23)

2.2 The evolution operator for a nonlinear FPKE

Let us rewrite the solution of the above nonlinear Cauchy problem in terms of the corresponding
nonlinear evolution operator.

Let Glin(t, s, ~x, ~y) be the Green function of the linear equation (2.9), i.e.

w(~x, t) =
∫

Rn

Glin(t, s, ~x, ~y)γ̃(~y)d~y.

Substituting ~x for ~x− ~Xu(t), we find

w(~x− ~Xu(t), t) =
∫

Rn

Glin(t, s, ~x− ~Xu(t), ~y)γ(~y + ~Xγ)d~y.

According to (2.8) and (2.11), the function

u(~x, t) =
∫

Rn

Gnl(t, s, ~x, ~y, γ)γ(~y)d~y =
∫

Rn

Glin(t, s, ~x− ~Xu(t), ~y − ~Xγ)γ(~y)d~y (2.24)

is a solution of the nonlinear equation (2.2), (2.3) with the initial condition (2.6). Therefore,

Gnl(t, s, ~x, ~y, γ) = Glin(t, s, ~x− ~Xu(t), ~y − ~Xγ) (2.25)

is the kernel of the evolution operator for the nonlinear equation (2.2). Here γ(~x) = u(~x, s) and
the initial time t = 0 is replaced by t = s.

Suppose that a solution of the system in variations (2.17) has the form

B(t) = M1(t, s)B0, C(t) = M2(t, s)B0 + M3(t, s)C0, (2.26)

where M1(t, s), M2(t, s), and M3(t, s) are the matrix blocks of order n × n of the matriciant
(evolution matrix) of the system in variations (2.17). These matrix blocks must satisfy the
condition

Ṁ = AM, M(s) = I2n×2n, (2.27)
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where

M = M(t, s) =
(

M1(t, s) 0
M2(t, s) M3(t, s)

)
, A =

(
Λᵀ 0

2 In×n −Λ

)
.

Set the Cauchy problem for (2.26):

B(s) = Bᵀ
0 = B0, C(s) = C0 = 0.

The Green’s function of equation (2.9) is known and can be taken as (see, e.g., [2]):

Glin(t, s, ~x, ~y) =
1√

(2πε)n det
[
M2(t, s)

(
M1(t, s)

)−1]
× exp

{
− 1

2ε
(~x−M3(t, s)~y)ᵀ[M1(t, s)(M2(t, s))−1](~x−M3(t, s)~y)

}
.

Then the nonlinear evolution Û(t, s, ·) operator (2.24) reads

Û(t, s, γ)(~x) =
∫

Rn

Gnl(t, s, ~x, ~y, γ)γ(~y)d~y. (2.28)

The left-inverse operator Û−1(t, s, ·) for the operator (2.28) is

Û−1(t, s, u)(~x) =
∫

Rn

G−1
nl (t, s, ~x, ~y, u)u(~x, t)d~x. (2.29)

Here G−1
nl (t, s, ~x, ~y, u) is the kernel of the left-inverse operator, which is obtained from (2.25) if

we substitute t for s and s for t. The explicit form of this function is

G−1
nl (t, s, ~x, ~y, u) =

1√
(2πε)n det

[
M2(s, t)

(
M1(s, t)

)−1]
× exp

{
− 1

2ε

(
~x− ~Xγ −M3(s, t)(~y − ~Xu(t))

)ᵀ[
M1(s, t)(M2(s, t))−1

]
×

(
~x− ~Xγ −M3(s, t)(~y − ~Xu(t))

)}
.

The Green’s function for the one-dimensional equation (2.18) is

Glin(t, s, x, y) =

√
M1(t, s)

2πεM2(t, s)
exp

[
− 1

2ε

M1(t, s)
M2(t, s)

(x−M3(t, s)y)2
]

,

where M1(t, s), M2(t, s), M3(t, s) are solution of the system in variation (2.27) in the one-
dimensional case.

The kernel of the evolution operator for the nonlinear equation (2.21) takes the form

Gnl(t, s, x, y, γ) = Glin(t, s, x−Xu(t), y −Xγ) (2.30)

=

√
M1(t, s)

2πεM2(t, s)
exp

[
− 1

2ε

M1(t, s)
M2(t, s)

(
x−Xu(t)−M3(t, s)(y −Xγ)

)2
]

,

where Xu(t) satisfies equation (2.23). The evolution operator (2.28) with the kernel (2.30) is
written as

u(x, t) = Û(t, s, γ)(x) =
∫ +∞

−∞
Glin(t, s, x−Xu(t), y −Xγ)γ(y)dy. (2.31)

Here the function u(x, t) having the form of (2.31) is a solution of equation (2.21).
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Notice that direct calculation of the action of the evolution operator (2.28) on the func-
tion γ(y) having the form of (2.22) gives the function (2.20):

Û(t, s, γ)(~x) =
∫ +∞

−∞

√
M1(t, s)

2πεM2(t, s)

× exp
[
− 1

2ε

M1(t, s)
M2(t, s)

(
x−Xu(t)−M3(t, s)(y −Xγ)

)2
]

×
√

B0

2πεC0
exp

[
− B0

2εC0
(y −Xγ)2

]
dy

=

√
B(t)

2πεC(t)
exp

[
− B(t)

2εC(t)
(x−Xu(t))2

]
.

Conversely, the action of the left-inverse operator (2.29) on the function (2.20) in the one-
dimensional case gives the function (2.22):

Û−1(t, s, u)(~x) =
∫ +∞

−∞

√
M1(s, t)

2πεM2(s, t)

× exp
[
− 1

2ε

M1(s, t)
M2(s, t)

(
x−Xγ −M3(s, t)(y −Xu(t))

)2
]

×

√
B(t)

2πεC(t)
exp

[
− B(t)

2εC(t)
(y −Xu(t))2

]
dy

=
√

B0

2πεC0
exp

[
− B0

2εC0
(x−Xγ)2

]
.

Because the solution of the nonlinear equation (2.2) is reduced to seeking the solution of linear
equation (2.9) in terms of the moment ~Xu(t) (2.5), the symmetry operators of these two equations
are closely connected.

Equation (2.9) with the operator L̂ having the form of (2.10) is a special case of the linear
evolution equation quadratic in derivatives ∂~x and independent variables ~x. This equation is
known to be integrated in explicit form (see, e.g., [2]) which in turn leads to integrability of the
nonlinear FPKE (2.2), (2.3) according to (2.8) or (2.24). The basis of solutions and the Green’s
function for equation (2.9) can be constructed with the help of symmetry operators of special
form following, for example, [2, 30, 31].

Consider the symmetry operators for (2.9) and (2.2).

3 The symmetry operators

The symmetry operators for equation (1.1) can be found in various ways following the general
ideas of symmetry analysis [2, 3, 4, 5, 6].

3.1 The determining equation and intertwining

Let us construct for a function γ(~x) of the space S the function u(~x, t) of (2.8) using the solutions
of the Cauchy problems (2.5), (2.7) for the vector ~Xu(t) and (2.9), (2.11) for w(~x, t).

Let us take an operator â(~x) acting in the space S as the initial operator for a time depending
operator Â(~x, t):

Â(~x, 0) = â(~x).
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The function

γA(~x) =
1

αA
â(~x)γ(~x), αA =

∫
Rn

â(~x)γ(~x)d~x. (3.1)

determines the vector ~XγA by formula (2.7), where γ(~x) is replaced by γA(~x). Taking the
vector ~XγA as the initial condition for equation (2.5), we find the vector ~XuA(t).

Obviously, the operator Â(~x, t) determined by the conditions(
− ∂t + Ĥnl(~x, t, ~XuA(t))

)
Â(~x, t) = B̂(~x, t)

(
− ∂t + Ĥnl(~x, t, ~Xu(t))

)
, (3.2)

Â(~x, 0) = â(~x) (3.3)

is a symmetry operator for equation (2.2). Here B̂(~x, t) is an operator such that B̂(~x, t)(0) = 0.
This operator plays the part of a Lagrangian multiplier and it is determined together with Â(~x, t).

Equation (3.2) is the determining equation for the symmetry operators of equation (2.2). In
general, (3.2) is a nonlinear operator equation. But, given the initial function γ(~x) and the initial
operator â(~x), we can find the vectors ~Xu(t) and ~XuA(t) without solving the equation (2.2). On
substitution of these vectors in (3.2) the operators Ĥnl(~x, t, ~Xu(t)) and Ĥnl(~x, t, ~XuA(t)) become
linear. Then we can assume that â(~x), Â(~x, t), and B̂(~x, t) are linear operators in (3.2).

Notice that in the general case the operators Â and B̂ depend on ~Xu(t), ~XuA(t), i.e.

Â = Â(~x, t; ~Xu(t), ~XuA(t)), B̂ = B̂(~x, t; ~Xu(t), ~XuA(t)).

If B̂(~x, t) = Â(~x, t) then Â(~x, t) is called the intertwining operator for the linear operators,
satisfying the condition(

− ∂t + Ĥnl(~x, t, ~XuA(t))
)
Â(~x, t) = Â(~x, t)

(
− ∂t + Ĥnl(~x, t, ~Xu(t))

)
, (3.4)

Â(~x, 0) = â(~x). (3.5)

If the operator â(~x) is given in (3.2), (3.3) (or in (3.4), (3.5)), these conditions are the Cauchy
problems determining the operator Â(~x, t).

Now, let u(~x, t) be a solution of the Cauchy problem (2.2), (2.3), (2.6), and the operator Â
is determined by the solution of the Cauchy problem (3.2), (3.3) or (3.4), (3.5). Then we
immediately obtain that the function

uA(~x, t) = Â(~x, t; ~Xu(t), ~XuA(t))u(~x, t) (3.6)

is a solution of the Cauchy problem

∂tuA(~x, t) = Ĥnl(~x, t, ~XuA(t))uA(~x, t),

uA(~x, 0) = γA(~x) =
1

αA
â(~x)γ(~x).

Therefore, the operator Â(~x, t; ~Xu(t), ~XuA(t)) is a symmetry operator of the nonlinear FPKE
(2.2), (2.3).

Notice that the operator Â(~x, t; ~Xu(t), ~XuA(t)) in (3.6) is nonlinear due to the presence of the
vectors ~Xu(t), and ~XuA(t).
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3.2 Symmetry operators of nonlinear and linear FPKE

We now deduce a relation connecting two solutions of the nonlinear FPKE (2.2), (2.3) using
a symmetry operator of the linear equation (2.9), (2.10). This relation can be considered a sym-
metry operator for the nonlinear FPKE.

To this end consider equation (2.8) which connects the nonlinear Cauchy problem (2.6) with
the linear Cauchy problem (2.11).

Let Â(~x, t) be a symmetry operator of the linear equation (2.9). Then the function

wA(~x, t) =
1

α̃A
Â(~x, t)w(~x, t), α̃A =

∫
Rn

Â(~x, 0)w(~x, 0)d~x,

is another solution of the linear equation, which is determined by (2.9), (2.10). For t = 0 we
have

wA(~x, 0) =
1

α̃A
Â(~x, 0)γ̃(~x) ≡ γA(~x)

and ∫
Rn

γA(~x)d~x = 1

which leads to normalization of the function wA(~x, t):∫
Rn

wA(~x, t)d~x = 1.

On the other hand, the function wA(~x, t) is not centered for a symmetry operator Â(~x, t) of
general form. In other words, for t = 0 the vector

~λA =
∫

Rn

~xwA(~x, 0)d~x =
∫

Rn

~xγA(~x)d~x

is nonzero.
To construct a solution of the nonlinear equation (2.2), which would correspond to the solu-

tion wA(~x, t) of the linear equation (2.9) with the use of relation (2.8), the function wA(~x, t),
being a solution of equation (2.9), should be centered.

We can immediately check that equation (2.9) is invariant under the change of variables

t′ = t, ~x′ = ~x−~l(t), where ~l(t) satisfies the condition ~̇l(t) = −Λ~l(t).
Taking into account this property, let us introduce a vector

~lA(t) =
∫

Rn

~xwA(~x, t)d~x

which satisfies the Cauchy problem

~̇lA(t) = −Λ~lA(t), ~lA(0) = ~λA.

Then the function

w̃A(~x, t) = wA(~x +~lA(t), t)

satisfies equation (2.9) and the initial condition

w̃A(~x, 0) = wA(~x + ~λA, 0) = γA(~x + ~λA).

The function γA(~x + ~λA) is normalized and centered. The same is true for w̃A(~x, t).
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Following (2.8), we now construct a solution vA(~x, t) of the nonlinear FPKE (2.2) related to
w̃A(~x, t). Consider a vector ~Y (t) such that

~̇Y (t) = −(Λ + κK3)~Y (t), ~Y (0) = ~λA.

Immediate check shows that the function

vA(~x, t) = w̃A(~x− ~Y (t), t)

satisfies the equation{
− ∂t + ε∆ + ∂~x

(
Λ~x + κK3

~Y (t)
)}

vA(~x, t) = 0,

vA(~x, 0) = w̃A(~x− ~λA, 0) = γA(~x).

Notice that

~XvA(t) =
∫

Rn

vA(~x, t)~xd~x, ~XvA(0) =
∫

Rn

~xγA(~x)d~x = ~λA,

~̇XvA(t) = −(Λ + κK3) ~XvA(t),

then

~Y (t) = ~XvA(t).

Therefore, vA(~x, t) satisfies the nonlinear FPKE (2.2). The relation between the solutions u(~x, t)
and vA(~x, t) reads

vA(~x, t) = w̃A(~x− ~Y (t), t) = wA(~x− ~Y (t) +~lA(t), t)

=
1

α̃A
Â(~x− ~Y (t) +~lA(t), t)w(~x− ~Y (t) +~lA(t), t)

=
1

α̃A
Â(~x− ~Y (t) +~lA(t), t)u(~x− ~Y (t) +~lA(t) + ~Xu(t), t).

This equation determines a symmetry operator Ânl of the nonlinear FPKE (2.2):

uA(~x, t) = vA(~x, t) ≡ Ânl(~x, t)u(~x, t)

=
1

αA
Â(~x− ~Y (t) +~lA(t), t)u(~x− ~Y (t) +~lA(t) + ~Xu(t), t). (3.7)

3.3 Symmetry operators in terms of an operator Cauchy problem

Let us reformulate the construction of symmetry operators for the nonlinear FPKE (2.2), (2.3)
in terms of an operator Cauchy problem.

Consider the nonlinear Cauchy problem (2.2), (2.6) associated with the Cauchy problem
(2.5), (2.7) for the vector ~Xu(t) having the form of (2.4).

With an operator

â(~x) : S → S (3.8)

acting on the initial function γ(~x) ∈ S of the Cauchy problem (2.6), we define a function γA(~x)
of the form (3.1), which is taken as an initial condition for the Cauchy problem for a func-
tion uA(~x, t){

− ∂t + Ĥnl(~x, t, ~XuA(t))
}
uA(~x, t) = 0,
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uA(~x, 0) = γA(~x),

where the vector ~XuA(t) is determined by the conditions

~̇XuA(t) = −(Λ + κK3) ~XuA(t),

~XuA(0) = ~XγA , ~XγA =
∫

Rn

~xγA(~x)d~x.

Notice that given the function γ(~x) and the operator â(~x), we can find ~XuA(t) not finding
a solution of the FPKE (2.2).

We can immediately verify that the two functions

w(~x, t) = u(~x + ~Xu(t), t), (3.9)

wA(~x, t) = uA(~x + ~XuA(t), t) (3.10)

are solutions of the linear equation (2.9) and the initial conditions are

w(~x, 0) = γ(~x + ~Xγ), wA(~x, 0) = γA(~x + XγA).

Define a linear operator Â(~x, t) by an operator equation

[
− ∂t + L̂(~x, t), Â(~x, t)

]
= 0

with the initial condition

Â(~x, 0) = â(~x),

where L(~x, t) is defined in (2.10). It can be shown that

Â(~x, t)w(~x, t) = Â(~x +~lA(t), t)w(~x +~lA(t), t).

Due to the uniqueness of the Cauchy problem solution, we have

wA(~x, t) = Â(~x, t)w(~x, t).

In view of (3.9), (3.10) we have

uA(~x + ~XuA(t), t) = Â(~x, t)u(~x + ~Xu(t), t)

or

uA(~x, t) = Â(~x− ~XuA(t), t)u(~x− ~XuA(t) + ~Xu(t), t). (3.11)

This relation defines a symmetry operator Ânl(~x, t) of the nonlinear FPKE (2.2):

uA(~x, t) = Ânl(~x, t)u(~x, t).
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3.4 Symmetry operators in terms of an evolution operator

Using the evolution operator (2.28) and left-inverse operator (2.29), we can obtain symmetry
operators for the nonlinear FPKE (2.2).

Let â(~x) be an operator (3.8) acting on an initial function γ(~x), and u(~x, t) is the solution of
the Cauchy problem (2.2), (2.6). Then the function

uA(~x, t) = Û(t, s, â Û−1(t, s, u))(~x) (3.12)

is a solution of the nonlinear FPKE corresponding the initial function γA(~x) of the form (3.1).

Equation (3.12) defines a symmetry operator ̂̃
Anl for the nonlinear FPKE (2.2):

uA(~x, t) = ̂̃
Anl(~x, t)u(~x, t). (3.13)

The one-dimensional case of (3.12) reads

uA(x, t) = ̂̃
Anl(x, t)u(x, t) = Û(t, s, â Û−1(t, s, u))(x), (3.14)

where Û(t, s, ·) and Û−1(t, s, ·) are determined by (2.28) and (2.29) in the one-dimensional case.
Consider an operator â(x, t) of the form

â(x, t) = M1(t, s)(x−Xu(t)) + (εM2(t, s) + M3(t, s))∂x,

â(x, s) = x−Xγ + ∂x, Xγ = Xu(s).

Here M1(t, s), M2(t, s), and M3(t, s) are solutions of the system in variations (2.27) in the
one-dimensional case. Then for (3.14) we have

uA(x, t) = lim
τ→t

Û(t, s, [∂z + z −Xγ ]Û−1(τ, s, u))(x)

= lim
τ→t

∫ +∞

−∞
dy

∫ +∞

−∞
dzGnl(t, s, x, z, γA)[∂z + z −Xγ ]G−1

nl (τ, s, z, y, u)u(y, τ)

=
∫ +∞

−∞
dy

∫ +∞

−∞
dz lim

τ→t

1
2πε

√
M1(t, s)M1(s, τ)
M2(t, s)M2(s, τ)

× exp
{
− 1

2ε

(
x−XuA(t)−M3(t, s)(z −XγA)

)2 M1(t, s)
M2(t, s)

}
[∂z + z −Xγ ]

× exp
{
− 1

2ε

(
z −Xγ −M3(s, τ)(y −Xu(τ))

)2 M1(s, τ)
M2(s, τ)

}
u(y, τ)

=
[
M1(t, s)(x−XuA(t) + M3(t, s)XγA)−Xγ + (εM2(t, s) + M3(t, s))∂x

]
× u(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t)

= â(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t)u(x + Xu(t)−XuA(t)
+ M3(t, s)(XγA −Xγ), t).

Therefore, we have

uA(x, t) = ̂̃
Anl(x, t)u(x, t) = â(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t)
× u(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t). (3.15)

In calculating the symmetry operators we have used the following relations:

M1(t, s)M1(s, τ) = M1(t, τ), M2(t, τ) = M1(s, τ)M2(t, s) + M2(s, τ)M3(t, s),

which follow from (2.27) in the one-dimensional case.
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Equality (3.15) determines a symmetry operator in explicit form for equation (2.21). This
symmetry operator generates solutions of equation (2.21). Let us illustrate this by an example.

By acting with the operator (3.15) on the function (2.20), we obtain

uA(x, t) = â(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t)×
× u(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t)

=
1

C(t)

(
C0 −

1
ε
B0

)
(x−XuA(t) + M3(t, s)(XγA −Xγ))

× u(x + Xu(t)−XuA(t) + M3(t, s)(XγA −Xγ), t). (3.16)

The function uA(x, t) (3.16) is a solution of the equation

{−∂t + ε∂2
x + ∂xΛx + κK3XuA(t)∂x}uA(x, t) = 0.

Notice that the symmetry operators determined by (3.13) are consistent with the operators (3.7)
and (3.11) in the one-dimensional case. Moreover, the operator determined by (3.15) corresponds
the operator determined by relation (3.7)

̂̃
Anl(~x, t) = Ânl(~x + ~Xu(t), t),

which follows from Ṁ3(t, s)(XγA −Xγ) = −ΛM3(t, s)(XγA −Xγ).

4 Conclusion

Symmetry analysis of an equation is usually performed when solutions of the equation are not
known, and the basic purpose consists in finding as wide as possible classes of partial solutions
by using the symmetries of the equation.

It should be noted that a direct calculation of symmetry operators for a nonlinear equation is,
as a rule, difficult because of the complexity of the determining equations [32]. The basic subject
for study is the symmetries related to the generators of one-parameter subgroups of a Lie group
of symmetry operators [3]. The determining equations for the symmetries are linear, and to solve
them, it is necessary to set the structure of the symmetries. Finding of nonlocal symmetries
for differential equations or differential symmetries for nonlocal equations from the determining
equations, faces mathematical problems.

In this context, the algorithm proposed in this work to calculate the symmetry operators for
the FPKE in explicit form is of interest as it provides a possibility to consider the properties
of symmetry operators for a nontrivial nonlinear equation. The algorithm is stated in terms of
a direct nonlinear evolution operator and the corresponding left-inverse operator, which enables
one to vary the structure of the obtained symmetry operators.

As for the considered equation the evolution operator is found, the symmetry operators are
not of interest for finding of partial solutions of the equation. However, the symmetry operators
can be used to study the properties of the solutions obtained. Furthermore the algebra of
symmetry operators of the linear FPKE (2.9) (see, e.g. [33]) can be used to study the symmetry
operators of the nonlinear equation (2.2).

The developed approach permits a generalization for FPKE’s with a smooth operator symbol
of arbitrary form. In this case, we deal with a solution of the FPKE approximate in the small
parameter ε [21]. The FPKE considered in this work arises in constructing the leading term of
semiclassical asymptotics for a FPKE with arbitrary coefficients.
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