Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 2 (2006), 009, 5 pages      math-ph/0601059

On Action Invariance under Linear Spinor-Vector Supersymmetry

Kazunari Shima and Motomu Tsuda
Laboratory of Physics, Saitama Institute of Technology, Okabe-machi, Saitama 369-0293, Japan

Received October 21, 2005, in final form January 10, 2006; Published online January 24, 2006

We show explicitly that a free Lagrangian expressed in terms of scalar, spinor, vector and Rarita-Schwinger (RS) fields is invariant under linear supersymmetry transformations generated by a global spinor-vector parameter. A (generalized) gauge invariance of the Lagrangian for the RS field is also discussed.

Key words: spinor-vector supersymmetry; Rarita-Schwinger field.

pdf (154 kb)   ps (122 kb)   tex (9 kb)


  1. Wess J., Zumino B., A Lagrangian model invariant under supergauge transformations, Phys. Lett. B, 1974, V.49, 52-75.
  2. Volkov D.V., Akulov V.P., Possible universal neutrino interaction, JETP Lett., 1972, V.16, 438-440.
    Volkov D.V., Akulov V.P., Is the neutrino a goldstone particle?, Phys. Lett. B, 1973, V.46, 109-110.
  3. Ivanov E.A., Kapustnikov A.A., Relation between linear and nonlinear realizations of supersymmetry, JINR Report No. E2-10765, Dubna, 1977 (unpublished).
    Ivanov E.A., Kapustnikov A.A., General relationship between linear and nonlinear realisations of supersymmetry, J. Phys. A: Math. Gen., 1978, V.11, 2375-2384.
    Ivanov E.A., Kapustnikov A.A., The non-linear realization structure of models with spontaneously broken supersymmetry, J. Phys. G, 1982, V.8, 167-191.
  4. Rocek M., Linearizing the Volkov-Akulov model, Phys. Rev. Lett., 1978, V.41, 451-453.
  5. Uematsu T., Zachos C.K., Structure of phenomenological Lagrangians for broken supersymmetry, Nucl. Phys. B, 1982, V.201, 250-268.
  6. Shima K., Tanii Y., Tsuda M., On linearization of N = 1 nonlinear supersymmetry, Phys. Lett. B, 2002, V.525, 183-188, hep-th/0110102.
    Shima K., Tanii Y., Tsuda M., Linearizing N = 2 nonlinear supersymmetry, Phys. Lett. B, 2002, V.546, 162-166, hep-th/0205178.
  7. Baaklini N.S., New superalgebra and Goldstone spin-3/2 particle, Phys. Lett. B, 1977, V.67, 335-336.
  8. Shima K., SO(N) supergravity and unification of all fundamental forces, Z. Phys. C, 1983, V.18, 25-30.
    Shima K., Superon-quintet and graviton model for supersymmetric spacetime and matter, Eur. Phys. J. C, 1999, V.7, 341-345.
    Shima K., Supersymmetric structure of space-time and matter: superon-graviton model, Phys. Lett. B, 2001, V.501, 237-244.
  9. Shima K., Tsuda M., On gravitational interaction of spin 3/2 Nambu-Goldstone fermion, Phys. Lett. B, 2001, V.521, 67-70, hep-th/0012235.
  10. Deser S., Zumino B., Broken supersymmetry and supergravity, Phys. Rev. Lett., 1977, V.38, 1433-1436.
  11. Shima K., Tsuda M., On supersymmetry algebra based on a spinor-vector generator, Phys. Lett. B, 2005, V.628, 171-175, hep-th/0507288.
  12. Coleman S., Mandula J., All possible symmetries of the S matrix, Phys. Rev., 1967, V.159, 1251-1256.
  13. Haag R., Lopuszanski J., Sohnius M., All possible generators of supersymmetries of the S matrix, Nucl. Phys. B, 1975, V.88, 257-274.

Previous article   Next article   Contents of Volume 2 (2006)