
Symmetry, Integrability and Geometry: Methods and Applications Vol. 1 (2005), Paper 001, 12 pages

The Differential Form Method for Finding Symmetries

B. Kent HARRISON

Physics and Astronomy Department, Brigham Young University, Provo, Utah 84602, USA
E-mail: bkentharrison@comcast.net, bkh@byu.edu

Received July 20, 2005; Published online August 03, 2005
Original article is available at http://www.emis.de/journals/SIGMA/2005/Paper001/

Abstract. This article reviews the use of differential forms and Lie derivatives to find sym-
metries of differential equations, as originally presented in Harrison and Estabrook 1971 [1].
An outline of the method is given, followed by examples and references to recent papers
using the method.
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1 Introduction

In 1969–70, Frank Estabrook and the present author found a method for finding symmetries
of differential equations using differential forms and Cartan’s formulation of differential equa-
tions [1]. (This will be called Paper I.) It was not something we were searching for; rather, we
were simply trying to understand how the symmetries of Maxwell’s equations could be found
from the differential form version of those equations. Once we realized that the key to sym-
metries was the use of the Lie derivative, it became clear how to apply this to all differential
equations. An outline of the method, with examples, will be given here. A few computer prog-
rams that use it will be mentioned, along with a number of published papers on symmetries
which have used it.

The reader may wonder at the order of the names of the authors on our original paper. Since
we had done roughly equal amounts of work on the research, the order was determined by the
flip of a coin.

The method proceeds as follows. We consider a set of partial differential equations, defined
on a differentiable manifold M of n independent variables and m dependent variables. (Ordinary
differential equations constitute a special case; we will mention those later.) We define the partial
derivatives of the dependent variables as new variables (prolongation) in sufficient number to
write the equations as a set of first order equations, thus extending the manifold to a manifold M ′.
Then we can formulate those as differential forms. We speak of the set of forms, representing
the equations, as an ideal I. It is to be closed.

We can recapture the original set of equations by two operations: we specialize to a submani-
fold by letting the dependent variables be functions of the independent variables (“sectioning”)
and then we set the pullback of the forms to zero (“annulling”). The resultant equations are
the original set of first order partial differential equations, and the submanifold is a solution
submanifold. (All calculations are local and we do not use any manifold structure except diffe-
rentiability.)

Lie derivatives of geometrical objects, like tensors, are associated with symmetries of those
objects. The Lie derivative of a geometrical object carries it along a path, determined by
a vector v, in its manifold. If the Lie derivative vanishes, then the vector v represents the
direction of an infinitesimal symmetry transformation in the manifold. A differential form is

mailto:bkentharrison@comcast.net
mailto:bkh@byu.edu
http://www.emis.de/journals/SIGMA/2005/Paper001/


2 B.K. Harrison

a type of tensor (totally antisymmetric on the indices of the components), so it has a Lie
derivative. We may construct the Lie derivative (symbolized by £) of the forms in the ideal I.
Setting the Lie derivative of these forms equal to zero should therefore represent symmetries —
except for one thing. When we make an infinitesimal transformation away from the original
variables, we require that the new form of the differential equations should vanish — but the
old form must also vanish. Thus we want the original forms in I to vanish, but also their Lie
derivative must vanish when that happens. In other words, we require that the Lie derivatives
of the forms in I to be linear combinations of those forms themselves — and when they vanish,
then the Lie derivatives also vanish. We can express this by writing £vI = 0 (mod I), or

£vI ⊂ I. (1)

This is satisfied by letting the Lie derivative of each differential form in I be a linear combination
of the forms in I.

Equation (1) will contain a number of Lagrange multipliers, the coefficients of the forms in
their linear combinations. Those are to be eliminated. Once they are eliminated, there remains
a set of linear homogeneous first order equations for the components of v in M ′, which are the
symmetry generators. The equations are simply the determining equations for the symmetries
of the original set of differential equations, considered as point transformations in M ′.

We note, in this set, that the derivatives of the components of v (the generators) will be taken
with respect to both dependent variables (including prolonged ones) and independent variables.
One often assumes that the generators for the independent variables (often denoted by ξ and η)
are functions only of the independent variables (there are exceptions.) The determining equa-
tions will usually show that feature promptly.

Some examples of familiar equations will be presented to show how the method works. Some
of this material was presented by the author at the second Kiev symmetry conference in 1997
and can be found in its Proceedings [2]. This will be denoted as paper II.

In paper I, we adopted the term “isovector” for the vector v, describing a symmetry trans-
formation in M ′, even though the term had been used elsewhere in the physics literature. We
did not think there would be any confusion. A number of authors thus refer to this method as
the “isovector” method.

2 Lie derivatives of differential forms

First we note some simple features of Lie derivatives of differential forms. (See paper I.)

(1) Lie differentiation preserves the rank of a form.

(2) The Lie derivative of a coordinate is simply the component of v in that direction:

£vxi = vi.

(3) The Lie derivative of a function on M ′ (0-form) is simply its directional derivative:

£vf = v(f) = vif,i.

(Commas represent partial derivatives. Sometimes they will omitted when the context is
clear.)

(4) The Lie derivative of a wedge product obeys the Leibniz rule (the subscript v may be
suppressed where it is not necessary):

£(α ∧ β) = (£α) ∧ β + α ∧ (£β).
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(5) The exterior derivative d and the Lie derivative £ commute. In particular,

£vdxi = d(£vxi) = dvi;

the Lie derivative of the differential of a variable equals the differential of the corresponding
component of v.

3 The one-dimensional heat equation

We write the one dimensional heat equation

uxx = ut (2)

as a first order set of equations by defining a new variable w:

ux = w, wx = ut. (3)

The variables are x, t, u, and w. We construct two 2-forms by inspection:

α = du ∧ dt− wdx ∧ dt,

β = dw ∧ dt + du ∧ dx (4)

(α is a contact form.) If we “section” these forms — specialize to a submanifold u = u(x, t) and
w = w(x, t) — we get

α = (uxdx + utdt) ∧ dt− wdx ∧ dt = (ux − w)dx ∧ dt

and

β = (wxdx + wtdt) ∧ dt + (uxdx + utdt) ∧ dx = (wx − ut)dx ∧ dt

where we have used the antisymmetry of 1-forms. We now “annul” these forms — set them
equal to zero — obtaining Eqs. (3), the original first-order set of equations. The forms α and β
in Eqs. (4) now constitute the ideal I of forms representing the heat equation (2).

We note that I is not unique; we may as well represent the heat equation by defining z = ut

and constructing an ideal I ′ with a 1-form

γ = −du + wdx + zdt,

its exterior derivative

dγ = dw ∧ dx + dz ∧ dt,

and the 2-form

δ = dw ∧ dt− zdx ∧ dt.

We note that α = −γ ∧ dt and β = δ − γ ∧ dx.
We work first in the ideal I. Write the Lie derivatives of α and β as linear combinations of

themselves. Expand the Lie derivatives by the rules above. We also drop the wedge product ∧
and the subscript v on £ to save writing.

£α = £(du dt− wdxdt)
= (£du)dt + du(£dt)− (£w)dx dt− w(£dx)dt− wdx(£dt)
= dvudt + du dvt − vwdx dt− wdvxdt− wdx dvt

= λ1(du dt− wdxdt) + λ2(dw dt + du dx).
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The λi are 0-forms (functions). Expand the dvi by the usual chain rule, since the vi are functions
in M ′, using all four variables. Since dt dt = 0, etc., by the antisymmetry of 1-forms, some terms
drop out. We have

(vu
,udu + vu

,xdx + vu
,wdw) dt + du (vt

,tdt + vt
,xdx + vt

,wdw)

− vwdx dt− w(vx
,xdx + vx

,udu + vx
,wdw) dt

− wdx (vt
,tdt + vt

,udu + vt
,wdw)

= λ1(du dt− wdxdt) + λ2(dw dt + du dx).

There will be 4!/2!2! = 6 basis 2-forms (dx dt, dx du, dx dw, dt du, dt dw, and du dw.) We equate
the coefficients of these 2-forms to get

vu
,x − vw − w(vx

,x + vt
,t) = −wλ1,

−vt
,x − wvt

,u = −λ2,

−wvt
,w = 0,

−vu
,u − vt

,t + wvx
,u = −λ1,

−vu
,w + wvx

,w = −λ2,

vt
,w = 0.

Eliminating the Lagrange multipliers λi gives us one half of the determining equations:

vt
,w = 0,

vt
,x + wvt

,u = vu
,w − wvx

,w,

vu
,x − vw − wvx

,x = −wvu
,u + w2vx

,u.

Expansion of £β gives us the other half. One quickly sees from them that vt is a function of t
only and that vx is a function only of x and t. Further calculation gives the usual six generators
plus addition of an arbitrary solution. Exponentiation of the transformation proceeds by setting
v · γ = 0 (contraction of v and γ, symbolized by a dot) and solving, where w and z are replaced
by their values as derivatives of u (the usual method).

Another way to proceed, which removes the need for the multipliers, is to use α = 0 to
replace du dt, anywhere that combination occurs in the expansion of the Lie derivatives of α
and β, by wdx dt, and to use β = 0 to replace dw dt by −du dx. This may save considerable
work in complicated cases, especially in cases where not all forms in the ideal are of the same
rank. In those cases, some of the Lagrange multipliers may need to be forms (of rank greater
than zero) themselves in order for the right hand sides to be of the same rank as the left hand
sides, and that means that there may be very many coefficients to be eliminated. If one can
avoid that, labor may be saved.

One can also use the ideal I ′ for the heat equation. (This is the technique used in paper I.)
There are now five variables in M ′: x, t, u, w, and z. In I ′, there is only one 1-form γ, and so
its Lie derivative equation is simple:

£γ = λγ, (5)

where λ is a multiplier. One can expand the Lie derivative by an identity for any form ω, using
the contraction operator:

£vω = d(v · ω) + v · dω. (6)
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Write F = v · γ, which is a function, and expand Eq. (5) using Eq. (6) (with ω = γ ) and
identities for contraction (e.g., v · (dx dy) = vxdy − vydx) (see paper I). We get

F = −vu + wvx + zvt (7)

and

£vγ = dF + vwdx− vxdw + vzdt− vtdz

= λγ = λ(−du + wdx + zdt).

Expand dF with the chain rule, equate coefficients, eliminate λ and use Eq. (7), and we get all
generators vi in terms of F and its derivatives (subscripts on F are derivatives):

vx = Fw, vt = Fz, vu = −F + wFw + zFz,

vw = −Fx − wFu, vz = −Ft − zFu.

The exterior derivative of Eq. (5) is

d(£γ) = £(dγ) = dλ ∧ γ + λdγ

so that the Lie derivative of dγ is also in the ideal. There is now only one equation left:

£δ = λ1δ + λ2dγ + τ ∧ γ,

where the λi are 0-forms and τ is an arbitrary 1-form with five terms. The term in du in τ
can be eliminated by substituting from γ, and that drops out. This procedure also gives the
standard determining equations.

4 Computer programs

There are a few computer programs which use this technique. Some of these were written,
in REDUCE, by D.G.B. Edelen [3]. The programs are probably still available from Lehigh
University. Other programs were written by Gragert, Kersten, and Martini, also in REDUCE.
They published several works which developed and used this software, including a program for
symbolic integration of overdetermined systems [4, 5, 6, 7, 8, 9]. Problems treated in references
[10, 11, 12] are studies of a nonlinear diffusion equation

4(up+1) + kuq = ut,

(where 4 is the Laplacian), the massive Thirring model, and the Federbush model. The present
author used one of the programs with E.D. Fackerell to explore a relativity problem, in unpub-
lished work, and one of Fackerell’s students, Ben Langton, used it for his Ph.D. dissertation on
certain solutions of the Einstein equations [13].

Another useful computer program is liesymm, a program found in MAPLE, based on a paper
by Carminati et al. [14]. It works quite well, and there is an additional program called autosimp
in MAPLE which does some integration of the determining equations, although the integration
may not be complete. These programs are discussed briefly in Refs. [15, 16]. A student of the
author’s, David Neilsen, did a master’s thesis with liesymm on Einstein’s equations [17].

An extensive review of symbolic software was done by Hereman [18] in 1997. A nice table
of programs is provided. No specific distinction is made in that paper between the traditional
method and the differential form method.
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5 Nonlinear Boltzmann equation

This example is actually listed as an example in liesymm in Maple 9.5, although it is not
worked out. The equation is:

uxt + ux + u2 = 0.

Possible ideals are I ′ with five variables, x, t, u, p = ux, q = ut:

α = du− pdx− qdt,

dα = −dp dx− dq dt,

β = −dt dq + (p + u2)dx dt

or I with four variables, x, t, u, p:

γ = du dt− pdx dt,

δ = dp dx + (p + u2)dt dx.

The calculation is quite similar to that for the heat equation. There are four generators.

6 Vacuum Maxwell equations

From paper I we write the usual 3-forms that represent the vacuum Maxwell equations in
rectangular coordinates. Subscripts represent components.

α = dEx dx dt + dEy dy dt + dEz dz dt + dBx dy dz + dBy dz dx + dBz dx dy,

β = dBx dx dt + dBy dy dt + dBz dz dt− dEx dy dz − dEy dz dt− dEz dx dy.

We simplify these forms by defining γ = α + iβ and (A,B, C) = (cyclic Ek + iBk) = h. Then
(paper I) we can write

γ = dh · (dr dt− (1/2)idr× dr)

or

γ = dA (dx dt− idy dz) + dB (dy dt− idz dx) + dC (dz dt− idx dy). (8)

The forms in the ideal will then be γ and γ∗, where the star represents complex conjugate. The
variables will be t, x, y, z, A, B, C, A∗, B∗, C∗. The generators for the coordinates t, x, y, z
will be real. The equations for the Lie derivatives are then

£γ = λγ + µγ∗

and its complex conjugate.
In paper I the determining equations were worked out by using a vector-dyadic formalism.

Here we use Eq. (8) for γ, which is a little clearer. We work with 3-forms in ten variables,
so that there are 10!/7!3! = 120 different basis 3-forms. There are two equations, for £γ and
£γ∗, so that we apparently have 240 equations. However, 120 of them are simply the complex
conjugates of the others. So we just look at the £γ equation. We see immediately by inspection
that 3-forms with all terms being d(field variable) do not appear. Terms of the form d(field) ∧
d(field*) ∧ d(coordinate) yield only equations for the derivatives of the coordinate generators
with respect to the complex conjugate fields (which are zero). Thus the coordinate generators
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do not depend on the complex conjugate fields, nor (by complex conjugation) on the fields. Thus
they depend only on the coordinates themselves. It is also easy to show that the field generators
depend only on the fields and not on their complex conjugates.

This reduces the number of equations to 22–18 with one field 1-form and two coordinate
forms and four with three coordinate forms. From the first set we get the conformal Killing
equations plus some expressions for the derivatives of the field generators. From the second we
get equations for the field generators that are the Maxwell equations themselves. Solution of the
determining equations gives the 17-generator set given in paper I (15 conformal Killing vectors,
a scale change on the fields, and a duality change on the fields, plus the addition of an arbitrary
solution). Steeb [19] presents other symmetries besides these, which depend on the derivatives
of the fields. (Steeb and collaborators also treat various versions of the Dirac equation [20].)

7 Nonlinear Poisson equation

We consider the equation:

uxx + uyy + uzz = f(u),

where f(u) is an undetermined function. Subscripts represent derivatives. We define r = ux,
s = uy, t = uz. Then

rx + sy + tz = f(u).

The ideal I consists of these forms:

α = −du + rdx + sdy + tdz,

dα = dr dx + ds dy + dt dz,

β = dr dy dz + ds dz dx + dt dx dy − f(u) dx dy dz.

There are seven variables.
We may approach this problem by defining a function H = v · α, as we did with the heat

equation. The Lie derivative of α gives all the generators in terms of H and its derivatives, as
before. Then the only equation we have left is that for £β, a 3-form. But equating it to a linear
combination of α, dα, and β is messy. The multiplier of dα, a 2-form, must itself be a 1-form,
which will have six coefficients (we do not include a term in du, because that can be replaced
by α, and dα ∧ α can be included in the α term.) The multiplier of α must be a 2-form —
and again we can eliminate du terms because they can be replaced by α, and α ∧ α = 0. But
that still leaves 15 coefficients. The multiplier of β will be a single coefficient. That totals 22
coefficients that must be eliminated.

So we consider an easier way. We define a new ideal I ′, made up of four 3-forms: β, α dy dz =
(−du + rdx) dy dz, α dz dx, and α dx dy. The latter three forms are equivalent to α alone.
The Lie derivative of each 3-form must be a linear combination of all four, thus giving four
multipliers in each equation to be eliminated. The equations are much simpler; it is easy to
eliminate four multiplier coefficients in each equation than 22, even though there are now still
4× 4 = 16 multipliers. The easiest procedure is to write out the equation for the Lie derivative
of α dy dz, eliminate the multipliers to get a set of determining equations and then to permute
x, y, z (and s, t) cyclically. One quickly gets the result that the generators for x, y, z, and u are
functions only of x, y, z, u, and the generators for r, s, and t are given in terms of a function
which is precisely the H defined above, H = v · α = −vu + rvx + svy + tvz.

The equation for £β now has four multipliers, which are easily eliminated. We find quickly
that vx, vy, vz depend only on x, y and z and that they obey the Killing equations. The
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generators for r, s, and t are written out easily, and one ends up with a single equation involving
f(u) and f ′(u). Solution of that equation for the given f then leads to the final result.

There is a small technical point. We did not include dα in I ′, even though we did represent α
as three 3-forms. Should we have done so? The answer is no. If we take the exterior derivative
of the 3-forms α dy dz, etc. we get terms like dr dx dy dz — in other words, just dα dy dz. We
get three of those equations, which are equivalent to the equation for £dα. The determining
equations for I and I ′ give the same result.

A similar treatment is used by Satir [21], who writes a set of two-dimensional bosonic mem-
brane equations as eight 3-forms. He then uses a REDUCE program together with the EXCALC
differential geometry package to find a 12 parameter group. He remarks that the use of diffe-
rential forms enabled the calculation to go more quickly that the conventional method.

8 Nonlinear diffusion equation

This an equation treated in paper II, originally due to Fushchych — a nonlinear diffusion equa-
tion with an additional condition. We can write a 1-form as was done above, its exterior
derivative, and a 4-form for the main field equation. In paper II, it was assumed a priori that
the generators for the coordinates depend only on the coordinates and that those for the deriva-
tives of the field were linear in those derivatives. It then turns out that much of the analysis of
the Lie derivative of the 4-form can be done by inspection.

9 One-dimensional compressible fluid dynamics

The equations considered here are (see paper I):

ρt + (ρu)x = 0,

ρut + ρuux + c2ρx = 0,

where isentropic flow is considered so that the pressure is only a function of the density, P =
P (ρ), and c2 = dP/dρ. The generators for x and t include a ρ- and u-dependent case, which
turns out to give the hodograph transformation.

10 Nonclassical symmetries

One can generalize the ideal I by including contractions of v with some of the differential forms.
An example of this was provided in paper I for the heat equation, in which it was shown that
one gets the equations for “nonclassical symmetries” of that equation, the same equations found
by Bluman and Cole in 1969 [22]. While this technique has not been explored in detail by this
author, Webb has studied this set of equations — referred to as a coupled nonlinear Burgers-heat
equations system — with differential forms and has searched for Bäcklund transformations for
the set [23].

11 Ordinary differential equations

We consider an example:

y′′ = f(x, y, y′),
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where the prime indicates differentiation with respect to x. We put z = y′ and write two 1-forms,
α = dy − zdx and β = dz − f(x, y, z)dx. There are three variables. The Lie derivative equation
for α is

£α = dvy − vzdx− zdvx = λ1(dy − zdx) + λ2(dz − fdx).

There are three equations, for the coefficients of dx, dy, and dz; elimination of the multipliers
gives a single equation, which is an expression for vz. The Lie derivative equation for β gives
another single equation. We assume that the generators vx and vy (usually written as ξ and η,
respectively) are functions only of x and y. In that case, vz becomes the usual extended generator
for z = y′ and the remaining equation is the usual determining equation for ξ and η, as given,
e.g., in Stephani [24].

12 Advantages of using differential forms

These have been treated in paper II, but are reviewed here. The method is easy to apply.
One simply writes all equations as first order equations; the differential forms can be written
by inspection. Calculations may be long because of the necessity of introducing the Lagrange
multipliers; however, one can choose the ideal to minimize this. One can make use of symmetries
of form (e.g., cyclic symmetry of coordinates), or one can use the forms to substitute for certain
terms in the Lie derivative expansion, thus removing the need for multipliers. Independent
variable generators may easily be considered as functions of the independent variables only (just
assume that and that simplifies the expansion of the differentials of those generators).

13 Other examples

We mention here some research papers in which the differential form method is used. Papachris-
tou generalized the method to vector-valued or Lie algebra-valued differential forms and treated
the two-dimensional Dirac equation and the Yang–Mills free-field equations in Minkowski space-
time [25] (as part of a Ph.D. dissertation with the author.) This was later used to investigate
self-dual Yang–Mills equations, which work showed connections between symmetry and integra-
bility (in the form of Bäcklund transformations) of those equations [26, 27, 28]. Waller, in three
similar papers, treats nonlinear diffusion equations (or reaction-diffusion equations) arising in
plasma physics [29, 30, 31]. He uses the technique of writing a 1-form and contracting it with v,
as done in the second treatment of the heat equation above.

Edelen has developed the theory of the differential form method extensively. His computer
programs have already been mentioned. At least two books [32, 33] and several papers [34, 35,
36, 37] explore the use in differential forms in physics, including the method discussed here.
In papers [35, 36] he considers a method of characteristics in any number of dimensions, using
isovector treatments. With this he can write parametric solutions of differential equations. One
equation he considers is [36]

ut ux = 4u.

He gives a solution for the equation as an initial value problem: if u(x, 0) = α(x), with α′(x) 6= 0,
then

x = z + α(z)(exp(4τ)− 1)/α′(z),
t = (1/4)α′(z)(exp(4τ)− 1),
u = α(z) exp(8τ),
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where z is a parameter and τ is an arbitrary function. Instead, if one defines r = ux, one can
write a simple 1-form for the equation:

α = −du + rdx + (4u/r)dt.

Then £α = λα gives equations which yield most of the generators in terms of a function F = v·α,
which satisfies the linear first order equation (subscripts are derivatives)

Ft + 4Fr + (4u/r2)Fx + (8u/r)Fu = 4F/r.

The special solution F = u/r seems to give Edelen’s solution, although not all details are worked
out yet and it is a little uncertain. In Ref. [37] he considers “inverse” isovector methods.

Webb et al consider nonlinear Schrödinger equations for a type of MHD waves, using the
differential form method [38]. He also analyzes a nonlinear magnetic potential equation, with
conservation laws, with the Liouville equation as a special case [39]. Pakdemirli and others treat
boundary layer equations for non-Newtonian fluids, including arbitrary shear stress, power law
fluids, and other models [40, 41]. Şuhubi and others, in a number of papers, consider general
approaches to equations of balance and other equations [42, 43, 44, 45, 46, 47, 48]. A number
of these discuss equivalence groups, as a generalization of symmetry groups. One paper with
Ozer [47] treats nonvacuum Maxwell equations with nonlinear constitutive relations. Another
discusses steady boundary layer flow past a semi-infinite flat plate [44].

Bhutani and Bhattacharya study n-dimensional Klein–Gordon and Liouville equations with
an interesting approach [49]. Various types of diffusion equations are treated in Refs. [50, 51,
52]. Viscoelastic-viscoplastic rods are studied in Ref. [53] and power law creep in Ref. [54].
Equations of meteorology, here meaning steady two-dimensional incompressible inviscid flow
with a Coriolis term, are studied in Ref. [55]. Hu considers the principal chiral model [56], using
differential forms and ideas from Ref. [27]. An interesting paper is that by Barco, who shows for
a second-order hyperbolic or parabolic differential equation, with one dependent variable and
two independent variables, that an isovector can be used to generate a similarity solution by
using a particular Cauchy characteristic vector field [57].

Nonlinear thermoelasticity was treated by Kalpakides [58]. His work is related to that of
Şuhubi [42, 43, 44, 45, 46, 47, 48]. Harnad and Winternitz considered a generalized nonlinear
Schrödinger equation,

izt + zxx = f(z, z∗),

with attention to both symmetries and Bäcklund transformations [59].
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[44] Şuhubi E.S., Isovector fields and similarity solutions for general balance-equations, Internat. J. Engrg. Sci.,
1991, V.29, 133–150.
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