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Up to the classification of Hermitian forms a classification has been given 
of triples ~ = (VF; U l, U2), consisting of a finite dimensional vector space 
V over a field of characteristic # 2 with a symmetric, or a skew-symmetric, 
or Hermitian form F and two subspaces UI, U 2. Two triples ~ and Y are 
identified with each other if there exists an isometry ~ : V F + V' F, such 

that ~ (U i) = Ui', i = i, 2. 

The classification problem for quadruples of subspaces in finite dimensional vector 
spaces has been solved by Nazarova [i, 2] and independently by Gel'fand and Ponomarev [33 
4]. In this paper we consider a classification problem for pairs of subspaces in scalar 
product spaces. We will solve it over a field of characteristic # 2 up to the classifica- 
tion of Hermitian forms over the field. The result has been partially announced in [5]. 

Let us strictly define the problem. Denote by ~ = (VF; UI, U 2) a triple consisting 
of a finite dimensional vector space V with a symmetric, or skew-symmetric, or Hermitian 
form and two subspaces UI, U=. Two triples ~ and 9' will be called isomorphic if there 
exists a nondegenerate linear map ~ : V ~ V' preserving the scalar product and the sub- 
spaces Ul, U2, i.e., F(x, y) = F' (~ (x), ~(y)), ~ (UI) = U~, ~(U2)---- U2. The aim of this article 
is to characterize triples ~ up to an isomorphism. 

i. Main Result. To characterize triples ~ = (Vf; U I, U 2) we will use a method pre- 
sented in [5, 6, 7]. 

Let K be a field of characteristic ~ 2 with an involution a-+a (possibly trivial). 
Let us fix a number E e {-i, i} equal to 1 for nontrivial involution in the field K. 

According to [5, 7], a representation A of an oriented graph 

is given if to its vertices i, 2, and 3 there correspond finite dimensional vector spaces 
Al, A 2, A~; and to its arrows =, $ linear mappings A~ : A I + A 3, A S : A 2 + A3; to its loop 

e-Hermitian form A%(x, y) = ~A~(9, x) on space A 3 (i.e., a symmetric, or skew-symmetric, 
or Hermitian form on A 3). Two representations A and B are isomorphic if there exist non- 
degenerate linear mappings ~l: A i + B i, i = i, 2, 3 such that ~.~A~----B=~,, ~3A~----B~, 
A%(x, y) = B~.(~3(x),cps(g)) . The direct sum of the representations A and B is the represent- 
ation C = A | B, where C i = A i | Bi, i e {i, 2, 3, ~, $, %}. 

Obviously, every representation A determines a triple ~ = ((A3)A%; Im (A~) e Im (A~)) 
where isomorphic representations correspond to isomorphic triples [ for the of mutual 
unique correspondence one can assume that Ker (A~) = Ker (A~) = 0]. 

It has been proved in [5, 7] that classification of representations of a graph G can 
be obtained from a classification of representations of the quiver 

S 

Q: ~ =4 

We r e c a l l  t h a t  a r e p r e s e n t a t i o n  o f  q u i v e r  Q a s s o c i a t e s  w i t h  a v e r t e x  a f i n i t e  d i m e n s i o n a l  
s p a c e ,  w i t h  a n  a r r o w  a l i n e a r  m a p p i n g .  A h o m o m o r p h i s m  qD : M -~ N o f  r e p r e s e n t a t i o n s  i s  
called a collection of linear mappings ~i: M i § N i, 1 ~ i < 6 satisfying the conditions 
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~a.,W~ ----N=~, ~3AI~ = N~, ~M~ = N~ 3, ~bMv ----- Nv~ 4, ~6M6 ---- N~%. The dimension of representation 
M is called the vector (m I, .... m~), where m i = dim (Mi). 

Representations of quiver Q are characterized in [2] (see also Sec. 2). If there 
exists only one, up to an isomorphism, representation, which is not decomposable into a 
direct sum, of dimension (m i .... , m6), then it will be denoted by [ml, ..., m6]. 

Representations of graph G and quiver Q we define by collections of matrices A = [A s, 
A~, A~] and M = [M a, M~, M~, M~, M6], while assuming that some bases in the spaces have 
been chosen. 

For representation M of quiver Q we will define representation M + of the graph G: 
M + = [M~ | M "~*, M~ | M6*, M%\gM%*], where P* = p-T = (a-ji) is the matrix adjoint to the 
matrix P = ( 'a~1 ) 

We will introduce the notation: if f(x) = a0x ~ q- a~x n-I + ... ~a~ EK[x], then ~(x) = a0 x~ + 
axx"-lq -... q-a"n , Omn is the null matrix of dimension m x n, O n = Onn, E n is the unit matrix 
of dimension n x n, F n is a matrix obtained from E n by the reversed ordering of columns 
(i.e., the unities are situated on the side diagonal), ~n is the Frobenius box with unities 
under the main diagonal and the characteristic polynomial x n + %Ix n-1 + ... + A n e K[x] 
which is a power of an irreducible polynomial p~_(x). As in [7, Theorem 8], in the case 
of ~n = ~n we will define a matrix ~n' of dimension n x n : ~n' = Fn for degenerate ~n, 
~n' = ( ai+l ) for nondegenerate ~n, where a=----- l, a 3 ..... an+l = 0, at+~=-- %~at+n-1 ... %na~, s �9 2. 

The following theorem is the main result of this paper. 

THEOREM i. Over field K of characteristic # 2 for every representation A of a graph 
G in spaces A~, A~, A a it is possible to choose bases in such a way that the triple (A s, 
A~, A A) be given by a direct sum of collections of matrices of the following forms: 

i) In, n, 2n; 2n, n, n + i] +, [n, n, 2n; 2n, n +_ i, n] +, In, n, 2n + i; 2n + i, n + 
i, n + i] +, [n, n + i, 2n + i; 2n + i, n + I, n] +, [n, n + i, 2n + i; 2n + i, n + i, n + 
i] +, [n + i, n, 2n + i; 2n + i, n + i, n + i] +, where i e {0, i}; 

2) In + i, n + j, 2n + i; 2n, n, n] +, [n - i, n - j, 2n - I; 2n, n, n] +, where i, j e 
{0, 1}; 

+ 

[~0,~] \Eu] ~, where p~n(X) equals x or x - i; 

O. ' \E.]  E. @.7 (E.O.), (O,,E.) " i f  ~ = - 1  o r  ) n  # ~ n ;  

' \f~J \ f ~  (O~O.) [(@~ ~(D") , i f  e = 1 and O n = 0- n,  where 0 # 

f(x) = f(x) e K[x], deg f(x) < degp~n(X); 

( ) ]+ 5) [(E~/, (O~h, O~ E u ,  (e.On), (OnEn) f o r  s = - 1  and d e g e n e r a t e  ~n; 

5 , ) . ( . , . )  = eo, [~0~/ ~E.] \ f~  F. for e = i, where 0 # a =  a e K; 

6) [A i, Bj, C, Ai T, for e =-i, where i, j e {0, I}, A 0 = O~+~.n \E,+~ / 

B~ = E~ , B~ , C = 

\ En+| ] O.+l,a F.+l ] 

6') ~(n,a)= [A~,B#aC] for e = i, where i, j e {0, i}, 0 ~ a=~ e K, the matrices Ai, 
B j, C are from 6). 

The components with respect to the initial representation A are determined as follows: 
for I, 2, 3, 5, and 6 uniquely; for 4 up to exchange of ~n by the box ~n; for 4' up to ex- 
change of the whole group of components ~ ~(~n, fi) with the same box ~n on ~ ~(~n, gi), 

i i 

where E fi(m)xi~ and E gi(~)xi~ are equivalent Hermitian forms over the field 

K(m) = K[x]/P~n(X) with the involution f(~)o = ~(~); for 5' and 6' up to the replacement 
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of the whole group of components ~ ( n ,  ai) [ @ ~(n,a~) respectively] by the same number n on 
i i 

~(n, bi) [on ff)~(n,b~) respectively], where Eaixix~ and E bi~ix j are equivalent Herm- 

itian forms over the field K. 

2. Classification of Representations of Quiver Q. Theorem i assumes that the class- 
ification of representations of quiver Q is known. This classification has been obtained 
in [2]. We will present it in the form suggested by [4]. 

We will introduce the notation: ~n(X) is the Frobenius box with the characteristic 
polynomial (x - x)n, En+1,n+, En+1,n+, En,n+1+, En,n+1+ are matrices obtained from E n by 
adding a null row or a null column from above, from below, from the left, and from the 
right, respectively. 

2.1 A complete system ind(Q') of nonisomorphic indecomposable into a direct sum re- 
presentations of the quiver 

c o n t a i n s  e x a c t l y  one r e p r e s e n t a t i o n  f o r  each  d i m e n s i o n  (n ,  n ,  2n, n ,  n +- 1 ) ,  (n ,  n ,  2n, 
n +- 1, n ) ,  (n ,  n -+ 1, 2n, n ,  n ) ,  ( n +  1, n ,  2n,  n ,  n ) ,  x a, x 2, 2n + 1, x~,, x s ) ,  where  x I ,  
x 2, x~,, x s ~ {n, n + 1}. These  r e p r e s e n t a t i o n s  can be o b t a i n e d  f rom t h e  f o l l o w i n g  i n d e -  
composab le  r e p r e s e n t a t i o n s  M = [Ms, Mg, MX, M6]: 

or (, +,)', 
.o) v 

, or ~E" l ;  
\0~.~+,/ \ g~  } \E~ ] ~ ~,.+w 

\ 0 , , , , , + , 7  \E7.,,+,/ , 

4) ( F-'n t, (~:l'n), ( En§ y,  ( / ~ n - - " n * ( l ) )  " 1 ; 
\E~, ,+, :  \0.+I. n/ \EZ.+l 

(o:,..). 
\E,, 

\0..,,+,7 ,,0,,,,,+, / 

using transpositions of the matrices M s, M~, transpositions of matrices My, M 6, passage to 
the adjoint indecomposable representation M ~ = [MT*, M~*, Ms*, M6*] of dimension (m~, m 5, 
ms, ml, m2) �9 

The set ind(Q') contains also the following representations of dimension (n, n, 2n, 
n, n) : 

[(s. I, 
. ~  (x) = L\O. (}07 \E . ]  

.~4 = .,U~ (0) o. 

The set ind (q') does not contain any other representations. 

2.2 A complete system ind (Q) of nonisomorphic indecomposable into a direct sum repre o 
sensations of the quiver Q consists of the representations 

a) J~1 (A) = [As, A6, E, AT, A6], where A = [Ae, A~, Ay, A 6] e ind(Q') is a represent- 
ation of dimension # (n, n, 2n, n, n); 
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(A) = [A~,A~,(A~, (E~On), (OnEn)|1 , where A e ind(Q') i s  a representation of dimen- b) ~2 
L \As~ J 

s i o n  ( n ,  n ,  2 n ,  n ,  n ) ,  o r  t n  § i ,  n + j ,  2n + 1, n ,  n )  o r  ( n  - i ,  n - j ,  2n - 1,  n ,  n ) ,  i ,  

j �9 {0, 1}; 

c)  N ~ ( A )  = O~ ' \ E . /  

a t i o n  o f  d i m e n s i o n  ( n  + i ,  n + j ,  2n + 1, n ,  n )  o r  ( n  - i ,  n - j ,  2n - 1,  n ,  n ) ,  i ,  j �9 

{o, 1}. 

3. Proof of Theorem i. A representation adjoint to the representation M = [M s, M~, 
M%, MT, M 6] of quiver Q is the representation M ~ = [MT~, M6~, eM% , Ms',, M~*] (e is the 
same as in the quiver Q). An adjoint homomorphism to the homomorphism ~ = (T I .... , ~s) : 
M ~ N is the homomorphism ~0 = (~s*, ~s*, ~*, ~s*, ~i*, ~2") : No + M~ 

We will replace each representation from ind (Q), isomorphic to an adjoint one, by a 
self-adjoint representation and we will denote their set by ind 0 (Q). We will include into 
ind I (Q) all representations from ind (Q) isomorphic with an adjoint but not self-adjoint 
one, and one from each pair {M, N} c ind(Q), where M = N = M ~ 

The ring of endomorphisms A = End (N) of an indecomposable representation N e ind 0 (Q) 
is local, the set R of its irreversible elements is the radical; therefore T(N) = A/R is 
a field. By means of the representation N e ind 0 (Q) and its self-adjoint automorphism 

= ~0 we will define the representation of the graph G: N~ = [N~, NS, N%~3]. 

The following theorem is a particular case of Theorem i [7]. 

THEOREM 2. Every representation of graph G over field K of characteristic # 2 is 
decomposable into a direct sum of representations of the forms 

a) M +, where M e ind I (Q); 

b) N~, where N e ind 0 (Q), ~ = ~0 e Aut(N). 
The components are determined as follows: of the form a) uniquely; of the form b) 

up to the exchange of the whole group of components ~ N~i with the same N for ~N ~ , 

where E (~i + R)xi~ and ,E~ + R)xi~ are equivalent Hermitian forms over the field 
l 

T(N) = A/R with the involution (~ + R) ~ = ~0 + R. 

We will use Theorem 2 to prove Theorem i. The set ind (Q) has been introduced in sub- 
section 2.2. If z = (zl, ..., z s) is the dimension of the representation M, then z ~ = 
(zs, Zs, z~, zs, z I, z 2) is the dimension of the adjoint representation M ~ 

Representations of dimensions z # z ~ from ind (Q) are fully determined by their dimen- 
sions and they are not isomorphic to self-adjoint ones. We will divide them into pairs of 
representations of mutually adjoint dimensions z, z ~ and from each pair we will choose one 
representation. We will obtain all representations of M from ind I (Q) of nonself-adjoint 
dimensions. Passing to representations of M +, we will obtain all representations 1-2 in 

Theorem i. 

The representations ~(AL~(%)) , X e {0, I} (see 2.2) are not isomorphic to self-ad- 
joint ones since JF~(~(0)) ~ ~-- A~(~), A~(~(1)) ~ "~ JF~(~/~(1)). We obtain representations 3 in 

Theorem i. 

Let us consider the representation 

Obviously, d~ (77, (,~))0 ~__ 7F~ (~ (~,)). 

Let ~:dF=(~i(~n)) + B = B ~ be an isomorphism into a self-adjoint representation. Re- 
placing B by an isomorphic self-adjoint representation we can write 
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M = EM *, N = eN*. Then the isomorphism takes the form 

= (S~,S~,S1 ~ S~,S~ ~ ~S1, S~o~SO. (1) 

Replac ing  M, N, S 1, S 2 by $2-1MS2 *-1 ,  $2"NS2, $2"$1,  E n we o b t a i n  an isomorphism ~ of  the  
form (i) in which S 2 = E n and by the definition of an isomorphism MS I = En, N = ~$I~ n. 
Since M = EM*, N = EN*, then S l = eSl*, SiC n = e(S1r By [7, Lemma 8, Theorem 8] ~ = 
i, Cn = ~n and, therefore, we can put S I = ~n', M = (r -~, N = Cn'~n (r has been 
defined in Sec. i). 

Let ~ : B ~ B be an endomorphism. Then ~ = ~-i~@ is an endomorphism of the repre- 
sentation N~(//1(~n)) By the definition of a homomorphism n = (H, H, H | H, H | H, H, 
H). A matrix commuting with a Frobenius box is a polynomial with respect to this box and 
therefore H = f(#n), f e K[x]. Since ~n'H(~n') -I = f(~n'r -I) = f(~n*), then ~ = 
~N -I = (f(~n'), f(#n), f(#n* ~ #n), f(~n | ~n*), f(#n), f(~n "~)), ~0 = (f(~n*), T(~n), 
...), and the field T(B) = End(B)/R can be identified with the field K(~) = K[x]/P<~n(X) 

with the involution f(m)0 = ~(m). By Theorem 2 we obtain the components 4 and 4' of 
Theorem i. By representation 7F~(//~) we obtain the components 5 and 5' 

In the set ind (Q) there are still not considered representations of the dimensions 
(n + ~, n + 3, 2n + ~; 2n + I, n + ~, n + ]), where i, j e {0, i}. It is easy to verify 
that these representations are isomorphic to the representations [Ai, Bj, C, Ai T, Bj T] 
(see 6 in Theorem i), which are self-adjoint for e = i. Thus, we obtain the components 6 
and 6' of Theorem i. An application of Theorem 2 concludes the proof of Theorem i. 
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