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Abstract. We study the symmetry properties of autonomous integrating factors from an
algebraic point of view. The symmetries are delineated for the resulting integrals treated as
equations and symmetries of the integrals treated as functions or configurational invariants.
The succession of terms (pattern) is noted. The general pattern for the solution symmetries
for equations in the simplest form of maximal order is given and the properties of the
associated integrals resulting from this analysis are given.
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1 Introduction

It is well-known that, when a symmetry is used to determine a first integral for a differential
equation, the symmetry provides an integrating factor for the equation and remains as a sym-
metry of the first integral. For first-order ordinary differential equations the direct determination
of the integrating factor is known [1] and algorithms for finding integrating factors for equations
of higher order have been developed. In 1999 Cheb-Terrab and Roche [2] presented a systema-
tic algorithm for the construction of integrating factors for second-order ordinary differential
equations and claimed that their algorithm gave integrating factors for equations which did not
possess Lie point symmetries. In 2002 Leach and Bouquet [3] showed that for all equations
except one of which Cheb-Terrab and Roche [2] had found integrating factors had symme-
tries which were not necessarily point symmetries but generalised or nonlocal. In the same
year, 2002, Abraham-Shrauner [4] also wrote a paper to demonstrate the reduction of order
of nonlinear ordinary differential equations by a combination of first integrals and Lie group
symmetries. The latter and former motivated us hereby to investigate the underlying proper-
ties of autonomous integrating factors and the associated integrals treated as equations and as
functions. Observations are made and inferred in general for any nth-order ordinary differential
equation of maximal symmetry. These will also be extended to include other types of equations
in a separate contribution.

Program LIE [5] is used to compute the symmetries for the different cases considered. The
knowledge of the symmetries of first integrals of the equation does give rise to some interesting
properties of the equation itself. For example, the Ermakov–Pinney equation [6, 7] which in its
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simplest form is

w′′ +
K

w3
= 0, (1)

where K is a constant. In theoretical discussions the sign of the constant K is immaterial and
in fact it is often rescaled to unity.

The general form of (1), videlicet

ρ̈ + ω2(t)ρ =
1
ρ3

occurs in the study of the time-dependent linear oscillator, be it the classical or the quantal
problem, as the differential equation which determines the time-dependent rescaling of the space
variable and the definition of ‘new time’. Some of the references for this are [8, 9].

Another origin of (1) — of particular interest in this work — is as an integral of the third-order
equation of maximal symmetry which in its elemental form is y′′′ = 0.

2 Equations of maximal symmetry

Definition 1. We define a first integral I for an equation of maximal symmetry, E = y(n) = 0,
as I = f

(
y, y′, y′, . . . , y(n−1)

)
, where

dI

dx

∣∣∣∣
E=0

= 0 ⇐⇒ df

dx

∣∣∣∣
E=0

= 0.

This means that, if g
(
x, y, y′, y′′, . . . , y(n−1)

)
is an integrating factor, then

dI

dx

∣∣∣∣
E=0

= gE
(
x, y, y′, . . . , y(n)

)∣∣∣
E=0

= 0.

We start by considering the well-known third-order ordinary differential equation of maximal
symmetry

y′′′ = 0 (2)

which has seven Lie point symmetries. These are

G1 = ∂y, G2 = x∂y, G3 = x2∂y, G4 = y∂y,

G5 = ∂x, G6 = x∂x + y∂y, G7 = x2∂x + 2xy∂y. (3)

The algebra is {A1⊕s sl(2, R)}⊕s 3A1. The autonomous integrating factors for (2) are y′′ and y.
We list the symmetries and algebra when each of the integrals is treated as an equation and as
a function.

When we multiply y′′′ = 0 by the integrating factor y′′, we obtain y′′y′′′ = 0. Integration of
this expression gives 1

2 (y′′) 2 = k, where k is a constant of integration. This gives rise to three
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cases which we list as follows:

y′′ = 0 y′′ = k

G1 = ∂y, G1 = ∂y,

G2 = x∂y, G2 = x∂y,

G3 = y∂y, G3 =
(

1
2
x2k − y

)
∂y,

G4 = ∂x, G4 = ∂x + 2xk∂y,

G5 = x∂x, G5 = x∂x + x2k∂y,

G6 = x2∂x + xy∂y, G6 = x2∂x +
(

xy +
1
2
x3k

)
∂y,

G7 = y∂x, G7 =
(

y − 3
2
x2k

)
∂x − x3k2∂y,

G8 = xy∂x + y2∂y, G8 =
(

xy − 1
2
x3k

)
∂x +

(
y2 − 1

4
x4k2

)
∂y,

and, when y′′ = k is treated as a function, we have

G1 = ∂y, G2 = x∂y, G3 = ∂x, G4 = x∂x + 2y∂y.

Remark 1. When y′′ = k is treated as an equation, we have two cases, that is, y′′ = 0 and
y′′ = k for which the algebra is sl(3, R) : 2A1 ⊕s {sl(2, R)⊕A1} ⊕ 2A1 [11, 12, 13]. If y′′ = k is
treated as a function, the algebra is A1

4,9 : A2 ⊕s 2A1 [11, 12, 13, 14].

If y is used an the integrating factor, we obtain yy′′′ = 0. Integration of this equation gives
yy′′ − 1

2y′2 = k which can be written as
(
y1/2

)′′ = k/
(
y1/2

)3 and is the simplest form of the
Ermakov–Pinney equation [6, 7]. As before we write down the point symmetries corresponding
to the three cases of the differential equation u′′ = k/u3, where u = y1/2. Program LIE [5] gives
the following:

u′′ = 0 u′′ = k/u3 u′′ = k/u3

G1 = ∂u, G1 = ∂x, G1 = ∂x,

G2 = x∂u, G2 = 2x∂x + u∂u, G2 = 2x∂x + u∂u,

G3 = u∂u, G3 = x2∂x + xu∂u, G3 = x2∂x + xu∂u,

G4 = ∂x,

G5 = x∂x,

G6 = x2∂x + xu∂u,

G7 = u∂x,
G8 = xu∂x + u2∂u.

The transformation of yy′′ − 1
2y′2 = k to u′′ = k/u3 does not make a difference in terms of the

symmetries as we just have a point transformation in this case. The other obvious integrating
factors for (2) are 1, x and 1

2x2 which give

1 · y′′′ = 0 −→ I3 = y′′,

x · y′′′ = 0 −→ I2 = xy′′ − y′,

1
2
x2 · y′′′ = 0 −→ I1 =

1
2
x2y′′ − xy′ + y.

(Note that the numbering of the fundamental first integrals follows the convention given in
Flessas et al [15, 16].)
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• The integration of equation (2), which is a feature of the calculation of the symmetries of all
linear ordinary differential equations of maximal symmetry [10], by means of an integrating
factor gives a variety of results depending upon the integrating factor used.

• The characteristic feature of the Ermakov–Pinney equation is that it possesses the three-
element algebra of Lie point symmetries, sl(2, R), which in itself is characteristic of all
scalar ordinary differential equations of maximal symmetry.

The fourth-order ordinary differential equation yiv = 0 has autonomous integrating factors y′

and y′′′. If we use y′ as an integrating factor in the original equation and integrate, we obtain

y′y′′′ − 1
2
(y′′)2 = k. (4)

Equation (4) is a generalised Kummer–Schwartz equation for k = 0 and for k 6= 0 a variation
on the Ermakov–Pinney equation as it can be written in the form(

(y′)1/2
)′′

=
(
k
/ (

(y′)3/2
))

.

The three cases for the integral in (4) treated as an equation and as a function give the following
results:

y′y′′′ − 1
2
(y′′)2 = 0 y′y′′′ − 1

2
(y′′)2 = k y′y′′′ − 1

2
(y′′)2 = k

G1 = ∂x, G1 = ∂x, G1 = ∂x,

G2 = x∂x, G2 = ∂y, G2 = ∂y,

G3 = y∂y, G3 = x∂x + 2y∂y, G3 = x∂x + 2y∂y,

G4 = ∂y.

The use of y′′′ as an integrating factor gives y′′′ = k. If k = 0, then we just have seven point
symmetries as those of equation (2). The two remaining cases give

y′′′ = k y′′′ = k

G1 = ∂x, G1 = ∂x,

G2 = x∂y, G2 = ∂y,

G3 =
1
2
x2∂y, G3 = x∂y,

G4 = ∂y, G4 = x2∂y,

G5 = x∂x +
1
2
x3k∂y G5 = x∂x + 3y∂y,

G6 =
(

y − 1
6
x3k

)
∂y,

G7 = x2∂x +
(

2xy +
1
6
x4k

)
∂y.

Consider the fifth-order equation of maximal symmetry given by

yv = 0 (5)

with autonomous integrating factors y, y′′ and yiv. If we multiply (5) by the first integrating
factor and integrate, we obtain the integral

yyiv − y′y′′′ +
1
2
(y′′)2 = k. (6)
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We consider the three cases for (6) treated as an equation with k = 0, k 6= 0 and as a function.

yyiv − y′y′′′ +
1
2
(y′′)2 = 0 yyiv − y′y′′′ +

1
2
(y′′)2 = k yyiv − y′y′′′ +

1
2
(y′′)2 = k

G1 = ∂x, G1 = ∂x, G1 = ∂x,

G2 = x∂x, G2 = x∂x + 2y∂y, G2 = x∂x + 2y∂y,

G3 = y∂y, G3 = x2∂x + 4xy∂y, G3 = x2∂x + 4xy∂y,

G4 = x2∂x + 4xy∂y.

Remark 2. For easier closure of the algebra in the first case x∂x can be written as x∂x +2y∂y.

• We also observe that there is no difference when the integral is treated as a function and
as an equation. It is important to note that, if y is an integrating factor of y(n) = 0, then
the integral obtained using this integrating factor always has the sl(2, R) subalgebra.

• We further observe that for the peculiar value of the constant, that is, k = 0, there is the
splitting of the self-similarity symmetry into two homogeneity symmetries.

The integrating factor y′′ with (5) gives the following results

y′′yiv − 1
2
(y′′′)2 = 0 y′′yiv − 1

2
(y′′′)2 = k y′′yiv − 1

2
(y′′′)2 = k

G1 = ∂x, G1 = ∂x, G1 = ∂x,

G2 = x∂x, G2 = ∂y, G2 = ∂y,

G3 = ∂y, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 = x∂x + 3y∂y, G4 = x∂x + 3y∂y,

G5 = y∂y.

If we use yiv as the integrating factor of (5) and integrate, we obtain

yiv = k.

We delineate the three cases below:

yiv = 0 yiv = k yiv = k

G1 = ∂y, G1 = ∂y G1 = ∂y,

G2 = x∂y, G2 = x∂y G2 = x∂y,

G3 = x2∂y, G3 =
1
2
x2∂y G3 = x2∂y,

G4 = x3∂y, G4 =
1
6
x3∂y G4 = x3∂y,

G5 = y∂y, G5 = ∂x G5 = ∂x,

G6 = ∂x, G6 = 6x∂x + x4k∂y G6 = x∂x + 4y∂y,

G7 = x∂x, G7 =
(
24y − x3k

)
∂y,

G8 = x2∂x + 3xy∂y, G8 = 24x2∂x +
(
72xy + x5k

)
∂y.

The differential equation

yvi = 0 (7)

has integrating factors y′, y′′′ and yv. If we use y′ as the integrating factor, we obtain

y′yv − y′′yiv +
1
2
(y′′′)2 = k
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which leads to the cases below.

y′yv − y′′yiv +
1
2
(y′′′)2 = 0 y′yv − y′′yiv +

1
2
(y′′′)2 = k y′yv − y′′yiv +

1
2
(y′′′)2 = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂x + 3y∂y, G3 = x∂x + 3y∂y,

G4 = x∂x.

The use of y′′′ as the integrating factor for (7) leads to

y′′′yv − 1
2
(
yiv

)2 = k.

The three cases give the following results:

y′′′yv − 1
2
(
yiv

)2 = 0 y′′′yv − 1
2
(
yiv

)2 = k y′′′yv − 1
2
(
yiv

)2 = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = ∂x, G2 = ∂x, G2 = ∂x,

G3 = x∂y, G3 = x∂y, G3 = x∂y,

G4 = x2∂y, G4 = x2∂y, G4 = x2∂y,

G5 = y∂y, G5 = x∂x + 4y∂y, G5 = x∂x + 4y∂y,

G6 = x∂x.

If we use yv as an integrating factor, we obtain

yv = k.

We also have the three cases as mentioned above to obtain

yv = 0 yv = k yv = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 = x2∂y, G4 = x2∂y,

G5 = x2∂y, G5 = x3∂y, G5 = x3∂y,

G6 = x3∂y, G6 = x4∂y, G6 = x4∂y,

G7 = x4∂y, G7 = x∂x +
1
24

kx5∂y, G7 = x∂x + 5y∂y,

G8 = x∂x, G8 =
(

y − 1
120

kx5

)
∂y,

G9 = x2∂x + 4xy∂y, G9 = x2∂x +
(

4xy +
1

120
kx6

)
∂y.

For the differential equation yvii = 0 we have the integrating factors y, y′′, yiv and yvi. The
integrals corresponding to these integrating factors respectively are

yyvi − y′yv + y′′yiv − 1
2
(y′′′)2 = k,

y′′yvi − y′′′yv +
1
2
(
yiv

)2 = k,

yivyvi − 1
2
(
yv

)2 = k,

yvi = k.

(8)
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If y is used as the integrating factor, we have the integral yyvi−y′yv +y′′yiv− 1
2(y′′′)2 = k which

is treated as an equation for k = 0, k 6= 0 and as a function. This gives the following results:

G1 = ∂x, G1 = ∂x, G1 = ∂y,

G2 = x∂x, G2 = x∂x + 3y∂y, G2 = x∂x + 3y∂y,

G3 = y∂y, G3 = x2∂x + 6xy∂y, G3 = x2∂x + 6xy∂y,

G4 = x2∂x + 6xy∂y.

The integral corresponding to the integrating factor y′′ leads to the following cases:

y′′yvi − y′′′yv +
1
2
(
yiv

)2 = 0 y′′yvi − y′′′yv +
1
2
(
yiv

)2 = k y′′yvi − y′′′yv +
1
2
(
yiv

)2 = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = ∂x, G2 = ∂x, G2 = ∂x,

G3 = x∂y, G3 = x∂y, G3 = x∂y,

G4 = x∂x, G4 = x∂x + 4y∂y, G4 = x∂x + 4y∂y,

G5 = y∂y.

For the integrating factor yiv we have the cases:

yivyvi − 1
2
(
yv

)2 = 0 yivyvi − 1
2
(
yv

)2 = k yivyvi − 1
2
(
yv

)2 = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = ∂x, G2 = ∂x, G2 = ∂x,

G3 = y∂y, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 = x2∂y, G4 = x2∂y,

G5 = x2∂y, G5 = x3∂y, G5 = x3∂y,

G6 = x3∂y, G6 = x∂x + 5y∂y, G6 = x∂x + 5y∂y,

G7 = x∂x.

The last of the four integrating factors yvi leads to yvi = k. We have for the three cases the
following results:

yvi = 0 yvi = k yvi = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = ∂x, G2 = ∂x, G2 = ∂x,

G3 = y∂y, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 =
1
2
x2∂y, G4 = x2∂y,

G5 = x2∂y, G5 =
1
6
x3∂y, G5 = x3∂y,

G6 = x3∂y, G6 =
1
24

x4∂y, G6 = x4∂y,

G7 = x4∂y, G7 =
1

120
x5∂y, G7 = x5∂y,

G8 = x5∂y, G8 = x∂x +
1

120
kx6∂y, G8 = x∂x + 6y∂y,

G9 = x∂x, G9 =
(

y − 1
720

kx6

)
∂y,

G10 = x2 + 5xy∂y, G10 = x2∂x +
(

5xy +
1

3600
k5x7

)
∂y.
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The differential equation

yviii = 0 (9)

has integrating factors y′, y′′′, yv and yvii. If we use y′ in (9) and integrate the resulting equation,
we obtain the integral

y′yvii − y′′yvi + y′′′yv − 1
2
(
yiv

)2 = k. (10)

The three cases of the integral in (10) being treated as an equation with k = 0 and k 6= 0
and as a function are given respectively below:

G1 = ∂y G1 = ∂y G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂x + 4y∂y, G3 = x∂x + 4y∂y,

G4 = x∂x.

If y′′′ is used as an integrating factor, we obtain

y′′′yvii − yivyvi +
1
2
(
yv

)2 = k

with the following respective cases:

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 = x2∂y, G4 = x2∂y,

G5 = x2∂y.

The use of yv as an integrating factor gives

yvyvii − 1
2
(
yvi

)
2 = k. (11)

Equation (11) is of the Ermakov–Pinney type. The three cases can be delineated as follows:

yvyvii − 1
2

(
yvi

)2 = 0 yvyvii − 1
2

(
yvi

)2 = k yvyvii − 1
2

(
yvi

)2 = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 = x2∂y, G4 = x2∂y,

G5 = x2∂y, G5 = x3∂y, G5 = x3∂y,

G6 = x3∂y, G6 = x4∂y, G6 = x4∂y,

G7 = x4∂y, G7 = x∂x + 6y∂y, G7 = x∂x + 6y∂y,

G8 = x∂x.
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If yvii is used as an integrating factor in (9), we obtain yvii = k with the following symmetries
for each of the three cases:

yvii = 0 yvii = k yvii = k

G1 = ∂y, G1 = ∂y, G1 = ∂y,

G2 = y∂y, G2 = ∂x, G2 = ∂x,

G3 = ∂x, G3 = x∂y, G3 = x∂y,

G4 = x∂y, G4 =
1
2
x2∂y, G4 = x2∂y,

G5 = x2∂y, G5 =
1
6
x3∂y, G5 = x3∂y,

G6 = x3∂y, G6 =
1
24

x4∂y, G6 = x4∂y,

G7 = x4∂y, G7 =
1

120
x5∂y, G7 = x5∂y,

G8 = x5∂y, G8 =
1

720
x6∂y, G8 = x6∂y,

G9 = x6∂y, G9 = x∂x +
1

720
kx7∂y, G9 = x∂x + 7y∂y,

G10 = x∂x, G10 =
(

y − 1
5040

kx7

)
∂y,

G11 = x2∂x + 6xy∂y, G11 = x2∂x +
(

6xy +
x8

5040
k

)
∂y.

3 Relationship between fundamental integrals
and integrals obtained from integrating factors

Consider the example of the third-order ordinary differential equation y′′′ = 0 with the three
fundamental integrals together with the appropriate associated point symmetries from the sub-
algebra sl(2, R):

G7 = x2∂x + 2xy∂y, I1 =
1
2
x2y′′ − xy′ + y,

G6 = x∂x + y∂y, I2 = xy′′ − y′,

G5 = ∂x, I3 = y′′.

The numbering of the symmetries follows that of the listing of Lie point symmetries in (3) and
the ordering of the integrals is in terms of their solution symmetries. Then the autonomous
integral associated with the integrating factor y comes from the combination

J = I1I3 −
1
2
I2
2 = yy′′ − 1

2
y′2.

Proposition 1. All the integrals obtained using y as an integrating factor always have the
sl(2, R) subalgebra whereas the fundamental integrals only have one of the sl(2, R) elements.

Proof. To prove the first proposition we consider the sl(2, R) subalgebra Λ1 = ∂x, Λ2 =
x∂x +y∂y and Λ3 = x2∂x +2xy∂y and the fundamental integrals I1, I2 and I3 respectively. Then
we have the following:

Λ1I1 = I2, Λ2I1 = I1, Λ3I1 = 0,

Λ1I2 = I3, Λ2I2 = 0, Λ3I2 = −2I1,

Λ1I3 = 0, Λ2I3 = −I3, Λ3I3 = −2I2.
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We also observe that ΛiJ = 0 for i = 1, 2, 3. In fact it is easy to show that ΛiJ = εijkIjIk.
This is shown below as follows:

Λ1J = I2I3 − I2I3 = 0,

Λ2J = I1I3 − I1I3 = 0,

Λ3J = −2I2I1 + 2I1I2 = 0. �

In general we have

Ini =
n−i−1∑

j=0

(−1)jx(n−j−i−1)

(n− j − i− 1)!
y(n−j−1), i = 0, 1, . . . , n− 1, (12)

so that for n = 3, I30 = I1, I31 = I2 and I32 = I3. The symmetries Λ1,Λ2 and Λ3 operating on
the fundamental integrals then yield in general

Λ1Ini = In,i+1,

Λ2Ini = (1− i)Ini,

Λ3Ini = −(n + i− 3)(n− i)In,i−1,

Inn = 0.

If we take for example Λ3I3i = −i(3− i)I3,i−1 with n = 3 and i = 0, 1, 2, we obtain

Λ3I30 = 0,

Λ3I31 = −2I30,

Λ3I32 = −2I31,

where as above I30 = I1, I31 = I2 and I32 = I3.

Proposition 2 ([17]). If we take the equation of maximal symmetry y(n) = 0, the sl(2, R)
subalgebra maps back to itself and is preserved.

Proposition 3. For the fifth-order equation yv = 0 the autonomous integral emanating from
the integrating factor y can be obtained from J = I0I4 − I1I3 + 1

2I2
2 , where

I0 =
1
24

x4yiv − 1
6
x3y′′′ +

1
2
x2y′′ − xy′ + y,

I1 =
1
6
x3yiv − 1

2
x2y′′′ + xy′′ − y′,

I2 =
1
2
x2yiv − xy′′′ + y′′,

I3 = xyiv − y′′′,

I4 = yiv.

Proposition 4. The fourth-order equation also has an autonomous integral J defined as J =
I1I3 − 1

2I2
2 , where

I1 =
1
2
x2y′′′ − xy′′ + y′,

I2 = xy′′′ − y′′,

I3 = y′′′.

Proposition 5. It can be shown that the differential equation yvi = 0 also has the autonomous
integral J which is defined as J = I0I6 − I1I5 + I2I4 − 1

2I2
3 with the Ii (i = 0, 6) being redefined

appropriately.
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4 Conclusion

If y(n) = f
(
x, y, y′, . . . , yn−1

)
is an nth-order ordinary differential equation and g

(
x, y, y′, . . . ,

yn−1)
)

= k is an integral, the integral obtained by multiplying the equation by the integrating
factor and integrating once possesses certain symmetries when treated as a function, an equation
for the general constant and a configurational invariant (k=0). It is important to note that, if
y is an integrating factor of y(n) = 0, then the integral obtained using this integrating factor
always has the sl(2, R) subalgebra whereas the fundamental integrals only have one of the
sl(2, R) elements. We further observe that for the peculiar value of the constant, k = 0, there
is the splitting of the self-similarity symmetry into two homogeneity symmetries. The third-
order ordinary differential equation is actually special and leads to the Ermakov–Pinney type
equation. The fourth-order ordinary differential equation yiv = 0 has y′ as one of its autonomous
integrating factors which leads together with the the original equation upon integration to
the generalised Kummer–Schwartz equation. An extension to other types of equations will be
completed in a separate contribution. The question of what Lie point symmetries of an ordinary
differential equation are also shared by all its first integrals will form the basis for the next
contribution.
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