CLASSIFICATION OF PAIRS OF SUBSPACES IN SCALAR PRODUCT SPACES

V. V. Sergeichuk UDC 512.64

Up to the classification of Hermitian forms a classification has been given
of triples # = (Vg; U,, U,), consisting of a finite dimensional vector space
V over a field of characteristic # 2 with a symmetric, or a skew-symmetric,
or Hermitian form ¥ and two subspaces U,, U,. Two triples # and # are
identified with each other if there exists an isometry % : Vp - V'F' such
that ¢ (U;) = U;', i =1, 2.

The classification problem for quadruples of subspaces in finite dimensional vector
spaces has been solved by Nazarova [1, 2] and independently by Gel'fand and Ponomarev {3,
4]. In this paper we consider a classification problem for pairs of subspaces in scalar
product spaces. We will solve it over a field of characteristic # 2 up to the classifica-
tion of Hermitian forms over the field. The result has been partially announced in [5].

Let us strictly define the problem. Denote by # = (Vy; U,, U,) a triple consisting
of a finite dimensional vector space V with a symmetric, or skew-symmetric, or Hermitian
form and two subspaces U,, U,. Two triples £ and 9’ will be called isomorphic if there
exists a nondegenerate linear map ®: V -+ V' preserving the scalar product and the sub-
spaces U,, U,, i.e., F(x, y) = F (¢ (0, o @), o (U) = Ui, ¢ (Uy) = Uy. The aim of this article
is to characterize triples % up to an isomorphism.

1. Main Result. To characterize triples ? = (Vg; U;, U,) we will use a method pre-
sented in {5, 6, 71.

Let K be a field of characteristic # 2 with an involution a--a (possibly trivial).
Let us fix a number ¢ € {=1, 1} equal to ! for nontrivial involution in the field K.

According to [5, 7], a representation A of an oriented graph
7 X
g: t:j::;J:EDA
2"F

is given if to its vertices 1, 2, and 3 there correspond finite dimensional vector spaces
Ay, A,, Ay; and to its arrows a, B linear mappings Ay : A; = A, Ag t A; » Ay to its loop
A e-Hermitian form Ax(x, y) = edy(y, x) on space A, (i.e., a symmetric, or skew-symmetric,
or Hermitian form on A,;). Two representations A and B are isomorphic if there exist non-
degenerate linear mappings @;: Aj > By, i = 1, 2, 3 such that 9sde = Buag:: 9348 = Bpdy,
Ay(x, y) = Bi(9;(x) 93(¥)) . The direct sum of the representations A and B is the represent-
ation C = A e B, where C; = A; @ By, i &€ {1, 2, 3, a, B, A}.

Obviously, every representation A determines a triple ® = ((A;)s,; Im(Ay), Im(Ag))
where isomorphic representations correspond to isomorphic triples [ for the sake of mutual
unique correspondence one can assume that Ker (4,) = Ker(AB) = 0].

It has been proved in [5, 7] that classification of representations of a graph G can
be obtained from a classification of representations of the quiver

/ J
Q: w‘& —"—->4y
5 ™,

We recall that a representation of quiver Q associates with a vertex a finite dimensional
space, with an arrow a linear mapping. A homomorphism @ : M > N of representations is
called a collection of linear mappings ¢;: M; > Ny, 1 € 1 s 6 satisfying the conditions
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PeMa =Na@y, Mg = Np®y @,Ma = Nu@s, My = Ny9,, 9eMs = Ns@,. The dimension of representation
M is called the vector (m;, ..., mg), where mj = dim (M;).

Representations of quiver Q are characterized in [2] (see also Sec. 2). If there
exists only one, up to an isomorphism, representation, which is not decomposable into a
direct sum, of dimension (m;, ..., mg), then it will be denoted by [m;, ..., mg].

Representations of graph G and quiver Q we define by collections of matrices A = {44,
Ag, A\l and M = [My, Mg, My, My, Mgl, while assuming that some bases in the spaces have
been chosen.

For representation M of quiver Q we will define representation M of the graph G:
Mt = [M, e MY*’ Mg © Mg*, My\eM;*], where P* = Pl = ( g;) is the matrix adjoint to the

matrix P = (g;). P o o R
P R= y P = R
OR=(5 o) AR=() )

We will introduce the notation: if f(x) = 8"+ ax" '+ ... La,€K|x], then F(x) = ¥ +
a4 ... +a, » Opy is the null matrix of dimension m x n, Oy = Oy, E, is the unit matrix
of dimension n x n, F, is a matrix obtained from E, by the reversed ordering of columns
(i.e., the unities are situated on the side diagonal), ¢, is the Frobenius box with unities
under the main diagonal and the characteristic polynomial x® + A, xB°! + ... + A, € K[x]
which is a power of an irreducible polynomial pg (x). As in [7, Theorem 8], in the case
of ¢, = ¥, we will define a matrix &,' of dimension n x n : ¢n' = Fn for degenerate &,
¢n' = (4i+i) for nondegenerate &,, where @,=1, gy = ... =@, =0, Grpn=— AQn—i— ... — Aply , L2 2.

The following theorem is the main result of this paper.

THEOREM 1. Over field K of characteristic # 2 for every representation A of a graph
G in spaces A,, A,, A; it is possible to choose bases in such a way that the triple (A,
AB’ A,) be given by a direct sum of collections of matrices of the following forms:

1) in, n, 2n; 2n, n, n * 11*, [n, n, 2n; 2n, n 2 1, n]*, [n, n, 2n + 1; 2n + 1, n +
I, n+11% [n,n+1, 2n+1; 2n+1, n+ 1, nl*, [n,n+1, 2n+ 1; 2n+ 1, n+ i, n +
il¥, In+1,n, 2n+1; 2n+ 1, n+ i, n + i]*, where i € {0, 1};

2) I[n+i,n+3j, 2n +1; 2n, n, nl*, [n— i, n - js 2n — 1; 2n, n, n]t, where i, j €
{0, 1};

+
3)[(5" ) (E) Esnr  (E4O0) (onEn)] » where pg_(x) equals x or x = 1;

o,/ \E,
E 0.\ (En E + _
n n n n , nEn -3 = — .
9o GG o) 00 © |18 e = =1 or by # T
E.\ [0, o) E, . _
4')@(®n.f)=[(on ), <En>' ((En ((D;(Dn))f(q)n@(bn)} , if ¢ = 1 and ¢, = &, where 0 #

£f(x) = T(x) € Kix], degf(x) < degp¢n(x);

E +
5) [(g">, (g"), (2,): E: >, (EnOn)s (Onfn)] for £ = —1 and degenerate &,;

n n

E 0, F,1®0, E, -
5')”("’a)=[(o:)' (E) a( E, F)] for € = 1, where 0 # = 7 & K;

’ (6]
6) [A;, Bjy, C, AT, BjT]+ for € = =1, where i, j € {0, 1}, Ay = (E" ) , Ay = ( m"+j s

On+l,n E,;.*.[

BO = E" R Bl = Eno'ru) s C =<Fr On,a-}-l) 3

En Enp Onitn Frpi
O1n

6') R(n,a)=[4, B, aC] for € = 1, where i, j € {0, 1}, 0 # a=a e K, the matrices Aj,
By, C are from 6).

The components with respect to the initial representation A are determined as follows:
for 1, 2, 3, 5, and 6 uniquely; for 4 up to exchange of &, by the box ®,; for 4' up to ex-
change of the whole group of components & P (@n, £3) with the same box ¢, on & P(0n, 8i)>»

where ;; fi(wxy%%x4 and 2: gi(w)x;°x; are equivalent Hermitian forms over the field

K(w) = K[x]/pg_(x) with the involution f(w)® = T(w); for 5' and 6' up to the replacement
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of the whole group of components ‘@6’("’%) [ & R(n,a;) respectively] by the same number n on
e?é(n, b;) [on & R(n,b,) respectivelyl], where Zai;ixt and Z bi'iixj- are equivalent Herm-

i i : i
itian forms over the field K.

2. Classification of Representations of Quiver Q. Theorem 1 assumes that the class-
ification of representations of quiver Q is known. This classification has been obtained
in [2]. We will present it in the form suggested by [4].

We will introduce the notation: &,(X) is the Frobenius box with the characteristic
polynomial (x — AR, En+1,nts BEn+i,nts En,n+1%> En,n+1> are matrices obtained from E, by
adding a null row or a null column from above, from below, from the left, and from the
right, respectively.

2.1 A complete system ind (Q') of nonisomorphic indecomposable into a direct sum re-

presentations of the quiver
7
&« T 4
Ql: 3 /

contains exactly one representation for each dimension (n, n, 2n, n, n t 1), {(n, n, 2n,
ntl,n), (n,nt1, 2n, n, n),(ntl,n, 2n, n, n), x;, %,, 2n + 1, x,, X5), where x,,
X,s X,, X5 € {n, n + 1}. These representations can be obtained from the following inde-
composable representations M = [M,, Mg, My, Mgl:

0 (En ) <on ) (E) (Ex.n_l)’ or (EI,,,+, )
O“ E" En E;'Ll.n-—l E;u-{-—i

2) (Ew ) (ow.,,) (E£+,.n ’ (Ei+1,,, T o (Em )
On.n+l En E,,, En E;:n-f-l

3) (En+l ) (On+l,n) <En+l >’ (En-H )”_
On,ni1) \En Ernpt) \Ednpt)

4) En ), (On-l-l.n)’ (En-H )T1 En-—l,n &® (1 \) :
Ont1.n) \En Ennp

EZn—H
) (Bhaa), (Qors), Qe (Bl
E, E, E, E,
6) (E"'H ), (En+l >’ (En-H )’ Enpi V'
On,nti Exn On,ny Eznn !
using transpositions of the matrices My, Mg, transpositions of matrices M,, Mg, passage to

the adjoin§ indecomposable representation M° = [MY*’ Mg*, Mg¥, MB*] of dimension (m,, mg,
My, My, My).

The set ind (Q') contains also the following representations of dimension {(n, n, 2n,

m, n): Ay (@) = [(g) (g) (EnEn), (Eno,o],
My = [(’; ) @ ) (@4 (0) E.). (EnEn)] :

E. \ (En
My () = [( o m)’ ( E,,>’ (ExO)s (OnEn)]s h €10, 1},

My = M5 (0)°.
The set ind (Q') does not contain any other representations.

2.2 A complete system ind (Q) of nonisomorphic indecomposable into a direct sum repre-
sensations of the quiver Q consists of the representations

a) N, () = [Ags AB’ E, AY’ Agl, where A = [Ag, AB’ AY’ Agl & ind (Q') is a represent-
ation of dimension # (n, n, 2n, n, n);
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A
b) A, (A) =[AWA,3,<Av
8 |
sion (n, n, 2n, n, n), or (n+ i, n+ j, 2n+ 1, n, n) or (@~ i, n— j, 2n - 1, m, n), i,
j € {0, 1};
Ex\ [0\ e 0]
c) N, (4) = o I'\g s (AyAs)s Aas Ap|, where A = M3 (1) or A € ind (Q') is a represent-
n n J
ation of dimension (n + i, n+ j, 2n+ 1, n, n) or (n —i, n—~3j, 2n— 1, n, n), i, j €
{0, 1}.

3. Proof of Theorem 1. A representation adjoint to the representation M = [M,, Mg,
My, My, Mgl of quiver Q is the representation MO = [MY*, Mg*, eMy*®, My*, MB*] (e is the
same as in the quiver Q). An adjoint homomorphism to the homomorphism y = (¥y, «.., ¥)
M > N is the homomorphism $° = (¥ %, Y%, ¥, %, ¥.%, ¥,%, ¥,*) : N° » MO.

We will replace each representation from ind (Q), isomorphic to an adjoint one, by a
self-adjoint representation and we will denote their set by ind, (Q). We will include into
ind, (Q) all representations from ind (Q) isomorphic with an adjoint but not self-adjoint
one, and one from each pair {M, N} ¢ ind (Q), where M = N = M°.

>,(EnOnL(OnEn) , where A € ind (Q') is a representation of dimen-

The ring of endomorphisms 4 = End (N) of an indecomposable representation N € ind, (Q)
is local, the set R of its irreversible elements is the radical; therefore T(N) = A/R is
a field. By means of the representation N € ind, (Q) and its self-adjoint automorphism
v = y° we will define the representation of the graph G: N = [Ny Ng, N)¥;51.

The following theorem is a particular case of Theorem 1 [7].

THEOREM 2. Every representation of graph G over field K of characteristic # 2 is
decomposable into a direct sum of representations of the forms

a) MY, where M e ind, (Q);

b) N¥, where N € ind, (Q), ¥ = ¥° € Aut (N).
The components are determined as follows: of the form a) uniquely; of the form b)
up to the exchange of the whole group of components GIB N¥i with the same N for eN¥

where 2: (p; + R)xy°xy and }S(@i + R)x;°x; are equivalent Hermitian forms over the field
T(N) = A/R with the involution (¢ + R)® = %° + R.

We will use Theorem 2 to prove Theorem 1. The set ind (Q) has been introduced in sub-

section 2.2. If z = (z,, ..., 2g) is the dimension of the representation M, then z° =
(Zs, Zg» Zus Zzs Z1s Zp) is the dimension of the adjoint representation M°.

Representations of dimensions z # z° from ind (Q) are fully determined by their dimen-
sions and they are not isomorphic to self-adjoint ones. We will divide them into pairs of
representations of mutually adjoint dimensions z, z? and from each pair we will choose one
representation. We will obtain all representations of M from ind, (Q) of nonself-adjoint
dimensions. Passing to representations of Mt, we will obtain all representations 1-2 in

Theorem 1.

The representations M ,(U:;(M). , » € {0, 1} (see 2.2) are not isomorphic to self-ad-
joint ones since Ny (Mg (0))° 2 Ny (L), Ny (Mg (1)) 2 Ny (Ms(1)). We obtain representations 3 in

Theorem 1.

Let us consider the representation

K, (M (@)= [(g ) @ ) (ﬁ f))  (Ea00). <0,.En)] .

Obviously, N, (M, (@) & N, (M, (D).

Let ¢: N, (4, (D,)) ~ B = B® be an isomorphism into a self-adjoint representation. Re-
placing B by an isomorphic self-adjoint representation we can write

E (6] M E
—_ n no, ™ (EnOR)» (ORER) |
B Ko ) (5) (aEn N) (Eala) (0 )}
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M= eM*, N = eN*. Then the isomorphism takes the form
Q= (S]_’ Sgr S] @ Sz» Sg@ 881, 523 831). (1)

Replacing M, N, 8,, S, by S, 'MS,*" !, S,*NS,, S,*S,, E, we obtain an isomorphism ¢ of the
form (1) in which S, = E, and by the definition of an isomorphism MS, = E,, N = eS,%,.
Since M = eM*, N = eN*, then S, = €8,%*, S;9, = €(S;¢,)*. By [7, Lemma 8, Theorem &} ¢ =
1, &, = ¥, and, therefore, we can put S, = &,', M = (¢,')"?, N = &,'¢, (¢,' has been
defined in Sec. 1).

Let ¢ ¢ B > B be an endomorphism. Then n = ¢~49 is an endomorphism of the repre-
sentation JVZQMIGDHD . By the definition of a homomorphism n = (H, H, H e H, H ¢« H, H,
H). A matrix commuting with a Frobenius box is a polynomial with respect to this box and
therefore H = £(&,), £ € K[x]. Since ¢,'H(3,')" " = £(o,'¢,(2,')" 1) = f(@n*), then ¢ =
(Pn(P—I = (f(q)n')’ f(q>n)’ f(q’n‘k @ q)n), f(Qn & ‘bn*), f(q)n): f(‘»n*))9 wo = (f(q’n*), ?(q’n}s
...), and the field T(B) = End (B)/R can be identified with the field K(w) = K{x]/p¢n(x)

with the involution f(w)® = f(w). By Theorem 2 we obtain the components 4 and 4' of
Theorem 1. By representation N ,(A{,) we obtain the components 5 and 5'.

In the set ind (Q) there are still not considered representations of the dimensions
(n+i,n+3j, 2n+1; 2n+ 1, n+ i, n+ j), where i, j € {0, 1}. It is easy to verify
that these representations are isomorphic to the representations [Aj, Bj, C, AiT, BjT]
(see 6 in Theorem 1), which are self-adjoint for € = 1. Thus, we obtain the components 6
and 6' of Theorem 1. An application of Theorem 2 concludes the proof of Theorem 1,
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