
Ukrainian Mathematical Jou.rnal, VoL 47, No. 11, 1995 

E L E M E N T A R Y  AND M U L T I E L E M E N T A R Y  REPRESENTATIONS OF VECTROIDS 

K. I. Belousov, L.A. Nazarova, A. V. Roiter, and V. V. Sergeichuk UDC 519.1 

To the memory of Maurice Auslender 

We prove that every finitely represented vectroid is determined, up to an isomorphism, by its completed 
biordered set. Elementary and multielementary representations of such vectroids (which play a central 
role for biinvolutive posets) are described. 

Introduction 

Denote by k a fixed algebraically closed field and by mod k the category of finite-dimensional fight vector 

spaces over k. The symbol of a linear map is written to the fight. 

A vectroid V (over the field k) is a small (the class of objects is a set) subcategory of the category modk 
which is a spectroid in the sense of [1], i.e., satisfies the following conditions: 

(i) For each pair of objects X, Y e ~ the set V(X, Y) of morphisms is a linear subspace in mod k (X, Y); 

(ii) For each X ~ ~ the ring V(X, X) contains exactly two idempotents (0 x ~ Ix); 

(iii) V does not contain isomorphic objects. 

The value sup { dim X, X ~ q/r} is called the dimension dim V of 

Each vectroid V defines a category (an aggregate in the sense of [1]) @ V c  mod k whose objects are all 

finite direct sums X 1 (9 ... @ X m (X i ~ 'E, m _> 0).  The category @ V (as well as any subcategory in modk)  can 

be regarded as a faithful module over itself [1]. 

A triple ( U,f, X) consisting of the spaces U ~ modk and X~ | V and a linear map f :  U ---> X is called a 

representation of V ([1], 4.1; [2] ). The morphism ( U,f, X) ---r ( g ' , f ' ,  X') is a pair (% ~) that consists of a 

linear map q~ : U ~ U'  and a morphism ~ : X ~ X'  of the category (9 V such that (p f" = f { .  Representations 

form the aggregate denoted by Rep V. A vectroid is called finitely represented if Rep V has finitely many inde- 
composable nonisomorphic objects. 

Within the notation of ([1], 4.1), the category Rep V coincides with the category ( @ V) k. In some cases, we 

shall consider the category M k of representations of an arbitrary module M (not necessarily faithful) over an ag- 
gregate (see Appendix at the end of Introduction). 

If dim V = 1, then V is completely determined by the following partial ordering of the set Ob V: X < Y if 

V(X,  Y) ~ O. The category Rep V can be naturally identified with the category of representations of this poset 
( [ 1 ], 4.1 ; [5] ). The criterion of finite representability of posets was obtained in [6]. 

On the other hand, it was proved in ([1], 4.2, 4.3) and ([3], 9.1, 9.4) that the category mod A of representations 
of an arbitrary finite-dimensional algebra A over k coincides with the category of representations of a certain 

vectroid V in the following sense: There exists an injective indecomposable A -module P such that the category 

of all A -modules that do not contain P as a direct summand is epivalent to Rep V. 
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Thus, the theory of representations of vectroids can be regarded as a generalization of the theory of representa- 
tions of posets and the theory of representations of finite-dimensional algebras. 

We define the radical of a vectroid V as the ideal of V generated by the spaces Rad v(X, Y) of unin- 

vertible morphisms from V(X, Y) for all X, Y e V. It is obvious that V(X, Y) = Rad v(X, Y) for X r Y and 

V(X, X ) =  kl x@ Radv~f,X ). 

The set {(n/x), (flXY)} that consists of the bases (n x,  n f . . . . .  nXm(X)) of spaces X ~ V and the bases 

( f xY ,  f xY  . . . .  ) of spaces Rad v(X, Y) is called the basis of the vectroid V. The maximal rank of the linear 
X maps fl xY is called the rank of the basis. The basis (niX, n2X, ... , ndim(X) ) of an object X e V is called tri- 

angular if the family {(n x ) , i  = 1, dim X [ (n/x) s 0 }  is linearly independent for any j e N,  where the bar 

means the transition to the factor space X/XRadJv(X,X). Thebasis {(n/x),(flXY)} of V is called triangular 
nX f Xr if each basis (n/x), X e V, is triangular. A basis is scalarly multiplicative if the element i 1 is equal to 

Xnp r,  9~ e k, for all n/x, fxY,  and it follows from the relations n x f x r  Lnrp and x , x Y  ,nrp, )~ 1 i l = n j  J l  = , 

n x f xr g e k*, that i =j. A scalarly multiplicative basis is called multiplicative if each element i l is equal to 

Y ([1 ], 4.10). Every finitely represented vectroid has a multiplicative basis whose rank does not ex- either 0 or np 
ceed two [4]. 

A vectroid V is called a chain vectroid if, for every X e V, submodules of the module XV(xX ) are linearly 

ordered with respect to the inclusions 

X = X 1 ~ X  2 De ... De XdimX ~ 0. 

In this case, all these submodules are cyclic, X i m x V ( X , X ) ,  and ml X ... .  x = , mdimX is a triangular basis of 

X e V (see Lemma 1 ). 
It is known that if V is a finitely represented vectroid, then V is a chain vectroid and dim V<__ 3 ([1], 4.7 

and 4.8 ). 

For an arbitrary chain vectroid ~ we construct the poset 

s(W) = O {xl, x2 ..... XdimX}, 
X e V  

setting X i < Yj if m x (p = m I for some qo e V(X, Y). 

The number def (q/r) = sup { def (X, Y) I X, Y e Ob V}, where 

def (X, Y) : I { (Xi, Yj) l X i  < Y j } I  - dimRad (X, Y), 

is called the defect of ~ According to [4], we have def V< 1 for all finitely represented vectroids V (see 
Sec. 2). 

If def V= 0, then V has a multiplicative basis of rank one and the category Rep V coincides with the cat- 

egory of representations of a weakly completed poset S(q/)  (see Sec. 1). The criterion of finite representability of 
weakly completed posets and the classification of their indecomposable representations (in the case of finite repre- 
sentability) are given in [9] (see also [10]). 

Let def V= 1 and dim V =  2. In this case, representations of vectroids V are identified with representations 

of a certain poset S ( V )  with additional structure (the structure of a biinvolutive poset). In this case, V is finitely 

represented if and only if a certain poset St (S ( V ) )  constructed for a biinvolutive poset S ([ 1], 5.8) is finitely rep- 
resented. This criterion was formulated in [1] and proved in [7, 8]. 
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Thus, the problem of finite representability remains open only for three-dimensional (chain) vectroids with 
defect one. 

In Sec. 1, we associate every chain vectroid V with a completed biordered set S (V) .  In Sec. 2, we show that 
a finitely represented vectroid is uniquely determined by its completed biordered set. In Sec. 5, for every chain 

vectroid V with def V_< 1, we construct a poset C(V) ,  which is a generalization of the poset St (S)  ( [1], 5.8). 
In this connection, we introduce elementary and multielementary representations of vectroids. 

Appendix. Modules over Aggregates 

Let M be a category of pairs (A, M), where A is an aggregate and M is a pointwise finite (see[l],  3.1, 2.2, 

and 3.6) right module over A. A morphism from (A, M) to (A', M' )  is a pair (F, ~) ,  where F : A ---~A' is a 

functor, �9 : M --~ F'M" is a morphism of A-modules, and F'M" is a restriction of M'  along F .  

On the basis of the module (A, M) E M, we construct a derivative module Der(A, M) = (RepM, EM). 

Here, Rep M is an aggregate consisting of triples ( V, f,  X) with V e mod k, X ~ A,  and f E rood k(V, M(X)) ; 
morphisms from (V , f ,X)  to (V' , f ' ,X')  are pairs (% {), where r ~ modk(V, V') and { ~ A(X, X'), such 

that f o  M{ = q0 of" (cf. [1], 4.1, where RepM is denoted by Mk); E M ds a module over RepM obtained from 

the module (A, M) by the restriction along the functor T: Rep M---r A, T( V, f ,  X) = X. 

Moreover, Der can be continued up to the functor Der : M---~ M that transforms the morphism (F, O)  : 

(A, M) ~ (A', M ' )  into the morphism 

Der (F, qb) = (G, qJ):  (RepM, EM) --~ (RepM',  E ~ ) ,  

where G(V, f ,  X) = ( V, f o  ~P(X), F (X) ) ,  V(V, f ,  X) = qb(X) (here, ~ ( X ) :  M(X) --> M'(FX)). 

On the basis of an arbitrary vectroid '~, we naturally construct a module M V= (@ '~,Mv) ~ M, where 

@ V is the aggregate of all direct sums of objects from V, and M V is a module over @ ~ M v(X) = X (recall 

that every object X ~ @ V can be regarded as a vector space). The obtained module is faithful (i.e., M V~ :~ 0 if 

0 ~ ~ e W ( z , Z ' ) ) .  
In what follows, we omit the indication of the map M, i.e., we write M(K V') instead of M(MV, MV') ,  

Der V instead of Der (M qr), etc. Note that Rep M V coincides with Rep ~ and the vectroids V and V" are 

isomorphic if and only if the modules M V and M V" are isomorphic. 

Remark 1. Some authors (e.g., Nazarova and Roiter [2]) studied the category of subspaces U V of the ag- 

gregate @ 'k', where V is an arbitrary vectroid. Objects of this category are sub@aces of the spaces X ~ @ 

The set of morphisms Uv(V, W) consists of all (p ~ @ V(X, Y) such that Vq0 c W, where V c X, W c Y. 

Suppose that iRep V c  Rep V is a complete subcategory consisting of representations (V, f ,  X)~ Rep V such that 

f is a monomorphism. The spectroid of the aggregate Rep V contains a full subspeetroid, which is "equal" to the 
spectroid of the aggregate iRep q4', and exactly one more object, namely, (k, 0, 0). It is easy to see that the 

categories U V and iRep Vare equivalent. 

1. Biordered Sets 

Let c~ be a binary relation on a set Z. We define 

AC~(b) = {y~AIy~  AC~(B) = (-1Aa(b) 
b ~ B  
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for b e  Z and A , B c Z .  
We write A a B  if a(zb for all a e A  and b e B .  

For a partial order relation _< on the set Z and for a, b e Z, we write a ~ b if a st b and b st a. 

Denoteby ~ the reflexive closure of a relation (x, i.e., arelation on Z such that zg~z for all z ~ Z, and 

z&y for y ~: z if and only if z (xy. A relation 0~ is called apseudoequivalence if a is antireflexive and & is an 
equivalence. In the present paper, all pseudoequivalences and the corresponding equivalence relations are denoted 

by - and =, respectively. 

A set S is called a biordered set [8] if it is equipped with the partial order relation < and the relation < that 

satisfy the following conditions: 

(a) if a < b, then a < b; 

(b) if a<b<c  or a<b<c,  then a<c. 

Note that the relation < is transitive and antisymmetric but, in general, not reflexive (if < is reflexive, it coincides 

with < ). 

Remark 2. If  Ca t (S ,  _<) is a poset (S, <) considered as a category (see [1], 2.1, Example 5),  then < = 

{ ( YI X) I X < Y} is an ideal in Cat (S, < ) .  Conversely, every ideal in this category determines a biordered set. 

A biordered set with a given equivalence relation = is called a completed biordered set. A completed bi- 

ordered set (S, <, <, =)  is called local@finite if all equivalence classes S=(s), s ~ S, are finite. 

A poset (S, <) with the equivalence relation = is called a weakly completedposet. If S = (S, - ,  <, --) is a 

completed biordered set, then S w = (S, <, =) is a weakly completed poset obtained by weakening the structure on 

S. In some cases, it is convenient to regard a weakly completed poset (S, <, =) as a completed biordered set in 
which the relations < and < coincide. 

Let S be a completed biordered set. We denote the number of elements that are equivalent to a ~ S by d(a) 
and set d(S) = sup { d ( a )  [ a e S}.  We say that a pair (a ,  b) is an edge and write a ~ b if a < b and a "flb. 

By the definition of a biordered set, if a ~ b and a < x < b,  then a ~ x ~ b. Two edges o~" a ~ b and c~'" 

a '  ~ b '  are called equivalent and denoted by o~ = ~" (or o~ - c~' for o~ ~ o~') if a = a '  and b = b'. The num- 

ber of edges equivalent to a ~ b is denoted by ed (a, b). An edge a ~ b is called maximal if x _< a < b < y 

and x ~ y imply that x = a and y = b. An edge a ~ b is called short if there is no x such that a < x < b. A 

pair of equivalent edges (a  ~ b) - ( a '  ~ b ' )  is called short if there is no x - x '  such that a < x < b and a '  < 

x '  < b" (see Example 1, (c) below). 

Let V be a chain vectroid. We introduce the structure of a completed biordered set on the poset s (V)  as 

follows:Let Xi = mX V ( x , x )  and Yj = mI V(Y, Y) e S (V) .  W e s e t  Xi= Y j if X= Y, and Xi <]Y j i f there  

exists a linear map qo e V(X, Y) of rank one such that m/x q0 = my.  

Remark 3. By analogy, we can define a completed biordered set S ( P )  (of cyclic submodules) if V is not a 

chain vectroid. However, it can be not locally finite. Note that a vectroid V is a chain vectroid if and only if the 

module XV(xX ) contains only a finite number of cyclic submodules for any X ~ V. 

Let X=~i~ikm x and Y=Gjkm I be two objects of a vectroid V. We define a linear map eXg: X--> Y by 

setting mXeXr=m I and mXeXl'=O for I~ i .  

Example 1. (a) Consider the vectroid V with two objects 
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3 
X : (9 km X 

i=1 
and y = 

3 
(9 km Y 
i=1 

and the following spaces of morphisms: 

V l ( x , x )  = k lx  �9 (9 xx i<jkeij , q(Y,Y) = klyO (9. ke~ Y, 
z<j  

qJl(X,Y) : k(e XY + e f t ) @  k(e XY + e • )  @ i%ke XY, 

q(Y,X)= (9. ke~ x. 
t < j  

Obviously, dim ( ' /71)= 3, def(q/1) = 1, and 

x~o--- - -> o ~ 

s ( ~ )  : x 2 o  ....-:--> o Y2 

x3o- - - -~ ,  o y 3 

(a-+b meansthat a<~b and there is no x e S  suchthat a<~x<b or a<x,~b). 

(b) Consider the vectroid q72 that differs from '/71 only by the following space of morphisms: 

ClJ2 ( X' Y) = k ( eXY + eXY + eXY ) (9 t< l .(9. ke ijXY " 

Clearly, dim ( % ) =  3, def(q/2) = 2, and S ( % ) =  S('//1 ). 

(c) We construct the vectroid V 3 by completing V 1 with the objects Z = km z (9 krnf and T= km~ <9 kmf 
with the following spaces of morphisms: 

q/3(Z,Z) = k l z @  ke zz,  V3(T,T ) = kiT@ ke~2 T, 

V3(X,Z ) = k(e Xz + eX22z), q]3(Z,Y)= k(eZll Y + eZf), 

%(x,r) :  (eff + q?), k(e  + 

% ( z , x )  = % ( r , z ) =  % ( r , x ) =  % ( r , r ) =  % ( r , x ) =  o. 

Then 
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Z1 
o 

0 

(3 
r2 

The edges X I ~ Y1 and X 3 ~ Y3 in the biordered set s (V3)  are long, but they form a short pair. 

4 

Example 2. Consider the vectroid W with one object X = @ kmXi and the following space of morphisms: 
i=I 

W ( X , X ) =  k l  x @ k(e  xX +e~4 X) @ ke~3 x @ ( j g + l k e X X ) "  

Then dim W =  4, d e f W  = 2, and 

S ( W )  = 0 '~ 0 > 0 - - ; ~  0 
X 1 x2 x 3 x 4 

Let S be a locally finite completed biordered set. We define the relations _<, <, and = on the set S x I~t in 

the following way: 

(i) ( s , i )  <_ ( t , j )  if  s_<t;  

(ii) ( s , i )  < ( t , j )  if s < t ;  

(iii) (s , i)  = (t , j)  if s =  t and i=j. 

Note that < is a quasiorder ( [13], II. 1), < defines an ideal in the category Cat (S x I~I, _<) associated with 

the quasiordered set (S x N ,  <) ,  and --- is the equivalence relation on S x N .  

A function q~ : S ~ N 0 ( N 0 = 1N (.J 0 ) is called the dimension of q~ on the set S if q0 (s) = q~(t) for 

s=t .  Denote S~ = { ( s , i ) e  S x N I  i<qo(s )} .  

A matrix M (which may have no columns or rows) is called a representation of S of dimension cp if its 

columns M i are enumerated by the elements of the set Se, i.e., the bijection n : { 1 . . . .  , I } -~ Se is given, where l 

is the number of columns of M.  The columns M i and Mj of the representation M are called comparable 
(equivalenO if n(i) and n ( j )  are comparable with respect to < (are equivalent with respect to -- ) in S x N. 
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The representation M of dimension q) is called faithful if qo (s) ;e 0 for every s ~ S andfaithfuI at a point 

s ~  S if q0(s):~0. 

Let V be a chain vectroid and let (U, f ,  X) ~ Rep ~ Then the choice of a triangular basis of V and a basis 

of the space U associates ( U,f, X) with a representation of the completed biordered set S ( P ) .  However, gen- 

erally speaking, neither the vectroid V nor the category Rep V is determined by S(q / ) .  Thus, in Examples l(a) 

and l(b), we have S( ~ ) -~ S(V2) while V 1 4~ V2; moreover, V 1 is finitely represented while V 2 is not fi- 

nitely represented. However, if d e f ( V )  _< 1, then the category Rep V (but not V itself!) is determined by the 

completed biordered set S ( V )  in all known cases. In Sec. 2, we show that a finitely represented vectroid can be 

uniquely restored on the basis of S ( V ) .  

2. Vectroids of  Defect _< 1 

L e m m a  1. Let V be a chain vectroid and let X ~ V. Then 

(a) all nonzero submodules of the module X V(xX ) are cyclic, Le., 

X =  X 1 ~X2D...DXd(x)~O,, , X i =  m f V ( x , x ) ;  

(b) the generators taxi, .... md(x)X form a k-basisofthespace X; 

(c) they can be chosen so that, for some (Px ~ Rad v(X, X), 

and q)d = 0 .  

Proof 

(a) If X 1 

and N 1 C N 2 - 

ml  Ox, x -- mf U) -1 . . . .  , md(X) 

is not cyclic, then it can be represented as the sum of two submodules N 1 + N 2 such that N 1 2) N 2 

(b) Since the field k is algebraically closed and the algebra V(X,  x )  is local, the simple module X i/Xi+ I 

( 1 <_ i < d (X) )  is isomorphic to k. 

(c) Wecan take  m x ~ X I \ X  2 and (px ~ R a d v ( X , X ) \ ( P 1 U . . . ( J P d ( x ) _ I ) ,  where Pi = { V  ~ V ( X , X ) ]  

Xilg cXi+2} are proper subspaces of the space Radv(X,  X) and Xd(x)+l = O. 

Denote by r (,I7) the least possible rank of a basis of a vectroid '/7. 

L e m m a  2. Let V be a chain vectroid. Then 

(a) d e f ( V )  _>0; furthermore, def (V)  = 0  if and only if r(q/~)_< 1 ; 

(b) de f (V)_>  r ( V ) - l .  
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Proof. Let X, Y � 9  q?. We choose bases rnl x . . . .  x m Y .. . .  r ,rod(X) and ,md(X) in X and Y as i n L e m m a l .  

Since Rad q/(X, Y) is closed with respect to the multiplication by r from the left and by r y from the fight, the 

space of d(X)  x d( Y) matrices 

xY R a d v ( X ,  X)}  R ( X ' Y )  = {((X~/)l Z O~[ieij �9 

[which defines Rad v(X ,  I1)] is stable under shifts rightward and upward. Therefore, it has the following staircase 

form (cf. [1], 4.7): 

[ L 
A = - - - - - - i  . . . . . . . .  s1 

0 - ~ s2 

I. Let us prove that I { (Xi, I~) 1Xi < Yj}] is equal to the number of elements of A from R ( X ,  Y) located on 

or above the stairs. 
Indeed, the set of nodes 

K x r  = { ( s l , t a ) , . . . , ( s ~ , t ~ ) }  

( l  --<S 1 < . . .  < s n < d ( X ) ,  1 <_t 1 < ... < t n < d ( Y ) )  

consists of all minimal elements of the set 

N x y =  { ( s , t )  I 3 ( a i j ) e  TL(X, Y): COst*O} 

with respect to the following partial-ordering relation: ( i , j )  < (i ' , j ' )  if i > i '  and j _<j'. It is clear that N x y coin- 

cides with the set of  indexing pairs of elements of  the matrix A located on or above the stairs, i.e., 

Nxy = { ( i , J ) l  3 l: 1 <i<s  I, t t < j < d ( Y ) } .  

Let (1, r ) � 9  Nxy .  Wese lec t  q~ = X aiJ eXY e Rad(X,  Y) such that r r  and choose f ~  k[x] such 

that ~pf(~y) ~ ,  xr  r Xz < Yr" Hence, = ~ijeij , where ~tj = 0  for j e t ,  and ~ I r r  Then m~cpf(cpr ) = m r , 

there exists abijection Nxy--+ { (X i, Yj) I X i < Yj} and d e f ( X ,  Y) = [ Nxrl - d i m R a d ( X ,  Y). 

II. Let a a = (a(a) ) ,  1 _< c~ < t, be a k-basis of the matrix space R(X ,  Y). Then there exists a collection of 

indices J = { ( i l , j t )  . . . . .  ( i t ,Jt)}  such that the matrices B a =  (b~?)), 1 _< r t, are linearly independent. 

Here, b~ -~) = a (a) for ( i , j ) � 9  J, and b(ij a) = 0 for ( i , j )~  J. By using transformations o f the  form Aa--->a a + 

aA~ ( a r  a � 9  k), w e c a n p a s s  from a 1, . . . .  A t t o a n e w  k-basis C a = (c (a)) ,  1 < a < t , _  _ such that l'igJ~(a) = 0  

for OC ~ [3 and ci~j~(a) ~ 0. Since every matrix C a has the same staircase form as A, and C a has at most t -  1 

zero elements among those located above the stairs, we conclude that C a has at most [ N x rl - t + 1 nonzero ele- 

ments. Therefore, r ank(Ca)  < [ N x i , [ - t +  1, r (X,  I1) -< I N x r [ - d i m  !P~(X, Y) + 1, and de f (X ,  Y) >__ r (X,  Y) - 1, 

which proves (b). 
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III. Let us prove (a). By virtue of (b) and step I of the proof, it is sufficient to show that r (q/r) = 1 yields 

def (q/) = 0. 

Let A = (a i j )~  -q((X, Y) and let rank (A) = 1. Since 9~(X, Y) is stable under shifts rightward and upward, 

it contains matrix units Eij for all (i,j)>_ (s, t), where (s, t) is theminimal element of the set { (i ,J)] aij ~ 0 } 

with respect to the partial-ordering relation defined in step I. Therefore, if r(X, Y) = 1, then ~ (X ,  Y) has a basis 

including matrix units and, by virtue of step I, def(X, Y) = 0. Lemma 2 is proved. 

Proposition 1. A chain vectroid whose defect does not exceed one has a scalarly multiplicative basis whose 
rank does not exceed two. 

Proof We use the notation from the proof of Lemma 2. 

I. Assume that X, Y s ft. Let us show that there exist c xY x:e . . . . .  c n ~ k (possibly, all equal to zero) such 

that 

[ cXYo~ = 0 } .  Rad~(X,Y) = 2 ~ EXY cXr~ +.. .+ n s~t n 
(i , j)  ~ NXy 

Indeed, by virtue of the condition def (q/) < 1, the codimension of the space ~ (X ,  Y) in the space of all 
staircase matrices of the form A does not exceed one. Therefore, there exist Cij E k such that 

9~(X,Y) = { ~ (z ij E ij I ~ c ij a ij = O } , 
(i,j) ~ Nxy (i,j) E NXy 

where Eij are matrix units. 

Let Cir ~ 0 for some (i, r) ~ !7(x r Then ~(X,  Y) contains Bij =Eij+TijElrfOr all ( i , j )~  Nxr \ ( i ,  r), 

where 7ij = -c i jc t - / .  We fix (s, t) e 9(xy such that (s, t) < (l ,  r) and set ( l i ,  r i )  = (S, t) + i [ ( / ,  r)  - (s ,  t ) ] .  

Let m be such that (l  m, r m ) e  Nxy but (lm+ 1, rm+l) ~ NXy. Let F 1 and F 2 be the matrices of the maps q0 x 

and q0y, respectively (see Lemma 1). Then 5~(X, Y) contains the matrices 

Bst = Eloro + Y s t E l l r l ,  F(-I  BstF~ -t = Ellrl + "~stEl2r2 , 

F?(S- l )Bst  F2(r- t)  = Elzr2 + 7stEl3r3 , ... , Elmr m. 

Hence, it contains the matrix El l r l  = Elr ,  which contradicts the assumption that Cir 50.  

Therefore, we have Cij = 0 for all ( i , j )  e KxY, which was to be proved. 

II. A scalarly multiplicative basis of the vectroid '/2 can be obtained by supplementing the vectors m x with 

f x Y  morphisms l of the following form: 

XY (a) eij for ( i , j )~  N x y \ K x y a n d f o r  ( i , j )=(Sr,  tr)~ KXy suchthat cXY=0;  

/Cr(i)) e XY for all 2 < i < q, where e sr(1) tr(1) Sr(i)tr(i) -- 
r(1)_< ... <r(q) .  

{ r ( 1 )  . . . . .  r (q)}  -- { r  I cXY~0}  and 
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L e m m a  3. Let rd be a vectroid o f  defect < 1. The completed biordered set S ( q / )  satisfies the fol lowing 

conditions." 

I. The equivalence class of  every element is linearly ordered. 

II. I f  a 1 < a 2  < --- < an and a 1 J a n ,  then there exist a 1 - a  I . . . .  , a n - a  n such that a 1 < 

' ' and a] ~ a n a 2 < ... < a n 

III. I f  ed (a, b) _> 3, then the edge a ~ b is maximal. 

IV. a < a if  and only i f  d ( a )  = 1. 

Proo f  Let q2 be a chain vectroid whose defect does not exceed one and let {(m/X), ( f x g ) }  be its scalarly 

multiplicative basis of rank two constructed in the proof of Proposition 1. 

Condition I follows from the equality m X q0 x = mx+l [ i < dim (X) ]. 

It is sufficient to verify condition II for n = 2 and n = 3. For n = 2, the proof is obvious. Indeed, let 
X , .  X Y  y f lxY X Y  ~jY, i r i', a ,  [5 E X i ~ Yj. Then m i f t  = a m  for some = o~eij + Be , j c j ;  k*, i.e., X i, ~ X j , .  Let us 

prove condition 1I for n = 3. Assume that 2:/< Yj < Z r and X i ~ Z  r. Then there exist f l  xY and f y z  such that 

m x  f l x g =  a m y  and m y f ~ z =  [ 3 m Z , o t r  Since X i ~ Z  r, wehave rank ( f lXr fp  r z )  r 1. Consequently, 

= = 5 r z  f ixY ote~Y + TeXY,  f y z  fJe~r Z + ejr, ,  T:~0~:5 ,  and X i , < Y j , < Z r , .  If  X i , < Z r , ,  then fix, r e  

f x r f Y Z  75e~r z, has rank one and maps m x onto al3m z,  which contradicts the assumption Rad(X,Z) ,  and 1 p - 

that X i ~ Z r. Therefore, X i, ~ Z r , .  

Let us prove condition III. Let X i ~ Yj, X i, ~ Yj,, and Xi,, ~ Yj,, be different edges. Assume, e.g., that 

X i ~ Yj is not maximal from the right, i.e., there exists Z r > Yj such that X i ~ Z r. Then X i ~ Yj ~ Z r and there is 

abasic morphism fYZl = ~ + rf~eYZtr" ' o t r 1 6 2  ~, j r  W e m a y  take j ' r  t. According to step I of the proof 

of Proposition 1, there exists V = 7 exY  + 8 e ~  g' e Radv(X,  Y), V r 0 r 5. The existence of the morphism 

g f r z  ocYeiXr z contradicts X i ~ Z .  I = 

Condition IV follows from the fact that the ring q / (x ,  X) is local: If  miXf = mi x , then f =  1 and rank ( f )  = 

dim X. 

L e m m a  4. The fol lowing property is a consequence o f  conditions I-III:  I f  (a  ~ b)  - (a" ~ b ' ) ,  then 

either a < a" and b < b " or a > a" and b > b ". 

Proof. Let a = a ' .  By condition II, there exists an edge ( a "  ~ b") - (a ~ b) such that a"  r a and 
b" ~ b. Hence, ed (a ,  b) > 3 and the edges a ~ b and a ~ b" are maximal by virtue of condition III. However, 
b = b', a ~ b'. By condition I, b < b'  or b > b', and a ~ b or a ~ b" is not maximal. Therefore, a r a" and, 
similarly, b r b'. If, for example, a < a" and b > b', then, since a < a '  < b" < b and a ~ b, we get a ~ b ' .  

However, we have just proved that such an edge does not exist. Therefore, we have either a < a' and b <b '  or 

a > a "  and b > b ' .  

L e m m a  5. 

(a) Let char (k) ;e 2 and let V be a chain vectroid whose defect does not exceed one. I f  q/ has a 

multiplicative basis o f  rank at most two, then S ( V )  satisfies the following condition: 
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V. I f  (0~ 1, 0~2), ( a 2 ,  c~3) . . . . .  (0~ t, c~t+l) are long pairs of edges and t is even, then ( C~l, c~t+l) 

is a short pair of edges. 

(b) On the basis of a locally finite completed biordered set S satisfying conditions l-V, one can construct 

a chain vectroid V with defect < 1 that has a multiplicative basis and for which S ( V )  ~- S. 

Proof. (a) Assume that V is a chain vectroid whose defect does not exceed one and S ( V )  contains long 

pairs ofedges ( a  1, 0~2), (c~ 2, (x3) . . . . .  (c~ t, o~t+l), (c~ 1 , o~t+~), where a t :  X i ~  YJl ( 1 <-l<_t+ l ) .  Since 

(c~ 1 , c%) is a long pair, we have X i ~  Z p ~  Yj~ (l  = 1, 2) for some Z. According to condition III, ed (X, Z) = 

ed (Z, Y) = 2. Assume that V has a multiplicative basis whose rank does not exceed two. Then eilpiXZ + eXZz2p2 

ZY ZY = eXY and eplj~ + ep2J2 are basic morphisms and e l + e 2 ~  V(X,Y),  where e I iljl ( l _ < l _ < t + l ) .  By analogy, 

e 2 + e  3 . . . . ,  e t +e t+l ,  e l + e t + l ~  V(X, Y). Foreven t and char(k)~2,  weget e I = e X-YqJl ~ V(X, Y), which 

contradicts Xil ~ Xjl. 

(b) Assume that S is a locally finite completed biordered set satisfying conditions I V .  Let us construct a 

vectroid V =  Vect (S)  whose objects are the vector spaces X = kxl@ ... @kxa(x), where {x 1 . . . .  , x d ( x ) } c  S 
XY are equivalence classes and x l < x 2 < . . . < X e ( x ) .  Thespace Radv(X,Y ) is generated by linear maps eij forall 

x i <yj  andby all maps from acertain set L(X ,Y )  c {eJ + e  ,l(xi ~ y j ) -  (x i, ~ y j , )} .  This set contains 

xy eX, Y for all long pairs (x i ~ y j ,  x i, ~ y j , )  and is maximal with respect to the following property: The eij + 

linear span of L(X ,  Y) contains no maps of the form e/j x.~" . In order to uniquely choose L(X,  Y), we impose the 

following condition: If ( x i ~ Y j ,  X i ,~Y j ,  ) and ( X s ~ Y t ,  X s , ~ y / ~  i <i', s < s ' ,  are two short pairs and 

ei jxr + e xY, ~ L ( X , X ) ,  e xr  + eX~ ~ L ( X , X ) ,  theneither i <s or i=s ,  i" <s'. Note tha twecons t ruc ta  vec- 

troid with fixed multiplicative basis. 

Let us prove that V is well defined, i.e., that f g  ~ Radv(X, Y) for all f ~  Radv(X, Y) and g ~ Radv(Y, Z). 
XY We can assume that f and g are generating maps [i.e., f =  e xY, x i myj, or f ~  L ( X , Y ) ] .  Let f =  ei) + . . . .  

YZ XZ 
g = ej l  + . . .  (hence, x i < Y j < Z l ) .  I f  x i mZl ,  then eli ~ Radv(X,Z  ) and f g ~  R a d v ( X , Z  ). N o w  assume  

that x i ~ z l . Then x i = y j = z i and, according to condition II, there exist other x i, ~ z t, , x i, ~ y j,  ~ Z l,. By 

x~" .x,Y = e~Z + e yz virtue of condition III, ed (x i, y j ) =  ed (y j ,  zl)  = 2. Therefore, f = eij + ei j ,  and g j ' l "  Since 
XZ (x i ~ z  I, x i, ~ z l ,  ) is a long pair of edges, we get f g  = ell + exl z ~ Radv(X, Z) by the definition of L(X,  Z). 

Let us investigate the form of Rad v(X ,  Y). Let K x Y =  { (s l, t 1) . . . . .  (s n, tn)} be the set of minimal ele- 

ments of the set Nxl,= { ( i , j ) l x  i <yj}. If ( i , j ) ~  Nxy  and ( i , j ) <  ( i ; j ' ) ,  then xi,<_xi<Yj<_yj,. Hence, 

( i ' , j ' )  ~ Nxy and Nxy has the form described in step I of the proof of Lemma 2. By Lemma 4, if x i ~ y j, then 

x i, myj, and (i,j) ~ KxY.  Since L(X,  Y) is maximal, the space Rad v(X,  Y) has the form described in step I of 

the proof of Proposition 1, and def (X, Y) _< 1. Lemma 5 is proved. 

The category Rep (q/) of representations of the vectroid V = Vect (S) constructed in the proof of assertion 

(b) of Lemma 5 is called the category Rep (S) of representations of a locally finite completed biordered set S 
satisfying conditions I V .  

Remark4. If V is a chain vectroid such that r ( V )  = 2 and def(q / )  > I, we can define an equivalence 

relation =ed on the set of edges of s (V) .  For this purpose, we set (X i ~ Yj) =ea (Xi' ~ Yj') if and only if there 

exists a morphism { ~ V(X,  Y) such that 
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Xi{ c Yj, (X iRadv(x ,x ) ){  c YiRadv(gr) ,  

Xi, ~ c Yj,, (Xi, Radv(x ,x ) ){  c Yj, Radv(1;y), 

and there is no ~ ~ V(X, Y) such that m/x ; = m~, m/x, ~ = 0. On the basis of the completed biordered set S 

with given equivalence relation =ed on edges, we can similarly define a vectroid Vec t (S ,  = e d )  such that 

S(Vect  (S, =ed)) = (S, -ed)" Note that if def V< 1, then the equivalence relation =ed coincides with the equi- 
valence relation for edges introduced in Sec. 1. 

Lemma 6. If  a vectroid V is finitely represented, then def V< 1 and the completed biordered set S ( V )  
satisfies conditions I -V  and the following one: 

VI. d ( a ) < 3  forall a � 9  s ( V ) .  

Proof. Condition VI is satisfied because V is a chain vectroid and dim V< 3. Let us prove that def V< 1. 

According to Lemma 1 in [4], if dim X = 2, then 

(i) V ( x , X ) = k l x  @ ke Xx, 

and if dim X = 3, then 

(ii) V ( X , X )  = k l  x @ ke xx  (9 ke xx  @ ke xx  

or 

= )~e XX k*. (iii) V ( X , X )  k l x  @ k(  exx  + 23 ) @ keXX, L � 9  

It is clear that clef(X, X) = 0 in cases (i) and (ii) and def (X, X) = 1 in case (iii). 

Let X, Y �9 V and let X ~: Y. According to Lemma 5 in [4] (this also follows from the proof of Lemma 2), the 
X Y  space V(X, Y) admits a basis consisting oflinearmaps ofthe form e xY and e xY + CZerl ( tz ~: O, i ~ r, and 

j ~: l ). Moreover, it contains at most two morphisms of the second form, and if there are two such morphisms, then 

they have the form e xY + ~,eXf, e Xl" + geXf ,  )~ ,g �9  k*. Therefore, ee l (X,  Y ) =  1 and de fV<  1. By virtue 

of Lemma 2, S ( V )  satisfies conditions I-IV. Condition V is satisfied because the equivalence class containing 

more than two edges has the following form: {x  i ~yj: i = 1 ,2 ,  3 }. According to Proposition 1 in [4], it contains 

a short pair of edges. 

Proposition 2. The map V ~ S(q/)  establishes a bijection between the isoclasses of finitely represented 
vectroids and the isoclasses of finitely represented locally finite completed biordered sets satisfying conditions 
I-VI. 

Proof. Let M 1 be the class of all finitely represented vectroids and let M 2 be the class of all finitely repre- 

sented locally finite completed biordered sets satisfying conditions I-VI. By virtue of Lemma 6, i f  V � 9  M 1 , then 

S ( V )  �9 M a . In the proof of Lemma 5, we have constructed, for every S �9 M 2, a vectroid Vect (S)  �9 M 1 such 

that S(Vect (S ) )  --- S. It remains to prove that Vect ( S ( V ) )  -~ V for all V � 9  M 1 . 
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Let V~ M 1 . Every space Rad v(X, Y) has the form described in step I of the proof of Proposition 1, where 

(s 1, t l ) . . . . .  (s n, t,7) are minimal elements of the set Xx 11 = { (i, j )[  X i < Yj, X i , Yj ~ S ( V )  }. By analogy with 

the proof of Lemma 5, S ( V )  defines the set of linear maps L(X, Y). According to Propositions 1 and 2 in [4], the 

bases (mx ..... m~(x) ) of the spaces X s  V can be chosen so that L(X, Y ) c  Radq/(X, Y), and m/x together 

x~" (X i <yj) and morphisms from L(X, Y) forms a multiplicative basis of the vectroid V. Thus, we get with e ij 

Vect ( S ( V ) )  = q/. 

Remark 5. Two vectroids V and V'  are called locally isomorphic if there exists a bijection f :  Ob V---~ 

Ob V' and, for every pair of objects X, Ys V (including X = Y), there exist nondegenerate linear maps ~p : 

X---~f(X) and ~g: Y--~f(Y) such that V(X, Y)~ = (p V ' ( f ( X ) , f ( Y ) ) .  Let us prove the following assertion: 

If finitely represented vectroids V and V" are locally isomorphic, then they are isomorphic. 
It is sufficient to show that the equality V(X, Y) ~ = cp V ' (Z (X) , f (Y ) )  implies that K x r =  Kf(x)f()" and 

{r ] c rxy ~ 0 } = { r I Cr~f(X)f(Y) :~ 0} for all X, Y s V (because, in this case, S ( V ) )  -- S ( V ' )  and we can 

use Proposition 2). 

For dimX = 2, the statement is obvious. Let d imX= 3 and let X= Y. It follows from the proof of Lemma 6 

that V(X,X)  hastheform k lx@ k(e  xx  + eXX) @ ke~3 x or k t x @ k e  xx @ ke xx @ ke~3 x. Sincethemap 

(~ ~--~q0-1c~gr defines an isomorphism of the spaces V(X,X)  and V ' ( f ( X ) , f ( X ) ) ,  we can conclude that 

V(x, x)  and V ' ( f ( X ) , f ( X ) )  have the same dimension and, hence, the same form. 

Let X-~ Y. We can write the following equality in the matrix form: VW = ~ V; where V = 9~v(X, Y), 

V'= R v , ( f ( X ) , f ( Y ) ) ,  and W and q? are the matrices of the maps gr and % respectively. Since V =  SVR 
and V' = S'V'R" for arbitrary upper triangular matrices S, R, S; and R" with unit diagonal, we can replace the 

matrices u? and �9 by R ~t'R '-1 and S - I ~ s  with exactly one nonzero element in each column and each row 

(i.e., by permutation matrices). However, it is impossible to pass from any staircase form of Rv(X,  Y) to another 

one by permutations. Remark 5 is proved. 

3. S-Graphs 

Let S denote a completed biordered set. A collection ( B, F, - ,  - ,  r B) is called an S-graph if the following 

conditions are satisfied: 

(i) B is a finite set (of  vertices of the S-graph); 

(ii) F c B is a subset (ofnondegenerate vertices); 

(iii) - is a pseudoequivalence relation on B; 

(iv) - i s  a symmetric binary relation on F ; 

(v) q)B: B--->S, 

and, moreover, 

(vi) if x - y  belongsto F, then ~PB(X) ~ q)B(Y); ]F-(x)] < 1 for any XE F;  

(vii) if Xl--X 2 (in B), then q~B(xl)-(PB(X2) (in S);  (PB(B=(x))=S=(q)B(X)) forany x~  B. 
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The set of vertices of the S-graph (B,  F , - , - ,  q0B) can be decomposed into nonintersecting subsets B=(x), 

x ~  B. We call themnodes  of the S-graph. The node B=(x) is called the node o f  the vertex x or the node that 

belongs to the equivalence class S = ( ~p B( X ) ) . 

The nodes of the S-graph B form a graph K ( B )  (nonoriented and, possibly, possessing loops and multiple 

edges), in which the edges between two nodes X, Y s  K ( B )  are the pairs {x, y}, where x ~ X, y ~ Y, and x - y .  

The S-graph B is called connected if the graph K ( B )  is connected. The S-graph B is called nondegen- 

erate if F A B=(x) ~ O for all x e B. 
Morphisms of S-graphs are defined in a natural way. In particular, one can speak about isomorphic S-graphs 

and S-subgraphs. Denote by 6"(S) the set of isoclasses of connected S-graphs. 

Remark  6. The definition of an S-graph immediately implies that (PBIB=(x) is a bijection of B=(x) onto 

S=((PB(X)) for every x ~ B. A connected S-graph is always nondegenerate except the case where F = ~ and 

IB/=t = 1. 

Remark  7. We depict nondegenerate vertices of the S-graph by dots with the values of the map q) B written 

above them. Two dots corresponding to vertices x, y e F are joined by a wavy line if x - y and by a straight line 

if x - y .  It follows from Remark 6 that a nondegenerate S-graph can be uniquely reconstructed by the quadruple 

(F, - ,  - r ,  q~BIr), where - r  is the restriction of - to F. 

Remark  8. The definition of an S-graph does not take into account the relation <~ on S, i.e., it is defined by 

S w. In Sec. 5, we define the set C ( S )  of (connected) S-graphs with marked vertex and introduce an order relation 
depending on <~ on this set. 

' ' x '  X n )  n ~ I~I such that B=(x~)  = X, The sequence of vertices of an S-graph (x  o, x 1, x l , . . . ,  Xn_ 1, n-l, , 

B=(xn) = Y, x i - x ~  if i = 1, n - l ,  and x ~ - x i +  1 if i = 0, n - l ,  is called a path in the S-graph B f r o m  

the node X to the node Y. Note that (B=(x~) ,  B : ( x l ) ,  B=(x2) . . . . .  B=(x~)) is a path in K ( B )  from X to 

Y. Conversely, if ( X  = X o, X 1 . . . .  , Xn_ 1 , X n = Y) is a path in K ( B )  from X to Y, then, in the S-graph B, 

there exists a path (x" o, x l, x~ . . . . .  xn_ 1, X'n_ 1, Xn) from X to Y such that B=(x i )  = X i, i = 1,---n. 'By virtue of 

Remark 6, a path in the S-graph B consists of only nondegenerate vertices. 

An S-graph B is called acyclic if the graph K ( B )  is a forest (i.e., contains no cycles). A completed bi- 

ordered set S is called acyclic if every S-graph is acyclic. It obviously follows from the definitions introduced 

that if B is an acyclic S-graph, then 

(i) B is a connected graph if and only if K ( B )  is a tree, 

(ii) if B is a connected graph, then the path in B from X to Y exists and is unique for any nodes X, Y 

K(B). 

Lemma 7. Let S be acyclic, let X ,  Y, Z, T ~ K(  B)  be nodes of  the connected S-graph B such that 

CPB(X ) = ( p B ( Y ) =  ( p B ( Z ) =  r in S ,  let (x '  0 . . . . .  Xn) be a path in B f r o m  X to  Y ,  and let 

(Z'o . . . . .  Zm) be a path in B from Z to T. Then the foUowing relations hold: 

Ca)  B(x'o) = 
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(b) 

Proof (a) Let ~B(x'o) # (PB(Xn). Then 

q~(xl) q~ @(Xl') ~B(X2) (DB(X2) (PB(Xn-1) q) B(Xn-1) 

q~(x6) cp~(xn) 

is an S-graph, which contradicts the assumption that S is acyclic. 

(b) By virtue of (a), we have (PB(Z'o) = (PB(Zm). Therefore, it follows from the relation qoB(z{) ) ~, (PB(x'o) 

that (p B( Zm) ;e (P B( Xn) and 

q) B(Zl ) (PB(Z{) (PB(Z m ) (PB(Xn) (PB(X;) q) B(Xl ) 

is an S-graph, which contradicts the assumption that S is acyclic. 

L e m m a  8. I f  S is acyclic, the S-graph B is connected, and K ( B )  contains at least three vertices, then 
there exists a node X ~ K ( B )  such that the following relations hold: 

(a) (PB(X) ~ (PB( Y) for an arbitrary node Y ~ K ( B ) ,  

(b) X contains at most one nondegenerate vertex. 

Proof (a) Assume that A = (A 1 . . . . .  A m) is the set of all classes from S/= such that there exists a node 

Y ~ K ( B )  with r c A i for a proper i = 1, m.  Let us transform A into an oriented graph. For this purpose, 

we a s s u m e t h a t t h e a r r o w  Ai---)A j exists if there a renodes  Xi, Yi, and Zj in B such that q)B(Xi)cA i, 

cp B(Yi) c A i, q~ ~( Zj ) c A j, and the path from X i to Yi [in K (B)  ] passes through Zj. 

Let us prove that A contains no oriented cycles. Indeed, assume that, after a proper enumeration, it contains 
the cycle 

A 2 ~ A  3 ~ . . . ~  A n-1 

? + 

A 1 -~ A n 

, n _ > l  . 

m 

This means that, for every i = 1, n, there exists a path (s  i [a i Iti, Pi ~i  [ri) in the S-graph B with qo ~(si), 
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(PB(ri)~ A i, (p~(ti) , (pB(Pi)~A i', and t i -Pi  in B; here, a i and b i arepaths in B, the symbol]  denotes 

linking of paths, and  

i' = ~ i + 1 ,  i = l , n - 1 ;  

L 1, i = n .  

By virtue of Lemma 7, (pB(si) = (PB(ri). By the definition of a path, (PB(ti) - (PB(Pi)" Let 

(u i lc i lv i )  = 
( s i l a i l t i )  

(ri I bi I Pi) 

if ( pB( t i )  -~ (PB(Si ' ) ,  

if (pB( t i )  = (PB(Si , ) .  

Here, [) is the path b passed in the opposite direction. Then 

Vn- 1 gn /3n Ul 

Cn_2 ~ . . .  fx, . ,c,~ C2 - -  

bln- 1 73n -2  Un- 2 l) 2 U 2 731 

is an S-graph, which contradicts the assumption that S is acyclic. 

Thus, either A is a disconnected union of points or A contains at least one sink (i.e., a point with no outgoing 
arrows) with an arrow really entering this point. In the first case, the number of nondegenerate vertices of a node is 

not less than the number of edges of K ( B )  originating from this node, and two nodes from this equivalence class in 

S cannot be joined by an edge [in K ( B ) ] .  Therefore, as the required node X, one can take any node such that at 

least two edges originate from it. 

In the second case, we assume that B e A is a sink, A e A, and A --~ B. Then, in K(B) ,  there exists a path 

of the form I11 - - " - - -  X - - . . .  - -  Y2, where Y1 and I12 belong to A, X belongs to B, and X contains at 

least two vertices. If X" ~ K ( B )  and X" ;~ X is a node that also belongs to B, then it cannot be joined with X by 

a straight line in K ( B )  and there is a node between X' and X that does not belong to B. Hence, B is not a sink. 

Thus, X is the required node. 

Proposition 3. A completed biordered set S is finite and acyclic if and only if [ C(S) ] < ~.  

Proof. The necessity is obvious. To prove the proposition it suffices to show that, for a finite acyclic 

biordered set S, we have sup {[ F ] ] ( B, F, - ,  - ,  qo B) ~ C(S) } < o o .  For this purpose, we define functions ~B" 

B--~ S/= and ~B = can o q~B and note the following: By virtue of Lemma 7, for any path (x~, x 1 . . . . .  xn) in 

the acyclic S-graph B and for any i = 1,--~, there exists at most one j = 1,---~ such that "~B(Xi) = ~B(Xj) .  

Therefore, the length of a path that joins two arbitrary vertices of K ( B )  does not exceed 2 I S/= ]. Since K ( B )  

is a tree, [ F / -  [ does not exceed the number of vertices of a complete tree of height 2 [ S / = [ on the set S / =. This 

immediately implies that the value ] F ] is bounded. 
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4. Elementary Representations 

For a chain vectroid ~ we set S = S ( V )  and C(V)  = C(S(V) ) .  A vectroid V is called quasifinite if 

C(V)  is a finite set and def V_< 1. Below, we show that finitely represented vectroids are quasifinite. 

We fix triangular bases (m x) of objects X of the vectroid V and identify s e S ( V )  with the corresponding 

vector. 

A representation M of a locally finite completed biordered set S is called elementary if the following condi- 
tions are satisfied: 

(i) the elements of the matrix M are equal to either 0 or 1; 

(ii) every row of M contains at most two unit entries; each of its columns contains at most one unit entry; 

(iii) if there are two nonzero elements in a row of M, they belong to incomparable columns. 

In particular, by setting S = S ( V ) ,  we arrive at the notion of elementary representation of  the vectroid V [in 

the basis (m/x)l. 

For every matrix of elementary representation nondegenerate with respect to rows, we construct an S ( V)-  
graph as follows: 

(i) vertices of the graph are considered as columns of the matrix M of the given representation; 

(ii) nonzero columns of the matrix M are regarded as nondegenerate vertices; 

(iii) above each vertex, we write the element of S ( V )  related to the corresponding column; 

(iv) we join two vertices by a straight line if these columns have a unit entry in a common row; 

(v) we join two vertices by a wavy line if these columns are equivalent. 

Conversely, an arbitrary S-graph B ~ c ( V )  is associated with a nondegenerate elementary representation 

R ( B )  ~ Rep V. For a node X ~ K(B) ,  we denote by Vx a uniquely defined object of the vectroid V such that 

COB(X) c V x. Let 

Vx, 
X ~ K(B) 

let U B be a subspace of X B spanned either on the vectors COB(X) if x E F and F - (x )  = Q or on the vectors 

COB(x) + COB(Y) ~ VB=(x) @ V~(y) if x -  y in F, and let i~ U B--~ X B be the imbedding of subspaces. Thus, we 

obtain the representation R (B)  = ( U B, i B, XB)' which has the matrix required in the definition of elementary rep- 

resentations in the basis S ( V )  of the vectroid V and in the basis U B formed of the generating vectors. Further- 

more, R ( B )  ~ i Rep Vbecause i B is an injection. In what follows, we identify a vertex x of the S-graph B and 

the vector cOB(x ) ~ V~=(x ). Note that {x [x ~ B} is a basis of the space X B. 

Note that R establishes a bijection between the set of classes of isomorphisms of S ( V)-graphs and the set of 

matrices of elementary representations nondegenerate with respect to the rows of the vectroid V in the given basis 

S( V); here, the matrices are considered up to permutations of rows and columns. 
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In view of the structure of the bijection R, we can assume that every node B=(x) of the S-graph B consists 

of elements of the set S x N of the form (s, i), where s ~ S=(CPB(X)) and i is the number of the corresponding 

columns in bands determined by elements s of a certain matrix of the representation R(B).  

Example 3. Generally speaking, an elementary representation in one basis can be equivalent to a nonelemen- 

(; 0 0 01 tary representation in another basis. Let W be the vectroid defined in Example 2 and let 0 1 0 be 

the matrix of a representation of q42.. In this case, the representation is elementary in the basis m x , m x , m x , m4 x . 

However, in the basis ~1 x = ml x - m 2  x ,  ~2 x = reX, ~ f  = m x ,  g4 x = m4 x, it is determined by the matrix 

/ 1 1 0 0  0 1 00 1 which is n~ equivalent t~ an elementary ~ ' 

Let ~ and ~ betwochain vectroids, S 1 = S (Wl )  , S 2 = S ( % ) ,  and let f be an injective map S 1 --~ S 2 

(which does not take into account structures on S 1 and $2). Assume that f is induced by a morphism (F ,  qS) 

M(q, 
For a nondegenerate S 1 -graph ( B, F, - ,  - ,  q0 B), we define a nondegenerate S a-graph ( D, & - ' ,  - ' ,  q0 D) as 

follows: A = F and, for x, y ~ A, 

(i) x - ' y  if x - y  (in F) and fo(PB(X) ~ f~ (in $2) ; 

(ii) x - ' y  if x - y  (in F) andfocPB(X ) - f~  (in $2); 

(iii) q0 D] a = f ~ q) BIr. 

Then we reconstruct D by using Remark 6. Obviously, f , ( B )  is a nondegenerate S2-graph. 

Let f be such that, for s, t ~ S 1, it follows from s ~ t that f ( s )  ~ f ( t ) .  Then, clearly, Der (F, og)(R(B))  = 

R ( f , ( B ) ) .  

Example 4. Let B be a nondegenerate S-graph. 

(a) Let V be a vectroid, S = S(q/) ,  let S w = (S, <, =) be a weakly completed poset (Sec. 1), and let 

w s" S --~S w be an identity map of supporting sets. By using S w, we construct a vectroid V w (whose 

rank does not exceed one) and obtain amorphism Wc M(  52, q/W) from w s Then R(w~,(B)) = 

D e r ( W ) ( R ( B ) ) .  

%) For a weakly completed poset (S, <, -~) and Q c S, we construct S Q = (S,  <-, = ' ) ,  let d o : S ---)S Q 

be an identity map and assume that x - ' y  if and only if x - y  and x, y ~ Q. The operation of passing 

from S to S Q with the help of d Q (or a morphism of the corresponding vectroids dO : V---~ V Q) is 
called a wave break for Q. The following equality is true: 

R(dQ(B)) = Der (DQ) (R(B) ) .  

Below, we obtain criteria for quasifinite vectroids to be indecomposable and for elementary representations to 

be equivalent. First, note that if an S-graph B is disconnected, then the representation R (B) is decomposable. 

Indeed, let B = B 1 II B 2. In this case, R ( B )  = R(B1) @ R(B2),  which directly follows from the construction. 
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Proposition 4. Suppose thata vectroid V is acyclie, B and D are S-graphs, and the S-graph B is 
connected. Then the following statements are true: 

(a) If R (B) = R (D),  then B is isomorphic to D. 

(b) R( B) is indecomposable. 

Proof. First, note that Example 4(a) allows us to regard S as a weakly completed poser. We prove the 

proposition by induction on d (B)  for all weakly competed posers S and S-graphs B simultaneously. Denote by 

d (B)  the number of waves in F, i.e., d (B)  = [ { { x, y } ___ F ] x - y } [. In this case, if there is a node in B that 

contains at least two nondegenerate vertices and one of them belongs to an element of Q, then d(dQ(B)) < d (B) .  

If F = O,  the proposition is obvious (see Remark 6). Therefore, we assume that F ;~ ~ .  

We take d (B)  = 0 as a basis of induction. By virtue of connectedness, B has the form 

Bl=e or ~ = .  . , 

s s t 

where s, t ~ S. In this case, the proposition can easily be proved by using the fact that S is acyclic and the ex- 

change theorem ([1], 3.3, b).  

Induction step. By virtue of Lemma 8, there are two possibilities for the connected S-graph B, namely, either 

it contains no vertices joined by wavy lines, i.e., d (B)  = 0, or there is a node containing at least two vertices and 

there is no other node in B that belongs to the same equivalence class in S. By choosing an arbitrary vertex x 

from this node and setting Q = {qOB(X)}, weget B ' =  dO(B) and D ' =  dO(D), where B ' =  B1.1_1. B e, B 1 

and Be are connected S(Va)-graphs, and R(B') ~ R(D')  [see Example 4(b)]. 

By the induction hypothesis and the uniqueness of the decomposition in direct sum in Rep V Q, we establish 

that D'= B'= B 1 II P'2, R( D') = R(B1) @ R(B2), and R( B1) and R(Be)  are indecomposable. Therefore, 

either D =  B or D =  B 1 II B 2. In the latter case, X D contains two direct summands of the form VB=(x ) and X B 

contains one such summand, which is impossible. If R(B) is decomposable, i.e., R ( B )  = ( U 1 , i t , 11 ) @ ( U 2 , i 2, 

I 2 ), then Der ( D Q) ( U 1 , i 1' 11 ) = R ( B 1 ) and Der ( D  Q) ( U2, i2, 12 ) ~- R ( B 2). We again get two direct sum- 

mands of the form VB=(x ) in 11 @ 12, but X B has one such summand. Thus, R(B) is indecomposable. Proposi- 

tion 4 is proved. 

Corollary 1. Let a vectroid V be acycIic and let B and D be two arbitrary S ( V)-graphs. Then the 

relation B ~- D follows from R(B) ~- R(D).  

This statement is a consequence of Proposition 4 (a) and Remark 6. 

Example 5. Let V be a chain vectroid and let S (V)  be not acyclic. 
many nonisomorphic indecomposable elementary representations. 

Assume that the nondegenerate S = S( V)-graph 

Let us prove that V has infinitely 

X I X 2 X 3 X 4 Xn- 1 X n 

is a cycle (note that n > 3). We assume that the cycle D is minimal. We define the S-graph 
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Yl Y 2 Y 3 Y 4 Ymn -I Yrnn 
Dm=~"x./x.-/%-/~ ~ ~ , 

(pD(Yi)= (p~9(xT), where 1 < T <n  and i m o d n = i m o d n .  Then, for any m e  N, the representation R ( D m ) ~  

Rep V is indecomposable. In this case, obviously, R(Dm) -~ R(Dm, ) if m ~ m ' .  Example 4 (a) allows us to 

assume that S is a weakly completed poset. 

For a vertex y of the S-graph D m, we denote by y" the nondegenerate vertex such that y '  - y. For y 

{Yl, Yrn}, we denote by y the vertex such that y - y .  

Let M be the matrix of the representation R(Dm),  dim UDm = l, dimXD, ' = k. Let us introduce a partial 

ordering -<_ on the set ofnondegenerate vertices A m of the S-graph Dm. Let Yi and yj belong to Am. In the 

case ~P Dm ( Y i ) * ~P Dm ( y j ) , weset Y i < Y j ifandonly if q) Dm (Y i ) < (p ~m (y j ). If (P D~ (Y i ) = (P D,, (Y j )' then, in 

order to define -<, we construct the following two sequences of integer pairs (possibly, of zero length): 

( a l ,  b l )  . . . . .  (aa ,  ba) ,  (acz+l, b(x+l), ... , 

( C l , d l )  . . . . .  (co~,dc~), ( c c c + l , d t x + l ) , . . . .  

If j e { 1, mn},  we set Yi < Yj and do not start the construction; if i ~ { 1, ran}, we set Yi 4< yj and also do 

not start the construction. If i , j  ~ { 1, mn }, then (y,q, Ybi) = (Yi, Yj) and ( yq ,  Yd~) = (Yi, Yj). 

We continue the construction by induction. If (aa ,  bc~ ) =(Cco dc~ ) = (0, 0), then the construction is com- 

pleted and we set y i -<y j .  If (ae~,ba) = ( 0 , 0 ) ,  then (aa+l ,  ba+i )  = (0 ,0 ) .  If ( c w d a ) = ( 0 , 0 ) ,  then 

(Ca+l, dc~+l) = ( 0 , 0 ) .  If Yaa or Yc~ belongs to {Y l ,Ym,} ,  then the construction is completed and we set 

y i - g Y j .  If b a ~  { 1 , m n } ,  then (ac~+l ,bc~+l)=(0 ,0) .  If d ~  { 1 , m n } ,  then ( c c ~ + l , d a + l ) = ( 0 , 0 ) .  

Otherwise, if (aa ,  b a ) ; e ( 0 , 0  ) and Ya~, Y'b~,r then (ya~+l,yb~+~)= ((Ya~)- ,(Y;~)-)"  If (cc~,da) g: 

( 0 , 0 )  and Yc~, Yd~ r Yl,Ymn, then 

Y%+l, Yda+l = Yca) ' Yda " 

By construction, the relation Yi -< Yj '< Yi implies that Yi = Yj. 
Let us introduce a partial ordering ~ on rows of M. For this purpose, note that the set of rows of M is bijec- 

tive to the set K( D m) = { { y t } ,  {Y 2, Y3 } . . . . .  {Y m ~-2, Y m ~- 1 }' { Y m,~ }" We set A ~ B, A, B ~ K( D m ), if, 

for every z ~ B, one can find ~ ~ A such that g • z (cf. [5, p. 13]). 

Let (q~, 5) ~ EndRepW(R(Dm)) be an endomorphism and let ( F =  (fij),  G = (gij)) be its matrix notation. 

In particular, FM = MG. Then, by analogy with the proof of Lemma 10, we can show that f i j  ~ 0 for some 

(q~, 4) if and only if i ~ j ,  i , j  = 1,---7, and gij ~e 0 for some (q0, ~) if and only if i -< j ,  i , j  = 1,----k. Hence, we 

conclude that ~ and -< are transitive and, therefore, they are orders. 

Let us introduce linear orders on the bases UB, " and XD, " so that i ~ j yields i ___j (for UDm) and i ~_ j 

yields i < j  (for XDm ). This can be done because every order can be extended to a linear one (see [14], VII.8, 

Theorem 8). For such an ordering of bases, the matrices F and G are upper triangular. 

Assuming that R(Dm) is decomposable, we can find an idempotent (q), ~). Then, for arbitrary 2  ̀~ k*, the 

pair ( q~ + 2, id Up,., ~ + 2, idx~9,,,) is an endomorphism of R ( D m). An arbitrary nonzero element of the matrix ( F + 
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LEI)M has the form ()~+fii)mit Or E j , i  aijmj t" Similarly, every nonzero element of the matrix M ( G +  

EL) has the form m it (3~ + g tt) or ~ j ~ i mij gjt. Since ()~ E t + F )  M = M (3, E k + G) for all L c k*, the non- 

zero element of this matrix is equal to ( L + f ii)mit = m it (Z + gtt) or ~ j~i a ij m jt = ~ ,  j ~i m ij g jr. Therefore, 

(~, ~) e End (R(Dm))  (here, ~ is the diagonal of the matrix q0). 

But then we can conclude that the S-graph D m is disconnected, which is not true. Therefore, the representa- 

tion R(Dm) is indecomposable. 

Proposition 5. Every chain vectroid V has finitely many classes of isomorphisms of indecomposable ele- 

mentary representations if and only if [ C(V)  I < oo. 

This statement obviously follows from Propositions 3 and 4 and Example 5. 

Corollary 2. A finitely represented vectroid V is quasifinite. 

The validity of this statement follows from Proposition 5. 

5. Order  on C ( S )  

A pair ( B, x), where B is a connected S-graph and x ~ B \  F, is called an S-graph with marked vertex. 

Denote the set of classes of isomorphisms of S-graphs with marked vertex by C(S).  We assume that the com- 

pleted biordered set S is acyclic. 

Let ( B, F, - ,  - ,  q~B) be a connected S-graph and let x s B be its vertex. We define (connected) S-graphs 

l x B and r x B as follows: 

(a) Let x ~  F and let F - ( x ) =  {y}. We removethe straight line that joins x and y from F,  i.e., we 

introduce a retation - '  on F as follows: For Zl, z2 ~ F, wehave zl - z~ if and only if zl - z 2  and 

{Zl ,Z2}  ~ { x , y } .  Then, since S is acyclic, (B, F \ { x , y } , - ' ,  - ,  q0B) is a disconnected S-graph 

with two connected components. One of these, denoted by 1 x B, contains the vertex x, and the other 

one, denoted by r x B, contains y. 

(b) Let x e F and let F- (x)  = 0 .  In this case, I x B = (B ,  F \ { x } ,  - ' ,  - ,  ~OB), where -"  is a restriction 

to F \ { x }  and rxB  = (B=(x), Q,-[B=(x),  (pB[B=(x)). 

(c) Let xff F. In this case, l x B =  Band  r x B =  Q. 

For ( B , x ) e  C(S)  and s ~ S-(cpB(x)), we now introduce derivatives 

y ~ B-(x)  and let q~B(Y) = s. We set 

31s(B,x) = ( lyB,  y), 

Ols(B,x) and 02(B ,x ) .  Let 

x) = 

(ry B, z) 

0 

1 

if y e F  and y - z ;  

if y ~ F ;  

if y e F ,  F - (y )  = 0 .  



1682 K.I.  BELOUSOV, L. A. NAZAROVA, A. V. ROITER, AND V. V. SERGEICHUK 

We denote ax,(B, x) = as x) for a vertex x ' e  B-(x). For an S-graph (D, y) with (Pa)(Y) = q~(x) 

and for a vertex y '  e D=(y), cpD(y' ) - cpB(x), we write Oy,(B, x) = O~e(j,)(B, x). 

Let us introduce a relation _< on C(S). First, we add the maximal element 1 and the minimal element 0 to 

C(S) (the relation < on C(S) is induced by the relation _< on C(S) II { 0, 1 }). Consider the S-graphs ( B, x) 

and ( D, y) ~ C(S).  The relation < is defined by induction on the common number of vertices of both S-graphs 

B and D. 

(a) If cpB(x ) ~ CPD(y ), weset (B , x )  ~ ( D , y ) ;  

(b) If CPB(X ) < q0D(y ), weset  (B , x )  <_ ( D , y ) ;  

(c) If cpB(x)=cpD(Y)=S and s gls ,  then ( B , x ) < ( D , y )  if and onty if a2(B,x)< O2(D,y) forevery 

t e S - ( s )  ; 

(d) If s 1 = cPB(X) ~ s2 = cPB(Y), then ( B, x) _< ( D, y) if and only if there exist t 1, t 2 ~ S such that 

s I ~ s 2, t 1 ~ t2, s l - t 1, s 2 - t2, and at least one of the following conditions is satisfied: 

(dl) ~  - < 022 ( D ' y ) ;  

1 B _ (d2) O q ( , x )  < 022(D,y); 

(d3) 021(B,x) < olt2(D,y). 

The reason for introducing the relation < is clarified by the following construction: Let V be a chain vectroid 

and let S = S ( V ) .  We define a spectroid El of elementary representations with marked zero column as follows: 

The objects of the spectroid E1 are the elements of the set C ( V )  - C ( s ( V ) ) .  For ( B, x), ( D, y) E C ( V )  = El, 

morphisms (q0, {) e Rep V(R B, R D) ) such that x~ e U D + yk form the set of morphisms E1 ((  B, x), ( D, y)) .  

Note that y ~ U D and UD+ yk is a subspace of X~9. Obviously, El is a category because E1 (( B, x), ( D, y))  o 

E I ( ( D , y ) , ( E , z ) )  c E I ( ( B , x ) , ( E , z ) ) .  

Lemma 9. If a vectroid V is acyclic, then E1 is a spectroid. 

Proof. The indecomposability of the representation R(B)  proved in Proposition 4 (b) implies that the object 
( B, x)  ~ E1 is indecomposable. 

Let us show that different objects of the category E1 are not isomorphic. Let ( B, x), ( D, y) ~ El. If 

B r D, then R(B)  -~ R(D)  by virtue of Proposition 4 (a). Hence, ( B , x )  ~ (D ,y ) .  If B = D but x c y ,  
then the isomorphism (% ~) : (B, x) ---> ( D, x) induces the isomorphism (q0, ~) : R(B') = R(D ' ) ,  where B" = 

( B, F [.J { x }, - ,  - ,  q0 B) and D'  = ( B, F [.J { y }, - ,  - ,  q) B)" Recall that B = D and x, y ~ F ; the relation - on 

B' and D'  is a trivially extended relation - on F. Thus, it suffices to prove that the S-graphs B' and D'  are not 
isomorphic if x ~ y. 

If B ' =  D', then q~B(X)= CpB(y ). ByLemma 8, there exists anode R in K(B) such that q)B(R) ~q~B(Q) 

for any node Q s K(F) .  The connectedness of B implies that there exist paths (x{), x 1, x~ . . . . .  xn_ 1, x'~_ 1, xn) 

and (y~, Yl, Yl .... , Ym-1, Ym-1, Ym) that join B=(x) and B=(y), respectively, with R for which x 0 ~ x, Y0 "~ Y, 

xne R, and Ym~R. 
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If f :  B'--> D'  is an isomorphism, then, for any z ~ R N F, we have f ( r  z B') c r z D'. This readily follows 

from the facts that f [  R is an identity and f transforms the path joining some node with R into the path that joins 

the image of this node with R. Therefore, f induces the isomorphism r z B" ~- r z Z~ for every z e F ~ R. 

If xn= Ym, then, passing to the the S-graph rx, B, we can assume that xnv: Ym" If Xnr Ym, then, as proved 

above, we get ry,, B'~- ry,, D', which is not true because x is a nondegenerate vertex in ry m D" and a degenerate 

vertex in ry,, B'. Lemma 9 is proved. 

There is a one-dimensional (nonfaithful) module N, N(B,  x) = aB, xk ( ~-- U B + xk/UB),  over the category 

El. Every morphism (q0, ~) s E1 (( B, x), ( D, y))  induces a linear map ~" N(B,  x) ---> N( D, y), which estab- 
lishes the structure of the El-module on N. The correctness of the definition is obvious. 

We set E1 = E1/AnnEIN. 

L e m m a  10. Let a vectroid V be quasifinite. Then ~ (( B, x ), ( D, y ) ) ~: 0 if and only if  ( B, x) < ( D, y ). 

Proof. 1. For the S-graph B, we denote by {'c z, z~ B} the basis of the space D X B ( =  m o d k ( Y  B, k)) 

dual to the basis { z, z ~ B}. In this case, it follows from step I of the proof of Lemma 2 that q0 B(X) <_ (p D(Y) for 

x s B and y e D if and only if there exists ~ ~ V(v~=(x ), V~(y ) )  such that (x) ~y :~ 0. 

In particular, if E~((B,x) ,  ( D, y ) ) g: O, then q~ B( X ) <_ g) D(Y )" 

2. Let s = (PB(X) < t = CpD(y ). Then there exists a morphism { s V(V~(x ) ,  VC~(y)) such that x~ = y. 

Therefore, 0 ~ (0,~) ~ ~ ( ( B , x ) , ( D , y ) ) .  

3. Let s = q~B(X)= g~D(Y) andlet s ~ s .  Letus prove that E I ( ( B , x ) , ( D , y ) )  r 0 if (B,x)<_ ( D , y ) .  

By the definition of <, we have 02(B, x) < 02(D,  y) for every t ~ S-(s).  In particular, for an arbitrary nonde- 

generate vertex x" ~ F-(x),  there is a unique nondegenerate vertex Yx' ~ A-(y)  such that q~B(X') = r 
2, Weset  Rx= {x '  EF- (x ) l  O x ( B , x ) *  1}. 

By the induction hypothesis, we can assume that there exist nonzero morphisms fx" = (Yx' ,~x')  ~ 

- -  2, B s R x. Let us decompose the vector spaces El(0 x ( , x ) , O 2 x , ( D , y ) )  defined for every x' 

X B =  VB=(x)@ (x,  sRx (~ XO2~'(B'x)) ' 

XD = VD=(y)@ ( (~x,~R xxa2x'(D,y)] (~ (y,~Ry, y,g:yx,(~ YO2x,(D,y)]. 

Taking into account that VB=(x ) = VD=(y ), we define the morphism ~ as follows: 

I lvB=(x ) 0 0 ) 

o @ o : 
x" E R x 

We also define q0" U B --+ U B as a unique linear map such that (q~, {) ~ Rep V(R (B), R (D)  ). One can directly 

verify that 0 e (q>, {) ~ El.  
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Assumethat Ell((B,x), ( D , y ) ) ~  (cp,~);~0. Let usprovethat  ( B , x ) < ( D , y ) ,  i.e., 32(B,x)  <_ 32t(D,y ) 

for every t e  S-(s).  Let  x" ~ B=(x) and y ' ~  D=(y) denote vertices such that q)~(x') = ~PD(Y') = t; we can 

assume that 32(D, y) e 1. Furthermore, we set 

= I X" if F-(x') = {2"}; 
O~ 

t 0 if F- (x ' )  = 0 .  

Let ~ ~ V(VB=(x ), V D = = ( y ) )  be a component of the morphism ~. Note that ~ is invertible. If O~(D, y) = 0, 

then "ty, I Up= O. If at2(D, y) ~ 0, then x'  + ot~ U B and 0 ~a ( x' + ct ) ~'C y, = ( x" + or) cp'C y,. However, we have 

(x" + c~) (p ~ U D. Thus, we arrive at a contradiction. Therefore, a2(B, x) = 0. 

Consider the case O2(D,y) ~: 0. Let L be the component of the morphism ~ that transforms XO~(B,x ) 

into Xa~(D,y ) . Also assume that r I �9 Ua~(B,x ) --+ Xa~(D,y ~ is a uniquely defined linear map such that (r 1 , L) 

El(32(B,x),a2t(D,y)). Let us prove that (rl,)~) ~: 0 in ~ .  

For this purpose, it suffices to prove that x')~xy, r O. We have 0 ;e (x" + 2" ) ~'Cy, = (x" + ~" ) Cp~y,. By 

virtue of step 1 of the proof and the fact that q0D(y' ) ~ q0D(y' ), the conditions 13z/ ;~ 0 and J3"cy, ~: 0 are 

equivalent for 18~ Ua> This implies that 0 r (x'+ Y ' ) { ' t y , .  Furthermore, cp~(x')= ~PD(Y') ~ CPD(Y') and, 

according to step 1 of the proof, (x'+ Y~'){'cy, = g ' ~ x ? , .  Thus, 0 ;e 2"~'cy, and 0 * (rl,)~) e E-1. 

4. s = CPB(X) ~ t = cpD(y ). The proof is similar to step 3; one should take into account that, in this case, 

there exists a morphism ~ ~ V(VB=(x ), Vg=(y)) of rank two such that X{Zy ;e O. 

Corollary 3. For a quasifinite vectroid V, the relation < on C ( i f )  is a partial ordering. The spectroid 
constructed on the basis of the poset C ( V )  is isomorphic to the spectroid ~ .  

Remark 9. One can also define the poset C ( V )  for a chain vectroid V without assuming that def V <_ 1. 

In this case, the notions of S('/2)-graphs and elementary representations remain the same, but, in item (d) of the de- 

finition of the ordering < on C(V) ,  one must demand that the edges s I ~ s2 and t 1 ~ t2 be equivalent (see 
Remark 4). 

6. Multielementary Representations 

In this section, V denotes a chain vectroid. Let U be another chain vectroid. Then the completed biordered 
sets S ( U )  and s ( V )  and the set c ( V )  of s (V)-graphs  are given. Consider the map c ( V ) - - +  (7(V), 
( B, x) ~-> B. Denote its composition with the map R : c ( V )  --+ Rep V by P.  

Assume that the map ~.: S ( U )  --+ C ( V )  is given. Then the map of objects Ex ()~) : ObRep U --+Ob Rep V 
is defined; it associates the representation Ex (9~) g of the vectroid V with the matrix 

M (Ex (s g) = 

S 1 , S 2 , . . . ,  S t 

M(g) 

0 

M'(MSl)) ] 

.~(Z.(s,~ )) 
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with the representation (W, g, Z) ~ Rep U with the matrix M(g). Here, M(~,(si) ) is the matrix of the element- 

ary representation P()~(s)) in which the (zero) column corresponding to the marked vertex )~(si) of the S( V)-  

graph is omitted and replaced in the matrix M(Ex (~,)g) by the column of the matrix M(g) marked by the ele- 

ment s i. 

Assume that the map ~, satisfies the following conditions: 

(i) If t 1, t2~  S ( U )  and t l ~ t 2 ,  then P)~(tl)  ~ P~,(t2);  

(ii) if ~ , ( t l ) < ~ ( t 2 )  (i.e., ~,(t l)  r ~,(t2) and g- [ (~ , ( t l ) ,~( t2)  ) r 0) ,  then t l < t  2. 

In this case, the representation Ex ()~)g is called the )~-extension of  the representation g. In particular, let 

V be a quasifinite vectroid. Then the partial ordering < is defined on C ( V )  (see Sec. 5). Let U be a one-di- 
mensional vectroid constructed on the basis of C ( V ) .  For this vectroid, S ( U )  = ( C ( V ) ,  <, <, A), where A is 

the diagonal. The image of the map Mul =Ex ( i d c ( ~ ) :  ObRep U = O b  Rep c ( V )  ~ Ob Rep V consists of rep- 

resentations of the vectroid V called multielementary representations. 

Example 6 (Nonmultielementary representation). Let 

E = 

c o  �9 p a ' o - - . ' > o  b '  

+ I + I 
a o  ) o b  q e  o d  

E = 
a ' o  ;>o b" c �9 O p  

q e  e d  a o  ~ o b  

a - a ,  b - b ,  1<31I a - a ,  b - b ,  I<]II 

be completed biordered sets and let E = Vec t (E)  and E* = Vect(E*)  (see Sec. 2). Then E and E* can 

naturally be regarded as bipartite completed posets in the sense of [11, 12]. It was proved in [11, 12] that E and 

E* are finitely represented and each of them admits a faithful indecomposable representation unique to within an 
isomorphism, namely, the representation g with the matrix 

M(g) = 

1 0 1 0 0 0 0 0"] 

J 
l 0 0 1 0 0 0 0 

0 0 0 0 1 1 0 0 

0 0 0 0 1 0 1 1 

The colunms of this matrix correspond to a, b, c, p,  a ;  b', d, q.  The representation g is not multielementary. 

It is cailed the exceptional representation (of E or E*).  

Proposit ion 6. Let V be a quasifinite vectroid and let gl and ge be representations of the poset C(V). 
Then the following assertions are true: 
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(/) M u l ( g l @ g 2 )  ~- Mul(g l )  @ Mul(g2); 

(ii) if g 1 ~--gl [in RepC(q/)] ,  then Mul(g l )  ---Mul(g2) (in Rep V). 

To prove the proposition we perform the following construction: Let (A, M) ~ M be a module over the ag- 

gregate and let Der (A, M) = (RepM, EM) be a derivative module. Assume that another module (B, N) e M 

over the aggregate and the morphism (F, rig): (B, N) ~ Der (a ,  M) ~ Mor M are given. In this case, we can de- 

fine a morphism (I, II) : Der (B, N) ~ Der (A, M). Here, I: Rep N --~ Rep M is the functor that takes the value 

I ( W ' g ' Z )  = (W@ V' ( g~ ) ' 

( W, g, Z) e Rep N with F(Z)  = ( V, f ,  X), and FI : EN--+ I* E M is the homomorphism of on the representation 

B-modules defined by the following diagram: 

EN(W,g,Z ) (W,g,Z)> EM(I(W,g,Z)) = EM(FZ) 

o(z) 
N(Z) > M(FZ) 

Under certain additional conditions, which can easily be written in the explicit form, I( W, g, Z) is the )~-ex- 

tension of the representation g. 

Proof of Proposition 6. Assume that ( B, N) 

the spectroid (El, N), i.e., B = @ El (see Sec. 5). 

F(B, x) = R(B) ,  as follows: 

is a module over the aggregate obtained from the module over 

We define a morphism (F, ~ ) :  (B, N) ~ Der (V) ,  setting 

ap(B,x): N(B,x )  = aB,x k --~ X B = Ev(UB, iB, XB), 

aB,x@(B,x ) = x ~  X B. 

By applying the construction described above, we obtain a functor I : Rep N ---> Rep V. On the other hand, the cat- 

egory Rep N is naturally epivalent to the category Rep C (V) (see Corollary 3 ). It is easy to see that every pre- 

image f of a representation g E C(V)  in Rep N has the same matrix as g, and I ( f )  is the representation of 
Mul (g). This obviously proves Proposition 6. 

If dim V = 2, then the poset C(V)  coincides (by definition) with the poset of "flaggened sequences" 

St (V)  defined in ([1], 5.8). It was proved in [7-9] that a vectroid V of dimension ___ 2 is finitely represented if 

and only if the poset C ( V )  is finitely represented. However, in this case, not all indecomposable representations 
are multielementary [11, 12]. 

Hypothesis 1. A vectroid V is finitely represented if and only if V is a chain vectroid, clef V<  1, 

dim V< 3, and the poset C ( V )  is finitely represented. 

Hypothesis 2. Suppose that a vectroid V is finitely represented and g is its faithful representation. Then 
g satisfies one of the following conditions: 
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(i) g is decomposable; 

(ii) g is indecomposable and muItielementary; 

E~ (iii) g is the )~-extension of the exceptional representation of E or for  proper ~ �9 E --9 C(cbr) or 

9~" E*--~ C(q/r) (in particular, g is indecomposable). 

The authors are indebted to P. Gabriel  for discussions, in which the idea o f  this paper  emerged,  and numerous  

remarks taken into account  in the final version of  the paper. 
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