PENCILS
PSEUDOLINEAR MATRIX BUNDEES AND SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

WITH MEROMORPHIC COEFFICIENTS

V. V. Sergeichuk UDC 517.926

We multiply the system Ay' + By = f(t) (primes indicate d/dt) of linear differential
equations, with constant coefficients, by R™! and make the substitution y = Sz (R and § are

invertible constant matrices), thus obtaining the system (R™*AS)z' + (R7'BS)z = R™'f(t). The
canonical form of a matrix pair under transformations (A, B) + (R™'AS, R™'BS) was obtained
by Kronecker (in work on a matrix bundle; see [1], and [2] Chap. XITI).

We multiply the linear differential equation system

Ay +B()y=[(t) (1

with meromorphic coefficients, by the matrix R{t)~? and make the substitution y = S(t)z
[R(t) and S(t) are invertible meromorphic matrices}, thus obtaining the system A,(t)z' +
Bo(t)z = R(t)"1f(t), where

Ao(l) =R(N)~A (DS (1), Bo(ty=R()~(B()S()+A(1)S'(1)). (2)

In this work we establish the canonical form of the matrix pair (A(t), B(t)] with respect to
transformations (2).

The direct sum of pairs (A (t), B,(t)] and [A,(t), B,(t)) is defined to be the pair

(A,g) Az{)) (Bbm B:()i) )

In Sec. 1 we prove that each pair of meromorphic matrices of the same order is reduced, by
the transformations (2), to direct sums of the following matrix pairs:

0 0 Lo 0
. ), ( e ); (3)
0 0 1, 0 )

¢ . 0 Il Q0
(ll.‘o)i (0.:1)1 (A)
0 1 0 0
0 . 0 1 0y
1. - .
S N | &
0 1 0 0 1
1 O\ —% ... — Oy
( g ) Lo o). (6)
o 0 10
In Sec. 2, we impose conditions on a; = a;(t), ..., ay = an(t), ensuring that the direct sum

over the original pair is uniquely determined.

It will follow that each system (1), after the substitution y = S(t)z, splits into sub-
systems with matrix pairs of the form (3)-(6). Systems with pairs (3)-(5) can b? solved by
d%fferentiation. A system with a pair (6) can be reduced to a single equation 2 n) — a,{(t)-
z2\N"1) 4.+ (=1)Nay(t)z = h(t).
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1. An Algorithm for Direct-Sum Representation. We describe how a pair (A, B) of mero-
morphic matrices of the same dimension (we omit t) can be reduced, by transformations (2),
to a direct sum of pairs of the form (3)-(6). The reduction method was suggested in [3, 4).
The third step of the algorithm recalls the Danilevskii method of finding coefficients of
characteristic polynomials ([S5}, Sec. 46). The rows and columns of A and B are interpreted
to be vectors over the field F of meromorphic functions.

First Step. Calculation of Direct Terms of the Form (4), (5).

We reduce a pair to the form

0 B,
S N (7)
Ae_)' B2

where the sector A, is row-nonsingular (i.e., its rows are linearly independent over F). We
carry out transformations (2) conserving the O in (7) by applying the following operations:

a) elementary transformations of rows of B,:
b) elementary transformations of rows simultaneously in A, and B,;
¢) addition of a linear combination of rows of B, to a row of B,;

d) replacement of A,, B,, and B, by A,S, B,S, and B,S + A,S', respectively, where $ is
an invertible meromorphic matrix.

If, by the transformation a), we can make the first row of B, the null vector, then we
obtain from the pair a direct term of the form (4), of dimension 1 x 0.% Removing all such
terms, we obtain a pair (7) with B; row-nonsingular. By the transformations d) and ¢), we
make B, equal to (E[O), and all elements under E nonzero; then the transformation b) leads
to a pair

0 } 0 Elo
— ——— = .
Agi o | 0| B (8) .
0] A 0 | B,

with row-nonsingular A; and A, [identically located sectors of the matrices (8) are of the
same order). The transformation d) yields Ay = (OpnE), and the left vertical strip of the
second matrix is spoiled by the application of the transformations a) and c). By removing
n direct terms of the form (5) of order 1 x 1, we obtain the pair (8) with A; = E.

~ 0 = B
Now consider the fragment A==(AA ) , B==( 33 ). A linear combination of rows of’
4 4

B, can be added to a row of B, [transformation b}]. In the pair (8), there will no longer
be a null sector below Ay = E; we make it zero again by applying the null transformation d),
There will then not be null sectors to the left of By and B,; they are made null by applying’
transformation c).

Hence, with the fragment ﬁ, ﬁ, we can make transformations similar to a)-d); in them )
the only difference is that A,, B;, and B, must be replaced by A,, By, and B,, respectively
[this is true for the transformation c)]. “

With the fragment (A, B) we perform the same transformations as with the whole pair;
we remove the 2 x 1 direct term of the form (4) and the 2 x 2 terms of the form (5), and ob-
tain the pair (see top of following page) with a row-nonsingular Ag.

*As is customary, we admit the existence of null matrices Op ,, in which the number of rows
is m = 0 or the number of columns is n = 0. In particular, the pairs (3) and (4) can be
(Oo15 01) and (054, 0,,), respectively. The direct sum of pairs (M, N) and (Opyn, Opn) is
obtained by attributing m null rows and n null columns to M and N, respectively (m 2 0, n 2
0).
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00 0 E|0 O
E1070 o TED
OE 0 | 0|0 B
0|0 4 0] 0 B

The same transformations are applied to the fragment ( 2 '), ( gs ).
6 6
These transformations are repeated until the dimension of E becomes 0 x 0 [the dimension
of E is decreased by each removal of direct terms of the form (4), (5)]. We thus obtain a
matrix pair with a row-nonsingular first matrix.

Second Step. Separation of Direct Terms of the Form (3). Let (A, B) be a pair with a
row-nonsingular first matrix. This pair is reduced to

(O { A2), (B() B») (9)

Sy Sz
with a nonsingular A,, and the following transformations (2) with S= ((; 829’ are applied,
3

conserving the 0 in (9):
a) elementary transformations of rows, simultaneously in A,, B,, and B,;
b) elementary transformations of columns of B,;
¢) addition, to a column of B,, of a linear combination of columns of By;

d) replacement of A, and B, by A,Sy and B,S, + A,S,, respectively, where S; is an in-
vertible meromorphic matrix.

If, by a transformation b), we can produce a null column in B,, then we separate a di-
rect term of the form (3) of dimension O x 1 from the pair. Removing all such terms, we

“ E
apply a transformation a) to reduce B; to the form (—hZf-)’ and then transformations d) and

c) to reduce the pair to

ol E O E

I
__._J_._._._ » ——)————

0 i 0 A, 0} Bs B.
with a nonsingular 4A,.

Making the same transformations with the fragment A = (O A,), B = (B4B,), we remove di-
rect terms of the form (3) of dimension 1 x 2 from the pair, and reduce it to

041E 0 0 E10 0 0
——.-—J ————— I

olo Eo | 01E 0 0
010 0 A olo B 5

with a nonsingular Ag.
The same transformations are applied to the fragment (O Ag), (BgsBg).

Repeating these transformations until the dimension of E is 0 x 0, we obtain a pair
with a nonsingular first matrix.

Third Step. Separation of Direct Terms of the Form (6). Suppose that there is a pair
with a nonsingular first matrix. We reduce the pair to the form (E, B), and apply transfor-
mations (2) with R = S (conserving the first matrix E). Taking S to be an elementary matrix,
we obtain the following set of elementary transformations with the matrix B:

a) permutation of the i-th and j-th columns, and then permutation of the i-th and j-th
rowsS;
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b) multiplication of the i-th column by « # 0, addition of «' to the (i, i)-th element,
and then division of the i-th row by «;

c¢) addition of the i-th column multiplied by o to the j-th column, addition of o' to
the (i, j)-th element, and subtraction of the j-th row multiplied by a from the i-th row.

We reduce the matrix B by induction. Suppose that it has been reduced to one of the
following forms:

f ? T
C]_ I ‘Dl 62 ?' O
__*~_} ______ "

B.l= =51 Om 51 DO 67. \ B, = R
It ol S0
| . D, )

0 J S . 1
{0 10 8, O 0

(the start of the induction is for n = 1). It is sufficient to show either that an n x n
pair of the form (6) is separated from the pair by direct terms (in which case we remove
this pair and begin the reduction again), or that the matrix can be reduced to the form B,
or the form B,, but with larger n.

Suppose, for example, that B is of the form B,.

If (ay, +ves ap) # (0, ..., 0), then transformations a) and b) make op = 1, then c)
(0...01]0...0), and we obtain a matrix of the form B, with larger n.

It

makes (a,, ...!...8n)

If a; = ... = ap = 0, then in the right vertical strip, we interchange the first and
last columns, the second and second-last columns, etc.; the same interchange of rows is made
in the lower horizontal strip [transformation a)]. This yields

By adding the second-last row to the remaining rows [transformation c)], we reduce the last
column to the form (0...0[0...010). We next reduce the second-last column to the form
(0...0]0...100), etc. After the reduction of the second column of the right vertical strip,

we obtain a matrix of the form B, with D, = 0. If y; = ... = yu, = 0, then we separate a
direct term from the pair, thus obtaining z pair of the form (6) of dimension n x n. If

(Y1, ~+vy Yp) # (0, ..., 0), then by making (y;...)...8) = (0...01]0...0) we obtain a matrix
of the form B,, with larger n. Pencils

2. Algebraic Theory of Pseudolinear Bundles. Here we describe how to reduce a pair of
meromorphic matrices to a unique direct sum of pairs of the form (3)-(6). We give the result
in the most general form possible, which includes a classification of pseudolinear operators
(see [6), Sec. 8.4), and a classification of pairs consisting of linear and semilinear map-
pings [7, 8]

skew field
Let K be a -bedy in which an automorphism ¢ :K + K and $-differentiation §:K +» K are fixed;

here the differentiation is such that (o + B)8 = o + 88 and (ap)d = udp + aBd (for example
K is the field of meromorphic functions with the identity automorphism and the customary dif-
ferentiation (see [6}, Sec. 0.5).

A pseudolinear bundle over the body K is understood to be a set
P=(V, W; ¢, &). (10)

We use the following notation: V and W are finite-dimensional right vector spaces over the
body K; & :V > W is a linear mapping; # :V > W is a mapping such that, for v, v, € V and
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a K, we have (04+0)F=vF+0B. and (va)B = (VH)a® - (vst)ed {when V = W and ¢ = 1, a map-
ping % is called pseudolinear ({6], Sec. 8.4); for =1 and 6§ = 0, Gabriel [9] calls the
set (10) a Kronecker modulel. A bundle morphism (2, &) : (Vo, Wa: o Fo)—>(V, W, o, F) is
understood to be a pair of linear mappings & :Vy » V and &€ :W, > W, for which #.R=, and
BR=FF. Pseudolinear bundles form an Abel category with the direct sum @ #,= (V@ V,,
Waew: & BDRF). Isomorphic bundles will be called equivalent.

Each bundle is equivalent to a bundle of the form
(K™, K™ 52, &), (11)

where K" is a right space of column vectors (X,, ..., An)T, A; G K, K°=0. A bundle (11)
will be ijidentified with the pair of matrices (A, B) of dimension m x n, whose columns are
the images of the basis vectors e, = (1, 0, ..., T, ..., eqa = (0, ..., 0, T, and A = B =
Omn when m = 0 or n = 0. Then (X, ..., An)T = AAy, ooy AT and (Ay, ..., AT @=
B(lf,»u\Kﬁ)“+A(Xf»Aw-li)ﬂ Bundles (A, B) and (4,, B,) are equivalent if and only if A, =
R™'AS and By=R!(BS*4+AS8), where R and S are nonsingular matrices (see (2)].

A skew-polynomial ring A = K{x; ¢, 8] ([6], Sec. 0.8) is understood to be the ring of
polynomials K[x], in which ordinary multiplication is replaced by multiplication defined as
follows: ax=xaab abK. A polynomial a€A, afK, is called unsplittable ([6]), Sec. 3.2),
if it cannot be expressed as a = a,b; = a,b,, where the polynomials @ ¢K, and 2.¢K are
mutually left-prime (i.e., a,A + a,A = A) and the sum of their degrees is equal to the degree
of the polynomial a. Polynomials a, b & A are similar ([6), Sec. 3.3), if their degrees are
equal and au = vb for some u,v € A such that a and v are mutually left-prime (it can be re-
guired that the degrees of u and v are, respectively, lower than the degrees of b and a).

The following theorem was proved by Kronecker for ® = 1 and § = 0 (1) (see also [2]),
and for ## 1 and 6§ = 0 in (7, 8].

THEOREM. Each pseudolinear bundle over K is equivalent to a direct sum of bundles of
the form (3)-{6), uniquely determined to within a permutation of terms; the elements a,, ...,
an in the bundle (6) are the coefficients of an unsplittable skew polynomial X" -fx»—lg 4+ .. +
an€K[x; ¢, 8], determined to within a similarity.

Proof. The ring of endomorphisms of a bundle #=(V, W; &£, %) with no representation
as a direct sum, is local; if % and Y are noninvertible endomorphisms of the bundle, then
P + ¢ is not invertible. Suppose that ® + ¥ is invertible; assume that ¢ + ¢ = 1, let ¢=
(Z. &), and let m be a positive integer such that ImPm=Im P+ and ImFr=Im Fn. Then
FP=(ImP™, ImP"; £, B) B (Ker ™, Ker B, <Ly, B,), where i, and #H: are restrictions of ¢,
and #. The bundle # cannot be expanded, and so ¢"=0, and |4o+ .. t+g" = (l—@) =41, and
we have a contradiction.

Hence, by virtue of the Krull-Schmidt theorem for additive categories ({10), p. 31),
each pseudolinear bundle is equivalent to a direct sum of nonexpandable bundles, to within
an equivalence of direct terms.

The algorithms in Sec. 1 are easily converted to apply to pseudolinear bundles over a
body (we assume that the rows of matrices are in the left vector space and the columns are
in the right vector space).

Let (A, B) be a pseudolinear bundle over X with a singular matrix A, that is not expand-
able in a direct sum. The algorithm in Sec. 1 implies that this bundle is eguivalent to one
of the bundles (3)-(5), which cannot be expanded because they have local rings of endomor-
phisms ({10], p. 31), consisting of matrix pairs of the form

o % o *
-S= .. N R: ', )

0 o 0 a’

for the bundle (3), and a matrix pair of the form (ST, RT) for bundles (4) and (5).

Let (A, B) be a nonexpandable pseudolinear bundle over K, with a nonsingular matrix A.
It is equivalent toc a bundle of the form (V, V; 1, 8). We follow [6] (Sec. 8.4), and con-
vert the vector space V into a right module over the ring of skew polynomials A = K[x; ¢ 461,
putting
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The ring A has left and right division algorithms; there is therefore s demain of principal
left and principal right ideals. The module V cannot be expanded; hence V = vA, and the non-
null skew polynomial xy(x) = xD + xP7la,; +...+ ap of the lowest degree, such that vy,(x) = 0.
is not splittable, and vA and wA are isomorphic if and only if the similar polynomials y(x)
and x,(x) are similar ([6]}, Sec. 3.2 and 3.3). In the basis v, v(x + a,), ..., v(xD"! +
xM"2g, +...+ op-;), the matrix of the mapping # coincides with the second matrix of the bun:
dle (6); hence (V, V; 1,%) is equivalent to the bundie (6). This proves the theorem.

COROLLARY. A linear differential-equation system A(t)y' + B(t)y = 0, with coefficients
from a function field F closed under differentiation (for example the field of meromorphic
functions), when multiplied by R(t)”! and subject to the variable change y = S(t)z [where
R(t) and S(t) are invertible matrices with elements from FJ, can be split into subsystems
with matrices of the form (3)-(6); the elements a;, ..., & in (6) are the coefficients of a
nonsplittable skew polynomial x(x) = x™ + x? " la; +...+ om € Flx; 1, d/dt]. The subsystems
with the matrices (3)-(5) are uniquely determined by the original system, and the subsystems
with matrices (6) are uniquely determined by the original system to within the replacement
of the skew polynomial x(x) by a similar polynomial.

The author takes this opportunity to thank I. 0. Parasyuk for his valuable discussions
of this work.
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