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Abstract. By using symmetry properties, the two-body Dirac equation in coordinate rep-
resentation is reduced to the coupled pair of radial second-order differential equations. Then
the large-j expansion technique is used to solve a bound state problem. Linear-plus-Coulomb
potentials of different spin structure are examined in order to describe the asymptotic de-
generacy and fine splitting of light meson spectra.
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1 Introduction

Two-body Dirac equations (2BDE), i.e., the Breit equations [1] and its generalizations [2, 3,
4, 5, 6, 7, 8, 9, 10], are used frequently for the description of relativistic bound state problem,
especially in nuclear [11, 12] and hadronic [13, 14, 15, 16] physics. Apart from two free-particle
Dirac terms, the 2BDE may include potentials which are local matrix-functions in the coordinate
representation. This form provides an intuitive understanding of the interaction and may suggest
a proper physical choice of the potential in phenomenological models.

But the 2BDE are pathological if certain interaction terms are not treated perturbationally.
The set of radially reduced equations [13, 5, 7] may possess non-physical energy-dependent
poles at finite distance r between particles [17, 18]. Correspondingly, an exact boundary-value
problem becomes incorrect mathematically or improper for assumed physical treatment.

Here we consider a possibility to avoid pathological peculiarities of 2BDE using a pseudo-
perturbative technique similar to 1/N [19, 20, 21] or 1/` expansions [22, 23]. These methods
are applicable to the case of a strong coupling and are little affected by boundary peculiarities
of the boundary-value problem.

In our case natural expansion parameter is 1/j, where j is the conserved total angular mo-
mentum. After the radial reduction is performed, the 2BDE takes the form of the set of eight
coupled first-order differential equations [5, 7]. Using a chain of transformations we reduce it to
the pair of coupled second-order equations and apply the 1/j expansion technique. The method
is applied to the potential model of meson based on the 2BDE.

2 2-body Dirac equation and its radial reduction

In the centre-of-mass reference frame the 2BDE has the form:

{h1(p) + h2(−p) + U(r)− E}F (r) = 0, (1)
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where F (r) is a 16-component wave function,

ha(p) = αa · p +maβa ≡ − iαa ·∇ +maβa, a = 1, 2,

are Dirac Hamiltonians of free fermions of mass ma and U(r) is an interaction potential. If F (r)
is presented in 4× 4-matrix representation, the operators αa and βa act as follows: α1F = αF ,
α2F = FαT etc, where α and β are Dirac matrices.

The potential U(r) is the Hermitian matrix-function, it is invariant under rotation and space
inversion transformations (so that the total Hamiltonian H = h1 + h2 + U is too). Its general
form is parametrized by 48 scalar function of r = |r| [10]. Of physical meaning are potentials
admitting field-theoretical interpretation of interaction. In particular, potentials reflecting a spin
structure of vector and scalar relativistic interactions are used frequently in potential quark
models of mesons. We will consider such a model in the Section 5 using few examples of scalar
and vector potentials known in a literature. In the present section the structure of potential is
not essential.

In order to apply a pseudoperturbative expansion method to the 2-body Dirac equation let
us transform it to an appropriate form.

First of all we perform a radial reduction. Following [5, 7] we put the wave eigenfunction
F (r) of the total angular momentum j and the parity P into the 2× 2 block-matrix form:

F (r) =
1
r

[
i s1(r)φA(n) + i s2(r)φ0(n) t1(r)φ−(n) + t2(r)φ+(n)
u1(r)φ−(n) + u2(r)φ+(n) i v1(r)φA(n) + i v2(r)φ0(n)

]
(2)

for the parity P = (−)j±1 states, and into a similar form for the parity P = (−)j states but
with superscripts interchanged as follows: (A, 0) ↔ (−,+). Here n = r/r, the bispinor harmo-
nics φA(n) corresponds to a singlet state with a total spin s = 0 and an orbital momentum
` = j, and φ0(n), φ−(n), φ+(n) correspond to triplet with s = 1 and ` = j, j + 1, j − 1. Then
for j > 0 the eigenstate problem (1) reduces to the set of eight first-order differential equations
with the functions s1(r), . . . , v2(r) and the energy E to be found.

It is convenient to present this set in the following matrix form. Let us introduce the 8-
dimensional vector-function: X(r) = {s1(r), s2(r), t1(r), . . . , v2(r)}. Then the set of radial equa-
tions reads:{

H(j)
d

dr
+ V(r, E, j)

}
X(r) = EX(r), (3)

where the 8×8 real matrices H(j) and V(r, E, j) = G(j)/r+m+U(r, j)−EI possesses properties
HT = −H, VT = V, the diagonal matrix m = diag(m+I,m−I,−m−I,−m+I) (here I is 2×2 unit
matrix and m± = m1 ± m2) and j- and P -dependent matrices H(j), G(j) are constant (i.e.,
free of r), and matrix-potential U(r, j) comes from interacting term of the equation (1). For the
case j = 0 components s2 = t2 = u2 = v2 = 0 so that the dimension of the problem (3) reduces
from 8 to 4.

It turns out that rankH = 4 (2 for j = 0). In other words, only four equations of the
set (3) are differential while remaining ones are algebraic. They can be split by means of some
orthogonal (i.e., of O(8) group) transformation. In new basis we have

X(r) =
[

X1

X2

]
, H = 2

[
J(2) 0
0 0

]
,

where J(2) is the symplectic 4× 4 matrix. Thus we arrive at the set

2J(2)X′1 + V11X1 + V12X2 = 0, (4)
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V21X1 + V22X2 = 0. (5)

Eliminating X2 from (4) by means of (5) we get a differential set for the 4-vector X1{
J(2) d

dr
+ V⊥(r, E, j)

}
X1(r) = 0, where V⊥ = (V11 − V12V

−1
22 V21)/2

while X2 then follows from the algebraic relation X2 = −V−1
22 V21X1.

The elimination of X2 causes non-physical energy-dependent singular points (apart of r = 0
and physical singularities of potentials) in matrix elements of V⊥.

Now we present the 4-vector X1 in 2 + 2 block form,

X1(r) =
[

Φ1

Φ2

]
, V⊥ =

[
V11 V12

V21 V22

]
,

eliminate then Φ2 and arrive at the second-order differential equations for 2-vector Φ1:

L(E)Φ1 =
{(

d

dr
+ V12

)
[V22]

−1

(
d

dr
− V21

)
+ V11

}
Φ1 = 0. (6)

The matrix V22 is diagonal for all potentials considered in Section 5 (and many other ones).
In these cases we can perform the transformation:

Φ̃1 = Φ1/
√

V22, L̃ =
√

V22L
√

V22

providing for the operator L̃ the form which is as close as possible to 2-term form:

L̃(E) =
d2

dr2
−W(r, E, j)−

{
Z(r, E, j),

d

dr

}
+

J(1); (7)

here W(r, E, j) is a symmetric 2× 2 matrix, J(1) is 2× 2 symplectic matrix and {·, ·}+ denotes
the anticommutator.

We are going to apply the 1/j expansion method to the equation (7). In many physically
interesting cases the function Z vanishes or it is negligible at j large. Thus the wave equation has
a 2×2 matrix 2-term form which is convenient for application of the method. In other cases the
third term of the operator (7) contains a first-order derivative via off-diagonal matrix elements
only. This form is tractable too, but with more tedious calculations. We do not consider such
equations in this paper. Before proceeding further, we study a simpler example of a single 2-term
relativistic equation.

3 Todorov equation via 1/` method

Here we consider the Todorov-type equation describing the relativistic system of two interacting
scalar particles in the centre-of-mass reference frame [24, 25, 26]:{

p2 + U(r, E)− b(E)
}

Ψ(r) = 0.

Here p = − i∇, the quasipotential U(r, E) depends on energy E of the system, and the binding
parameter b(E) is the following function of E,

b(E) = 1
4E

2 − 1
2

(
m2

1 +m2
2

)
+ 1

4

(
m2

1 −m2
2

)2
/E2, so that E(b) =

2∑
a=1

√
m2

a + b. (8)
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The corresponding radial equation takes the form{
d2

dr2
−W (r, E, `)

}
Ψ(r) = 0, (9)

where ` is the angular momentum quantum number, and

W (r, E, `) = U(r, E) + `(`+ 1)/r2 − b(E). (10)

Let us consider motion of the system in the neighbourhood of classical stable circular orbit.
Given ` > 0, the radius rc = rc(`) of the stable circular orbit and the corresponding energy
Ec = Ec(`) satisfy conditions:

W (rc, Ec, `) = 0, ∂W (rc, Ec, `)/∂rc = 0 (11)

and ∂2W (rc, Ec, `)/∂r2c > 0; here ∂W (rc, Ec, `)/∂rc ≡ ∂W (r, E, `)/∂r r=rc
E=Ec

etc.

One puts r = rc + ∆r and E = Ec + ∆E where ∆r and ∆E are small in some meaning,
and expand the function W (rc + ∆r, Ec + ∆E, `) in power series with respect ∆r and ∆E.
Then due to the conditions (11) the leading terms of this expansion represent the harmonic
oscillator potential and other ones are anharmonic terms. If the conditions (11) hold for any
large value of ` it is possible by renormalization of ∆r and ∆E to single out in the equation (9)
the `-independent harmonic oscillator problem and anharmonic perturbations which disappear if
`→∞. This is the idea of 1/` expansion method. Application of pseudoperturbative techniques
of this type [19, 20, 21, 22, 23] to our case meets two peculiarities: the equation (9) represents
a nonlinear spectral problem, and an exact solution of the equations (11) may appear to be
unknown or too cumbersome for practical use. Thus we modify the technique.

Let us introduce the parameter λ = 1/
√
` which is small at ` large. Since the exact form of

the functions rc(`) and Ec(`) is unknown in general, we first determine asymptotics rc ∼ r∞(λ),
bc = b(Ec) ∼ b∞(λ) at λ → 0 which may be found much easier. Then the functions rc(`)
and Ec(`) can be presented in the form:

rc(λ) = r∞(λ)ρ(λ), bc(λ) = b∞(λ)µ(λ),

ρ(λ) = 1 + λρ(1) + λ2ρ(2) + · · · , µ(λ) = 1 + λµ(1) + λ2µ(2) + · · · , (12)

where expansion coefficients ρ(n), µ(n), n = 1, 2, . . . (and thus the analytical functions ρ(λ) and
µ(λ)) can be found, step by step, from the conditions:

W̄ (ρ, µ, λ) = 0, ∂W̄ (ρ, µ, λ)/∂ρ = 0 (13)

and ∂2W̄ (ρ, µ, λ)/∂ρ2 > 0; here the dimensionless function W̄ (ρ, µ, λ) is constructed by the
direct use of (12) in (10) and normalizing in order that W̄ (ρ, µ, λ) to be regular at λ→ 0,

W̄ (ρ, µ, λ) = λ4r2∞W
[
r∞ρ,E(b∞µ), 1/λ2

]
.

Now we go to the dimensionless variable r → ξ and spectral parameter b(E) → ε,

r = r∞(λ)[ρ(λ) + λξ], b = b∞(λ)
[
µ(λ) + λ2ε

]
, (14)

in terms of which the equation (9) takes the form{
d2

dξ2
− 1
λ2
w(ξ, ε, λ)

}
ψ(ξ) = 0 (15)
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with

ψ(ξ) = Ψ[r∞(ρ+ λξ)],

and

w(ξ, ε, λ) = W̄ (ρ+ λξ, µ+ λ2ε, λ). (16)

If the functions ρ(λ) and µ(λ) satisfy the conditions (13), the equation (15) is nonsingular at
λ→ 0. This is true even if we use the first-order approximate solution to (13) in (14),

ρ(λ) = 1 + λρ(1), µ(λ) = 1 + λµ(1). (17)

Indeed, using the notation ∂W̄ (0)/∂µ = lim
λ→0

∂W̄/∂µ = ∂W̄/∂µ(ρ = 1, µ = 1, λ = 0) etc. we

have

1
λ2
w(ξ, ε, λ) =

1
λ2
W̄

[
ρ(λ) + λξ, µ(λ) + λ2ε, λ

]
=

1
λ2
W̄ (0) +

1
λ

{
∂W̄ (0)

∂ρ

(
ρ(1) + ξ

)
+
∂W̄ (0)

∂µ

(
µ(1) + λε

)
+
∂W̄ (0)

∂λ

}

+
1
2
∂2W̄ (0)

∂ρ2

(
ρ(1) + ξ

)2 +
1
2
∂2W̄ (0)

∂µ2

[
µ(1)

]2 +
1
2
∂2W̄ (0)

∂λ2

+
∂2W̄ (0)

∂ρ∂µ

(
ρ(1) + ξ

)
µ(1) +

∂2W̄ (0)

∂ρ∂λ

(
ρ(1) + ξ

)
+
∂2W̄ (0)

∂µ∂λ
µ(1) +O(λ). (18)

Singular terms are absent if the following set of equations holds:

W̄ (0) = 0, ∂W̄ (0)/∂ρ = 0, (19)

∂W̄ (0)

∂µ
µ(1) +

∂W̄ (0)

∂λ
= 0. (20)

Besides, zero-order terms which are linear in ξ disappear if

∂2W̄ (0)

∂ρ2
ρ(1) +

∂2W̄ (0)

∂ρ∂µ
µ(1) +

∂2W̄ (0)

∂ρ∂λ
= 0. (21)

Notice that the equations (19) and (20)–(21) represent the conditions (13) in the zeroth and
first orders of λ, respectively. Thus the equations (19) hold identically and (20)–(21) are linear
equations with ρ(1) and µ(1) to be found.

In zero-order approximation the equation (15) reduces to the harmonic oscillator problem{
d2

dξ2
+ κε− ν − ω2ξ2

}
ψ(ξ) = 0 (22)

with

κ = −∂W̄
(0)

∂µ
, ω2 =

1
2
∂2W̄ (0)

∂ρ2
, (23)

ν = −1
2
∂2W̄ (0)

∂ρ2

[
ρ(1)

]2 +
1
2
∂2W̄ (0)

∂µ2

[
µ(1)

]2 +
1
2
∂2W̄ (0)

∂λ2
+
∂2W̄ (0)

∂µ∂λ
µ(1), (24)

µ(1) = −∂
2W̄ (0)/∂λ

∂2W̄ (0)/∂µ
, ρ(1) = − 1

∂2W̄ (0)/∂ρ2

{
∂2W̄ (0)

∂ρ∂µ
µ(1) +

∂2W̄ (0)

∂ρ∂λ

}
. (25)
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The higher-order terms in the expansion (18) can be considered as perturbations of the oscillator
problem (22). They depend, in general, on the spectral parameter ε and can be taken into
account by means of the perturbative procedure [25] is appropriate to this case. Otherwise the
treatment is similar to [19, 20, 21, 22, 23].

The eigenvalues in zero-order approximation εnr = [ω(2nr + 1) + ν]/κ, where nr = 0, 1, . . .
is a radial quantum number, are to be corrected by means of higher orders of perturbative
procedure. Then, using of the 2nd equation of (14) in (8) gives us the energy spectrum.

4 Breit-type equation via 1/j method

At this point we return to the radial 2BDE in the form L̃(E)Φ̃1 = 0, where the 2 × 2 matrix
operator L̃(E) is given by equation (7) with the last term neglected. Let us put

Φ1 =
[

Ψ1

Ψ2

]
,

where Ψ1 and Ψ2 are components of Φ1. Then the equation (6) can be presented as a pair of
coupled ordinary second-order differential equations:

d2

dr2
Ψ1(r)−W1(r, E, j)Ψ1(r) = Y (r, E, j)Ψ2(r), (26)

d2

dr2
Ψ2(r)−W2(r, E, j)Ψ2(r) = Y (r, E, j)Ψ1(r). (27)

We will treat this system perturbationally using the pseudosmall parameter λ = 1/
√
j.

Let us suppose for a moment that the right-hand side of the system (26)–(27) can be ignored,
so that these equations decouple. Then we can apply to each of the equations the scheme of the
Section 3. We define radii and energies of circular orbits by means of the conditions:

Wi(ri, Ei, j) = 0,
∂Wi(ri, Ei, j)

∂r
= 0,

∂2Wi(ri, Ei, j)
∂r2

> 0, i = 1, 2.

Then we single out asymptotics of these functions of λ by means of the relations:

ri(λ) = ri∞(λ)ρi(λ), bi(λ) = bi∞(λ)µi(λ),

ρi(λ) = 1 + λρ
(1)
i + λ2ρ

(2)
i + · · · , µ(λ) = 1 + λµ

(1)
i + λ2µ

(2)
i + · · · ,

and, using the relations

r = ri∞(λ)[ρi(λ) + λξi], b = bi∞(λ)[µi(λ) + λ2εi], i = 1, 2 (28)

we reformulate the equation (26) in terms of the dimensionless variable ξ1 and the spectral
parameters ε1 while the equation (27) – in terms of ξ2 and ε2. Finally, we perform expansion of
the equations into powers of λ and solve them separately.

Now we are going to take actual coupling of the equations (26) and (27) into account. First
of all, we note that the variables ξ1 and ξ2 are not of one another, and the spectral parameters ε1
and ε2 are also not independent. Thus we should choose common variables in both equations.

Let us first choose ξ = ξ1, ε = ε1. Then the set (26)–(27) reduces to the form:

ψ′′1(ξ)− 1
λ2
w1(ξ, ε, λ)ψ1(ξ) = y(ξ, ε, λ)ψ2(ξ), (29)

ψ′′2(ξ)− 1
λ2
w2(ξ, ε, λ)ψ2(ξ) = y(ξ, ε, λ)ψ1(ξ), (30)
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where

ψi(ξ) = Ψi[r1∞(ρ1 + λξ)], i = 1, 2, (31)

wi(ξ, ε, λ) = λ4r21∞Wi

[
r1∞(ρ1 + λξ), E

(
b1∞(µ1 + λ2ε)

)
, 1/λ2

]
, (32)

y(ξ, ε, λ) = λ2r21∞Y
[
r1∞(ρ1 + λξ), E

(
b1∞(µ1 + λ2ε)

)
, 1/λ2

]
. (33)

The functions (32)–(33) are regular at λ→ 0. Moreover, the general structure of the function
w1 is the same as that of w in the Section 3 (see equations (16), (18)). In particular, w1 = O(λ2).
Thus the equation (29) is similar to (15) (but with non-zero right-hand side). It admits similar
expansion in λ.

On the contrary, the function w2 may have a different behaviour at λ→ 0. Here we consider
three cases.

1. Let r2∞ 6= r1∞ and b2∞ 6= b1∞. Then w2 = O(λ−n), n ≥ 0 (except perhaps very special
examples which we do not consider). In this case one can solve formally the equation (30) in
favour of ψ2(ξ) as follows:

ψ2 = −
(

1− λ2

w2

∂2

∂ξ2

)−1
λ2

w2
yψ1 = −

∞∑
n=0

(
λ2

w2

∂2

∂ξ2

)n
λ2

w2
yψ1. (34)

This representation leads to the loss of solutions for ψ2 which are not analytical in λ and thus
have nothing to do with the perturbation procedure. The use of (34) in the r.h.s. of (29) permits
us to eliminate ψ2 from (29) and thus to obtain a close wave equation for ψ1. The structure and
treatment of this equation are the same as those of the equation (15). Moreover, it is obvious
from (34) that at least the zero- and the first-order terms of ψ2 vanish. Thus the r.h.s. of (29)
does not contribute in lower orders of perturbation procedure. In zero-order approximation we
have the oscillator problem.

2. Let r2∞ = r1∞ and b2∞ = b1∞ but ρ2− ρ1 = O(λ) and µ2−µ1 = O(λ). Then w2 = O(λ).
Since λ2/w2 = O(λ) the perturbative treatment (34) of the equation (30) is still valid. The only
difference from the case 1 is that the r.h.s. of equation (29) may contribute in the first order
of λ.

In both the above cases we used the dimensionless variable ξ1 and obtained a closed eigenstate
equation (which we will reference to as the problem 1) for the wave function ψ1(ξ1) and the
spectral parameter ε1. We can proceed with the variable ξ2 and obtain the problem 2 for the
function ψ2(ξ2) and the parameter ε2. One might be inclined to think that both problems 1
and 2 are equivalent and lead to the same spectrum (in terms of energy E). Actually, different
problems complement one another. This is evident from equation (28) leading to the relation:

ε2 − ε1 =
1
λ2

{
b1∞
b2∞

µ1 − µ2

}
+

{
b1∞
b2∞

− 1
}
ε1.

Indeed, in both 1 and 2 cases |ε2 − ε1| → ∞ if λ → 0. It does mean that an arbitrary energy
level E calculated by means of eigenvalue ε(0)1 of zero-order oscillator problem 1 (with the use of
equations (28) and (8)) cannot be obtained by means of any finite eigenvalue ε(0)2 of the problem 2
and vice versa. Higher-order corrections to ε(0)1 (or ε(0)2 ) are small and do not change qualitatively
this picture. Thus different problems generate different branches of the energy spectrum of the
original set of equation. In this respect the following special case differs essentially from the
previous ones.

3. Let r2∞ = r1∞ and b2∞ = b1∞ but ρ2 − ρ1 = O(λn) and µ2 − µ1 = O(λn), n ≥ 2. Then
w2 = O(λ2). Both equations (29) and (30) have similar structure and should be treated on the
same footing. Use of common variables ξ, ε defined by (14) and (17) is appropriate to this case.



8 A. Duviryak

In the zero-order approximation we obtain the coupled pair of wave equations (on the contrary
to the cases 1 and 2 where we had a single wave equation). In physically meaningful cases (of
Section 5, for example) they have the form:{

d2/dξ2 + κε− ν1 − ω2ξ2
}
ψ1(ξ) = χψ2(ξ), (35){

d2/dξ2 + κε− ν2 − ω2ξ2
}
ψ2(ξ) = χψ1(ξ), (36)

where χ = lim
λ→0

y = const, and parameters νi, κ and ω are related to the functions wi (i = 1, 2)

by the equation of the type of (23), (24) and (25). The equations (35), (36) can be evidently
reduced to the pair of similar equations but with parameters ν̃i = {ν1+ν2±

√
(ν1 − ν2)2 + 4χ2}/2

(i = 1, 2) and χ̃ = 0. Thus they become split equations of the form (22). The eigenvalues ε
corresponding to the first and second equations are separated by finite constant ν̃1 − ν̃2. Thus
the corresponding states mix in higher orders of perturbation procedure.

5 Application: Regge trajectories of mesons

Here we apply the pseudoperturbative treatment of 2BDE in meson spectroscopy.
It is known [27] that spectra of heavy mesons are described well by the nonrelativistic potential

model with QCD-motivated funnel potential u(r) = ul(r) + uC(r), where

uC(r) = −α/r, α = 0.27, (37)

ul(r) = ar, a = 0.25÷ 0.3GeV2. (38)

The Coulomb part (37) of this potential describes a nonrelativistic limit of the vector one-
gluon exchange interaction while the linear part (38) is suggested by the area law in the lattice
approximation of QCD and has presumably scalar or scalar-vector nature.

Description of light meson spectroscopy needs application of appropriate relativistic models.
Most of them are related to the string theory. From the theoretical viewpoint the most interesting
are QCD-motivated relativistic models embracing properties of both heavy and light mesons.
Such models should reflect the scalar-vector structure of interaction and should lead to funnel-
type potential in the nonrelativistic limit.

A natural candidate for the relativistic potential model is the2BDE with a short-range vector
potential and a long-range scalar one. At least three general structures of vector potential are
used in the literature,

Uv(r) = uv(r), (39)
Uv(r) = {1−α1 ·α2}uv(r), (40)
Uv(r) =

{
1− 1

2α1 ·α2

}
uv(r) + 1

2(n ·α1)(n ·α2)ru′v(r), (41)

with uv(r) = uC(r) or another short-range potential; here u′(r) = du(r)/dr. The potential (39)
is only a static part of vector interaction (see [5]). The relativistic vector field kinematics is
taken into account in the potential (40) (see [16, 8]) which, for the Coulomb case, was first
proposed by Eddington and Gaunt [28, 29]. In the generalization (41) of the Breit potential [1]
retardation terms have been added [8]. Two different scalar potentials,

Us(r) = β1β2us(r), (42)
Us(r) = 1

2(β1 + β2)us(r), (43)

come from different couplings of scalar mediating field with fermionic fields. The first one (42)
arises from the Yukawa interaction (see [6]) while the second one (43) corresponds to so called
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“minimal” coupling [15]. The latter and also two following potentials can be treated as static
approximation of various QFT-motivated scalar quasipotentials [30, 31, 32, 17]:

Us(r) = 1
2(1 + β1β2)us(r), (44)

Us(r) = 1
4(1 + β1)(1 + β2)us(r). (45)

The perturbative treatment of Breit-type equations has been used for calculating a fine
splitting in spectra of heavy mesons [14, 16]. Light meson spectra are essentially relativistic and
need a nonperturbative statement of the problem which is inconsistent because of non-physical
singularities of radial equations. To avoid these difficulties in numerical calculations one is
forced to invent sophisticated potentials and impose rather artificial boundary conditions [15].

Using the pseudoperturbative treatment of 2BDE with different combinations of potentials
(37)–(45) we obtain analytical expressions for meson mass spectra and estimate a role of general
structure and input parameters of potentials in the model. We consider mass spectra of lightest
mesons (containing u and d quarks only) and try to reproduce their following general features:

i) Mass spectra of light mesons fall into the family of straight lines in the (E2, j)-plane known
as Regge trajectories.

ii) Regge trajectories are parallel; slope parameter σ is an universal quantity, σ = 1.15GeV2 =
(4÷ 4.5)a.

iii) Nonrelativistic classification of light mesons as
(
n2s+1̀

j

)
–states of quark-antiquark system

is adequate; i.e., radial quantum number nr = n− `− 1 enumerates leading (nr = 0) and
daughter (nr = 1, 2, . . . ) Regge trajectories, spin s = 0, 1 corresponds to mass singlets and
triples etc.

iv) Spectrum is `s-degenerated, i.e., masses are distinguished by ` (not by j) and nr.

v) States of different ` possess an accidental degeneracy which fact causes a tower structure
of the spectrum.

vi) Hyperfine ss-splitting is relatively small, about 5÷ 6 % of σ.

For this purpose we use the nonrelativistic potential function (37) and (38) in vector and
scalar potentials of different spin structure (39)–(45) and calculate pseudoperturbative spectrum
in zero-order approximation. Classification of states then is done using singlet-triplet properties
of large-large component of wave function (2) in the nonrelativistic limit.

If the vector short-range interaction is ignored and scalar potentials (42)–(45) are used with
us(r) = ar the pseudoperturbative mass (i.e., energy) of meson in zero-order approximation has
the following form:

E2
A = ka

[
`+ 1

2 + η
(
nr + 1

2

)]
+ ζm+

√
2a`+ δ1m

2
+ − δ2m1m2 +O

(
1/
√
`
)
, (46)

E2
0 = E2

A, E2
± = E2

A ± κa;

here m+ = m1+m2, and k, η, ζ, δ1, δ2, κ are dimensionless constants depending on the potential
chosen.

Four families of energy levels Ei (i = A, 0,−,+) form trajectories in the (E2, `)-plane which
are nearly straight. Indeed, ζ = 0 ÷ 2 for all the potentials considered and rest masses ma

(a = 1, 2) of lightest mesons are small compared to the energy scale
√
σ. Thus the parameter

ζm+
√
a determining a curvature of trajectories is small. Parameters δ1 and δ2 determine a com-

mon shift of all the trajectories and are not important for the present discussion. Below we
discuss the calculated values of parameters k, κ and η determining the slope of trajectories and
their degeneracy properties.
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In the (42) case k = 4 so that the slope σ = ka matches quite well to that of property ii);
η = 2 causes accidental degeneracy typical for the harmonic oscillator; but κ = 4 leads to
j-dependence of energy (not `-dependence) so that the ls-degeneracy is absent.

In the (43) case k = 4 and η = 2, so that the slope and the accidental degeneracy are the
same as in the (42) case; κ = 4 − 3

√
2 ≈ −0.243 provides an approximate ls-degeneracy, with

accuracy 6%; the splitting is of order of the actual ss-splitting (see property vi)).
In the (44) case k = κ = 3

√
3 ≈ 5.196, η =

√
3 ≈ 1.732; none of these values match well to

properties ii)–vi).
In the (45) case k =

√
23−

√
17(7 +

√
17)2/128 ≈ 4.2 provides the best fit of σ to that

of property ii); η = (
√

17 − 3)
√

102 + 26
√

17/8 ≈ 2.03 leads to nearly precise oscillator-like
degeneracy, with accuracy 1.5 %; κ = 0 provides exact ls-degeneracy.

Taking into account the vector short-range interaction (one of potentials (39)–(41) with
uv(r) = uC(r)) results in a parallel shift of Regge trajectories. The value of the shift is of
the order αa, it depends on the vector potential chosen and is different (in general) for different
trajectories Ei (i = A, 0,−,+).

It has been proved in the framework of single-particle Dirac equation a possibility of confi-
nement by means of vector and equally mixed vector-scalar long-range interactions [33, 34, 35].
We examined these cases in 2BDE approach using different vector potentials (39)–(41) with
uv(r) = ar. Corresponding zero-order pseudo-perturbative spectra have a form similar to (46).
The difference is that k = ki = 8÷ 12 is two times or more larger than desired, and is different
for i = A, 0,−,+ (i.e., trajectories are not parallel).

6 Summary

The Breit equation and its generalizations (2BDE) possess non-physical singularities. In some
cases these points lay far from the physically important domain but they make a boundary
problem incorrect or physically improper [17, 16]. In order to avoid this difficulty and to use
the 2BDE in the relativistic bound state problem, especially for the case of strong coupling, we
develop the 1/j expansion method.

The method is based on the large-N or large-` techniques applicable to the radial Schrödinger
equation. In our case the 2BDE is reduced to the coupled pair of quasipotential-type equations
which structure causes principal modification of known techniques. Other changes are related
to the fact that the equations represent a nonlinear spectral problem with cumbersome quasipo-
tentials.

We apply this pseudoperturbative method to the 2BDE with the linear+Coulomb potential of
different scalar-vector structure. In all cases in the zero-order approximation it was obtained the
Regge trajectories which are linear asymptotically. Linear potentials of two scalar structures (43)
and (45) which was discarded in [17] as nonphysical (because of singularities in 2BDE) reproduce
well in our case general properties of light meson spectra. In particular, the slope σ = ka of
light meson trajectories fit well to the experimental value if the parameter a is taken from the
nonrelativistic potential model [27]. The third linear potential of [17] (with no singularities in
2BDE) does not match to experimental data.
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