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ELEMENTARY AND MULTIELEMENTARY REPRESENTATIONS OF VECTROIDS

K. I. Belousov, L. A. Nazarova, A. V. Reiter, and V.V, Sergeichuk UDC 519.1

To the memory of Maurice Auslender

We prove that every finitely represented vectroid is determined, up to an isomorphism, by its completed
biordered set. Elementary and multielementary representations of such vectroids (which play a central
role for biinvolutive posets) are described.

Introduction

Denote by k a fixed algebraically closed field and by mod k the category of finite-dimensional right vector
spaces over k. The symbol of a linear map is written to the right.

Avectroid V (over the field k) is a small (the class of objects is a set) subcategory of the category mod &
which is a spectroid in the sense of [1], i.e., satisfies the following conditions:

(i) For each pair of objects X, Ye ¥, the set 9(X, Y) of morphisms is a linear subspace in mod k(X ¥);
(i) Foreach Xe ¥, thering Y(X, X) contains exactly two idempotents (0y # 1y);
(iii) ¥ does not contain isomorphic objects.

The value sup {dimX, X e ¥} is called the dimension dim V of ¥

Each vectroid ¥/ defines a category (an aggregate in the sense of [1]) ® ¥ mod k whose objects are all
finite direct sums X; @ ... ® X,, (X;& ¥,m20). The category @ ¥ (as well as any subcategory in mod k) can
be regarded as a faithful module over itself [1].

Atriple (U,f,X) consisting of the spaces U € modk and Xe€ @V and a linearmap f: U — X is called a
representation of V ([11, 4.1; [2]). The morphism (U, f,X)— (U’,f’,X’) is a pair (¢,&) that consists of a
linear map ¢: U — U’ and a morphism §: X — X’ of the category @ ¥ such that ¢f’ = f&. Representations
form the aggregate denoted by Rep V. A vectroid is called finitely represented if Rep ¥ has finitely many inde-
composable nonisomorphic objects.

Within the notation of ([1], 4.1), the category Rep ¥ coincides with the category (@ 9/) “ In some cases, we
shall consider the category M k of representations of an arbitrary module M (not necessarily faithful) over an ag-
gregate (see Appendix at the end of Introduction).

If dim ¥ = 1, then ¥ is completely determined by the following partial ordering of the set Ob V: X <Y if

UX,Y) # 0. The category Rep ¥ can be naturally identified with the category of representations of this poset
(1], 4.1; [5]). The criterion of finite representability of posets was obtained in [6].

On the other hand, it was proved in ([1], 4.2, 4.3) and ([3], 9.1, 9.4) that the category mod A of representations
of an arbitrary finite-dimensional algebra A over k coincides withthe category of representations of a certain
vectroid ¥ in the following sense: There exists an injective indecomposable A -module P such that the category
of all A -modules that do not contain P as a direct summand is epivalent to Rep V.
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Thus, the theory of representations of vectroids can be regarded as a generalization of the theory of representa-
tions of posets and the theory of representations of finite-dimensional algebras.

We define the radical of a vectroid 7 as the ideal of ¥ generated by the spaces Rad (X, Y) of unin-
vertible morphisms from WX, Y) forall X, Ye V. Itis obvious that (X, Y) = Rad (X, Y) for X#Y and
VX, X) = k1,® Rad (X, X).

The set {(nlx), (leY)} that consists of the bases (nf(, n%(, ...,nffim(x)) of spaces X € ¥ and the bases
( ;i ) of spaces Rad (X, Y) is called the basis of the vectroid ¥. The maximal rank of the linear

maps leY is called the rank of the basis. The basis (nf( , n%( yeers nffim(x)) of an object X e ¥ is called tri-
angular if the family {(nf‘ ) i=TdmX| (n) = 0} is linearly independent for any j€ N, where the bar

means the transition to the factor space X/X Rad!,',(X, X). The basis {(an ) ( le Y)} of ¥ is called triangular

if each basis (an ), X € V, is triangular. A basis is scalarly multiplicative if the element n,X le Y is equal to

kni, A ek, forall n,X, leY, and it follows from the relations anleY = Xng and nj}-{leY = ung, A,
We k¥, that i=j. A scalarly multiplicative basis is called multiplicative if each element n,X f,XY is equal to

gither O or n; ([11, 4.10). Every finitely represented vectroid has a multiplicative basis whose rank does not ex-
ceed two [4].
A vectroid ¥/ is called a chain vectroid if, for every X & ¥, submodules of the module X ¢yxy) are linearly
ordered with respect to the inclusions
X=%X>25X,D0..2X
# # #

gimx 2 0

In this case, all these submodules are cyclic, X; = m?( V(X,X), and mf( yeees mé(im x 1s a triangular basis of
Xe vV (see Lemma 1).

It is known that if 9/ is a finitely represented vectroid, then ¥ is a chain vectroid and dim V<3 ([1], 4.7
and 4.8).

For an arbitrary chain vectroid ¥, we construct the poset

S(V) = | {X. X os Xgimx 3

XeV

setting X;<Y; if m¥ o= mJY for some ¢ e UX,Y).
The number def (9) = sup {def (X, Y)| X, Ye Ob ¥}, where

def (X, Y) = |{(X; ¥)|X,<¥;}| - dimRad (X, ¥),

is called the defect of V. According to [4], we have def /<1 for all finitely represented vectroids ¥ (see

Sec. 2).
If def =0, then ¥ has a multiplicative basis of rank one and the category Rep ¥ coincides with the cat-

egory of representations of a weakly completed poset S ( 7)) (see Sec. 1). The criterion of finite representability of
weakly completed posets and the classification of their indecomposable representations (in the case of finite repre-
sentability) are given in [9] (see also [10]).

Let def ¥=1 and dim V=2. In this case, representations of vectroids ‘¥ are identified with representations
of a certain poset S(‘/) with additional structure (the structure of a biinvolutive poset). In this case, 9/ is finitely
represented if and only if a certain poset St (S (7)) constructed for a biinvolutive poset S ([1], 5.8) is finitely rep-
resented. This criterion was formulated in {1] and proved in {7, 8].
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Thus, the problem of finite representability remains open only for three-dimensional (chain) vectroids with
defect one.

In Sec. 1, we associate every chain vectroid 9/ with a completed biordered set S( ¥/). In Sec. 2, we show that
a finitely represented vectroid is uniquely determined by its completed biordered set. In Sec.5, for every chain

vectroid ¥ with def 7/< 1, we construct a poset C( V), which is a generalization of the poset St (8) ([11,5.8).
In this connection, we introduce elementary and multielementary representations of vectroids.

Appendix. Modules over Aggregates

Let M be a category of pairs (A, M), where A is an aggregate and M is a pointwise finite (see[1], 3.1, 2.2,
and 3.6) right module over A. A morphism from (A, M) to (A, M’) is apair (F,®), where F: A >A” isa
functor, ®: M — F*M’ is a morphism of A-modules, and F" M’ is a restriction of M’ along F.

On the basis of the module (A, M)e M, we construct a derivative module Der(A, M) = (RepM, E,,).
Here, Rep M is an aggregate consisting of triples (V, f, X) with Ve modk, Xe€ A, and fe mod k(V, M(X));
morphisms from (V,f, X) to (V',f’,X’) are pairs (¢, &), where ¢ € modk(V, V') and & e A(X, X’), such
that fo ME = @ of” (cf. [1],4.1, where Rep M is denoted by M k); E); is a module over RepM obtained from
the module (A, M) by the restriction along the functor T: RepM— A, T(V, f, X) = X.

Moreover, Der can be continued up to the functor Der: M — M that transforms the morphism (F, ®):
(A, M) — (A’, M) into the morphism

Der (F,®) = (G,¥): (RepM, Ey) = (RepM’, E)r),

where G(V, f,X) = (V, fo ®(X), F(X)), ¥(V,f.X) = ®(X) (here, ®(X): M(X)— M'(FX)).

On the basis of an arbitrary vectroid ¥, we naturally construct a module MV = (® ¥ M,)e M, where
® v/ is the aggregate of all direct sums of objects from ¥, and M, is a module over @ ¥ M 4(X) = X (recall
that every object X € @ ¥ can be regarded as a vector space). The obtained module is faithful (i.e., M vE # 0 if
0%Ee ®@UX.X)).

In what follows, we omit the indication of the map M, i.e., we write M(V, V') instead of M(MV, MV’),
Der ¥V instead of Der (M /), etc. Note that Rep M ¥/ coincides with Rep ¥, and the vectroids ¥ and ¥’ are
isomorphic if and only if the modules M % and M9 are isomorphic.

Remark 1. Some authors (e.g., Nazarova and Roiter [2]) studied the category of subspaces U ,, of the ag-

gregate ® 9 where 7 is an arbitrary vectroid. Objects of this category are subspaces of the spaces Xe @ ¥,
The set of morphisms U,{V, W) consists of all ¢ € @ ¥(X,Y) suchthat VoW, where Vc X, Wc Y.

Suppose that ‘Rep V= Rep ¥/ is a complete subcategory consisting of representations (V, f, X)e Rep 7 such that
f is a monomorphism. The spectroid of the aggregate Rep ¥/ contains a full subspectroid, which is “equal” to the
spectroid of the aggregate ‘Rep ¥/ and exactly one more object, namely, (k,0,0). It is easy to see that the
categories U, and "Rep V are equivalent.

1. Biordered Sets

Let oo be a binary relation on a set Z. We define

A%(b) = {ye Alyab}, A%B)= [)A%®)
beB
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for be Z and A,BcZ.
We write AaB if aab forall ae A and b e B.
For a partial order relation < on the set Z and for a,be Z, wewrite axb if af<b and b £ a.
Denote by @ the reflexive closure of a relation o, i.e., arelation on Z such that z6z forall ze Z, and

zay for y#z if and only if zoy. A relation « is called a pseudoequivalence if o is antireflexive and & is an
equivalence. In the present paper, all pseudoequivalences and the corresponding equivalence relations are denoted

by ~ and =, respectively.
A set S is called a biordered set [8] if it is equipped with the partial order relation < and the relation < that
satisfy the following conditions:

(a) if a<b, then a<b;
(b) if adb<c or ashbc, then a<c.

Note that the relation < is transitive and antisymmetric but, in general, not reflexive (if < is reflexive, it coincides
with <).

Remark 2. If Cat(S,<) isaposet (S,<) considered as a category (see [1], 2.1, Example 5), then < =
{(Y|X)|X < Y} isanidealin Cat(S,<). Conversely, every ideal in this category determines a biordered set.

A biordered set with a given equivalence relation = is called a completed biordered set. A completed bi-

ordered set (S, <, <, =) is called locally finite if all equivalence classes S™(s), s € S, are finite.

Aposet (S, <) with the equivalence relation = is called a weakly completed poset. If S =(S,<,<,=) isa
completed biordered set, then S* = (S, <, =) is a weakly completed poset obtained by weakening the structure on
S. In some cases, it is convenient to regard a weakly completed poset (S, <,=) as a completed biordered set in
which the relations < and < coincide.

Let S be a completed biordered set. We denote the number of elements that are equivalentto ae § by d(a)
and set d(S) = sup {d(a)|ae S}. Wesay that a pair (a, b) is an edge and writt a=> b if a<b and a 4 b.
By the definition of a biordered set, if a = b and a<x<b, then a=x=b. Twoedges a: a=b and o
a’ = b’ are called eguivalent and denoted by o=’ (or ao~0a’ for a#a’) if a=a’ and b=~b". The num-
ber of edges equivalent to a = b is denoted by ed (@, b). Anedge a = b is called maximalif x Sa<b <y
and x=7y imply that x=a and y=b. Anedge a = b is called shorr if there is no x such that a<x<b. A
pair of equivalent edges (a = b) ~ (a’= b") is called short if there is no x ~x” such that a<x<b and a’<
x'< b’ (see Example 1, (c) below).

Let ¥ be a chain vectroid. We introduce the structure of a completed biordered set on the poset S(7%) as
follows: Let X; = m¥ Y(X,X) and Y;= m}f WY, Y)e S(V). Weset X;=Y; if X=Y, and X, <Y; if there

exists a linear map ¢ € ¥(X, Y) of rank one such that mf( Q= m}’ .

Remark 3. By analogy, we can define a completed biordered set S() (of cyclic submodules) if ¥ is not a
chain vectroid. However, it can be not locally finite. Note that a vectroid ¥/ is a chain vectroid if and only if the
module X ¢y ) contains only a finite number of cyclic submodules for any X Y.

Let X=@®kmY and Y= EBjkm}' be two objects of a vectroid V. We define a linear map e 5 Y XY by

. X XY _ Y X XY _ .
setting mj ey;” = m; and mj ej =0 for I=i.

Example 1. (a) Consider the vectroid ¥ with two objects
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and the following spaces of morphisms:

V(X,X)=kly ® @ kel™, N(Y.Y)=kly® D kel
1<J i<j
{VI(X’ Y) = (ell + 622 ) @ k(eu + 833 ) @ @ keXY
- YX
V(Y,X) = i((‘Djkel-j )

Obviously, dim (¥,) = 3, def () = 1, and

X 0==>0}
o

S = X, 0=——=01Y,
=z
X;0——=01

(a —> b means that g <b andthereisno xe S suchthat a<x<b or a<x<b).

(b) Consider the vectroid 7 that differs from %} only by the following space of morphisms:

XY
U(X,¥) = kel +e30 +e35 ) ® @ ke’

i<j

Clearly, dim(7;) = 3, def (%) = 2, and S(4) = S(¥)).

(c) We construct the vectroid 74 by completing ¥, with the objects Z = kmlz @ kaZ and T= kmlT @ kmér
with the following spaces of morphisms:

Vi(Z,2) = k1, @ kel:, U(T.T) = k1;® kelf,
U(X.2) = k(i +eif),  WK(Z 1) = k(e + &),
V(X T) = k{e3] +ex) ),  W(T.Y) = k(el) +el)).

N(Z,X) = H(Y,2) = K(T.X) = %(Y,T) = %(Y,X) = 0.

Then
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N

1
X0 == 0y

The edges X; = ¥; and X3=> Y3 in the biordered set S(44) are long, but they form a short pair.
4
Example 2. Consider the vectroid 7 with one object X = @I km,X and the following space of morphisms:
1=

MWX.X) = kly ® kel +e3) ® kes (@ kel.j.”‘).

j>i+l

Then dim W =4, def W =2, and

S(W) = o > O —== 0 > O .

Let S be alocally finite completed biordered set. We define the relations <, <, and = on the set Sx N in
the following way:

@ (s,0) < (z,)) if s<rt;
(i) (s,1) < (z,)) if s<r;
(iil) (s,i) = (r,j) if s=1¢ and i=j.

Note that < is a quasiorder ([13],I1.1), < defines an ideal in the category Cat($x N, <) associated with
the quasiordered set (Sx N, <), and = is the equivalence relationon §x N.

A function ¢: S >N, (Ny = NUO) is called the dimension of ¢ on the set S if ¢ (s) = @) for
s = t. Denote S, ={(s,0)e SXxN| i<o(s)}.

A matrix M (which may have no columns or rows) is called a representation of S of dimension ¢ if its
columns M; are enumerated by the elements of the set S, i.e., the bijection n: {1,...,1} > Se is given, where [
is the number of columns of M. The columns M; and M; of the representation M are called comparable
(equivalent) if n(i) and n(j) are comparable with respect to < (are equivalent with respect to =) in S X N.
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The representation M of dimension ¢ is called faithful if ¢ (s)#0 for every se S and faithful at a point
se S if o(s)=0.

Let ¥ be a chain vectroid and let (U, f, X) e Rep V. Then the choice of a triangular basis of 4 and a basis
of the space U associates (U, f, X) with a representation of the completed biordered set (). However, gen-
erally speaking, neither the vectroid 4 nor the category Rep ¥ is determined by S(%). Thus, in Examples 1(a)
and 1(b), we have S(¥) =S(%,) while 9| # V,; moreover, ¥, is finitely represented while 4} is not fi-
nitely represented . However, if def () <1, then the category Rep ¥/ (but not ¥/ itself!) is determined by the
completed biordered set S(‘7) in all known cases. In Sec. 2, we show that a finitely represented vectroid can be
uniquely restored on the basis of S( 7).

2. Vectroids of Defect <1
Lemma 1. Let V be a chain vectroid and let X € V. Then

(a) all nonzero submodules of the module X gy xy) are cyclic, i.e.,

X=X2X%2..2X,;,n20, X = mf YV (X, X);

# % #
(b) the generators mf( yeens de(X) form a k-basis of the space X;

(¢) they can be chosen so that, for some @y e Rad (X, X),

X _ X X X, d(X)-1
my; = mpQx, ... , Myxy = M Qy

and (p‘)i( =0.
Proof.

(a) If X; is not cyclic, then it can be represented as the sum of two submodules N; + N, such that N; DN,
and N; € N,.

(b) Since the field & is algebraically closed and the algebra (X, X) is local, the simple module Xil X1
(1<i<d(X)) isisomorphicto k.

(c) We can take m{ e X;\X, and @y € Radgy(X, X)\(P1U...UPyyxy,), where P, = {ye UX, X)|
X,y <X, ,} are proper subspaces of the space Rad ¢/(X, X) and X yy4=0.

Denote by r( /) the least possible rank of a basis of a vectroid V.
Lemma 2. Let V be a chain vectroid. Then
(2) def (V) =0; furthermore, def(V)=0 ifand only if t(V)<1;

() def(V) = (V) -1.
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Proof. Let X, Ye V. We choose bases mf( ...,mfi((X) and m{, s mg(x) in X and Y asin Lemma 1.
Since Rad (X, Y) is closed with respect to the multiplication by ¢y from the left and by ¢y from the right, the
space of d(X)x d(Y) matrices '

RX,Y) = {(a;)] Y aye)’ eRady(X, X)}

[which defines Rad (X, Y)] is stable under shifts rightward and upward. Therefore, it has the following staircase
form (cf. [11,4.7):

I. Letus prove that |{(X;, };) | X, < YJ}] is equal to the number of elements of A from R(X,Y) located on

or above the stairs.
Indeed, the set of nodes

Kxy={(s1:01)s s (S ) }
(1<s;<...<5,€d(X), 1<11<...<1,£d(Y))
consists of all minimal elements of the set
Nyy = {(s,0)) 3 (o)e R(X,Y): a,,#0}

with respect to the following partial-ordering relation: (i,j)<(i’,j") if i2i” and j<j’. Itis clear that Ny coin-
cides with the set of indexing pairs of elements of the matrix A located on or above the stairs, i.e.,

Nyy = {(N]31: 1<i<sy, 1ygj<d(Y)}.

Let (I,7r) € Nyy. Weselect ¢ = 2 oy e?jfy € Rad(X,Y) suchthat o, #0 and choose fe k[x] such
that @ f(@y) = 2 Bijegy, where B;; =0 for j#r, and B, #1. Then mfof(oy) = m’', X, <Y,. Hence,
there exists a bijection Nyy— {(X;, V)| X;<Y;} and def (X, Y) = | Nyy|-dimRad(X, Y).

Il. Let Ay = (algj“)) , 1<o <t bea k-basis of the matrix space R(X, Y). Then there exists a collection of
indices J = {(iy,j1)s ---» (is,j;)} such that the matrices By = (bg’“)) , 1<a<t, are linearly independent.
Here, bi(ja) = algj“) for (i,j)e J, and bija) = 0 for (i,j)e J. By using transformations of the form A — A+

adg (o# B, ae k), wecanpassfrom Ay,...,A toanew k-basis Cy = (Clﬁja)), 1 <o <1, such that c}é’}ﬁ =

for =P and Ci(an)a # 0. Since every matrix C,, has the same staircase form as A, and C, has at most -1
zero elements among those located above the stairs, we conclude that C has at most [Ny YI —t+ 1 nonzero ele-
ments. Therefore, rank (Cq) < |Nyypl—2+1, r(X, ¥) <|Nyyl-dim R(X,Y)+1, and def(X, )2r(X.Y)~-1,

which proves (b).
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II. Letus prove (a). By virtue of (b) and step I of the proof, it is sufficient to show that r(%/) = 1 yields
def (V) = 0. »

Let A = (a;;)e R(X.Y) andlet rank (4) = 1. Since K(X,Y) is stable under shifts rightward and upward,
it contains matrix units E;; for all (i,7)Z (s, ¢), where (s, ) is the minimal element of the set {(i,j)| a,; #0}
with respect to the partial-ordering relation defined in step I. Therefore, if (X, Y) = 1, then R(X,Y) has a basis
including matrix units and, by virtue of step I, def (X, ¥) = 0. Lemma 2 is proved.

Proposition 1. A chain vectroid whose defect does not exceed one has a scalarly multiplicative basis whose
rank does not exceed two.

Proof. We use the notation from the proof of Lemma 2.

I. Assume that X, Ye ¥ Let us show that there exist ch Yo, c,)fy € k (possibly, all equal to zero) such

that

RadrV(X,Y)={ > ay;Eff

XY XY .
c; o +...F ¢, asn,n—O}.
(i,j)€ Nyy

St

Indeed, by virtue of the condition def () <1, the codimension of the space R(X,Y) in the space of all
staircase matrices of the form A does not exceed one. Therefore, there exist ¢;; € k such that

Ren={ 3 apg| 3 eyey-of,

(i,j)eNxy (i,/)eNxy

where E;; are matrix units.

Let c;, #0 forsome (i,7r)& Kyy Then R(X,Y) contains B;; =E;; +y;; Ej, for all (i,j)e Nyy\(i,r),
where v;; =~c,-jc1‘rl. We fix (s,1)e Kyy suchthat (s,r)<(l,r) andset ({;,7;) = (s,0)+i[(L,r)-(s,1)].
Let m besuchthat (I,,r,)e Nyy but (I,.1,7,.1) &€ Nyy. Let F; and F, be the matrices of the maps @y
and @y, respectively (see Lemma 1). Then R(X,Y) contains the matrices

s~1 r—t
Bst = Eloro + YStEl Fl BSIFZ = Ellrl + YstElzrz’

iry?

2(s-1 2(r—
Fl (s )BstFZ(r )= Elz’z * YSfEl3’3’ ’Elmrm'

Hence, it contains the matrix E; , = E;,, which contradicts the assumption that c;, #0.

Therefore, we have c;; =0 forall (i,j)e Kyy, which was to be proved.

II. A scalarly multiplicative basis of the vectroid 9/ can be obtained by supplementing the vectors le with

morphisms le Y of the following form:
(a) eij(Y for (i,j)e Nyy\ Ky and for (i,j)=(s,,t,)e Kyy suchthat ¢¥ =0;

) X (el [eXD)eXr forall 2<i<q, where {r(1),..., r(q)} = {r| ¢}V #0} and

Sryteqy St

r(l)<..<r(qg).
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Lemma 3. Let V be a vectroid of defect < 1. The completed biordered set S(V) satisfies the following
conditions:

1. The equivalence class of every element is linearly ordered.

. If a;<ay <...< a, and a|=a,, then there exist aj~ay,...,a,~a, such that aj<
as <...< a, and a1 = a,.

III. If ed(a,b)=3, thenthe edge a = b is maximal.
IV. a<a ifandonly if d(a) = 1.

Proof. Let V be a chain vectroid whose defect does not exceed one and let {(m,x ), (f ,X Y )} be its scalarly
multiplicative basis of rank two constructed in the proof of Proposition 1.

Condition I follows from the equality m¥ ¢y = m¥,; [i<dim(X)].
It is sufficient to verify condition II for n=2 and n=3. For n=2, the proof is obvious. Indeed, let

X XY Y XY Xy XY i i .
X,~=>Y]-- Then m; f;"" = om; forsome f;°° =aej + Beyn , i#i’, j#j, a,Bek”, ie, Xl.,=>Xj,. Let us

i
prove condition I for #»=3. Assume that X;< YJ <Z_ and X;=Z . Then there exist f,X ¥ and f 13/ 2 such that
m,X IXY = ocij and mj)-’f}flz = Bmf, a#0#p. Since X;=Z,, wehave rank (leYprZ) # 1. Consequently,
f,XY = ocefjfy + yei’ij, ;Z = Ber,Z + Se;rz,, y#0#8, and X, <Yy<Z.. If X, <Z., then eﬁffe
Rad (X, Z), and f,X Y g’ Z - y8e erZ has rank one and maps m¥ onto ofm?, which contradicts the assumption
that X, =Z . Therefore, X, =7 ..

Let us prove condition III. Let X, = YJ X =>YJ and X;» = Y;» be different edges. Assume, e.g., that

X, = Y] is not maximal from the right, i.e., there exists Z.> Y, such that X;=Z . Then X; = Yj = Z_ and there is

a basic morphism f,YZ = ocerrZ + BetYf , 0z 0#pB, j#tr. Wemay take j'#¢. According to step I of the proof
of Proposition 1, there exists y = ye 5 Y1 Se IXJY e Rad¢(X,Y), v # 0 # 3. The existence of the morphism
v leZ = ocyegfz contradicts X, = Z .

Condition IV follows from the fact that the ring V(X X) is local: If m,~X f= m,X , then f=1 and rank (f)=
dim X.

Lemma 4. The following property is a consequence of conditions I-III: If (a=b)~(a’=b"), then
either a<a’ and b<b’ or a>a’ and b>b’.

Proof. Let a=a’. By condition II, there exists an edge (a” = b”)~(a=>b) such that a” #a and
b” #b. Hence, ed(a, b)=3 andthe edges a = b and a=>b" are maximal by virtue of condition II. However,
b=b’, a=b’. Bycondition], b<b’ or b>b’, and a=>b or a=> b’ isnot maximal. Therefore, a#a’ and,
similarly, b # b’. If, for example, a<a’ and b>b’, then, since a<a’<b’'<b and a= b, weget a = b
However, we have just proved that such an edge does not exist. Therefore, we have either a < a’ and b <b’ or

a>a’ and b>b’.
Lemma 5.

(a) Let char(k) # 2 and let V be a chain vectroid whose defect does not exceed one. If YV has a
multiplicative basis of rank at most two, then S( V) satisfies the following condition:
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V. If (07.05), (0y,03), ..., (0,0, ) are long pairs of edges and t is even, then (ty, %)
is a short pair of edges.

(b) On the basis of a locally finite completed biordered set S satisfying conditions I--V, one can construct
a chain vectroid ‘V with defect <1 that has a multiplicative basis and for which S(‘V) =S.

Proof. (2) Assume that ¥/ is a chain vectroid whose defect does not exceed one and S(‘V) contains long
pairs of edges (o1, 0), (02, 03), oo, (O, Opyy), (0, 040 q), Where 02 X;= Y, (1<1<741). Since
(g, 0,) is along pair, we have X; = Z, =Y (I=1,2) forsome Z. According to condition IlI, ed (X, Z) =

ed(Z,Y) = 2. Assume that 9/ has a multiplicative basis whose rank does not exceed two. Then eXZ 4 X2

1P 2
and elejI + egfj are basic morphisms and ¢ +e, € Y(X,Y), where ¢; = el” (1<l<t+ 1). By analogy,
ertes,..., €, +e,q, e +e,1€ VX, Y). Foreven 7 and char(k)#2, weget e; = e 11 e Y(X,Y), which

contradicts Xl.1 = X] -

(b) Assume that S is a locally finite completed biordered set satisfying conditions I-V. Let us construct a
vectroid ¥ = Vect (§) whose objects are the vector spaces X = kx; @ ... ® kxx), where {x, ..., x40} S

are equivalence classes and x; <x, <... <X4). The space Rade(X Y) is generated by linear maps eé-( Y for all

XY
e

+ e’i Y for all long pairs (x; =y, Xy =Y .} and is max1mal with respect to the following property: The

x; <y; and by all maps from a certain set L(X,Y)c {
XY

+ e [ (x; =) = (xp :yj:)} This set contains

hnear span of L(X,Y) contains no maps of the form e 5 ¥ In order to uniquely choose L(X,Y), we impose the

following condition' If (x =>yj,xl.,=>yj,) and (x, :yt,xs,:yt,), i <i’, s<s’, are two short pairs and

XY + e Y'e L(X,X), e eff ¢ L(X,X), theneither i<s or i=s, i’<s’. Note that we construct a vec-
tr01d w1th fixed mulmplxcatwe basis.

Let us prove that 7/ is well defined, i.e., that fg € Rad (X, Y) forall fe Rad(X,Y) and ge Rad(Y, Z).

We can assume that f and g are generating maps [i.e., f— ng, x; <y;, or fe L(X,Y)]. Let f= eXY ,

g = eflz+ . (hence, x;<y;<z;). If x; <z, then e Z e Rad (X, Z) and fge Rady(X, Z). Now assume

that x; =z,. Then x; =Yy, =2 and, according to condition I, there exist other x;, =z, x; =Y =y. By
virtue of condition III, ed (x;, yj) ed (yj z;) = 2. Therefore, f = eXY + eng and g = Y,Z + eY% Since
(x,=>z;, x,,=>z,,) is a long pair of edges, we get fg = eXZ + e = Rad,,/(X Z) by the definition of L(X, Z).
Let us investigate the form of Rad (X, Y). Let Kyy= {(sl, 11)s-.., (s, 2,) } be the set of minimal ele-
ments of the set Nyp= {(i./)|x; <y;}. If (i,j)€ Nyy and (i,j)< (z j’), then x;Sx;<y;<y;. Hence,
(i%,j) € Nyy and Ny, has the form described in step I of the proof of Lemma 2. By Lemma 4, if x =Y then
x;<y; and (i, j)€ Kyy. Since L(X,Y) is maximal, the space Rad ;(X, Y) has the form described in step I of

the proof of Proposition 1, and def (X, ¥) <1. Lemma 5 is proved.

The category Rep (V) of representations of the vectroid 9/ = Vect (S) constructed in the proof of assertion

(b) of Lemma 5 is called the category Rep(S) of representations of a locally finite completed biordered set S
satisfying conditions I-V.

Remark 4. If ¥ is a chain vectroid such that r(%) = 2 and def( %) > 1, we can define an equivalence
relation =4 on the set of edges of (/). For this purpose, we set (X, = Y]) =g (X = YJ) if and only if there
exists a morphism & e 9/(X,Y) such that
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Xig [ Yj’ (Xi Rade(X’X))ﬁ (o) YjRadrV(,m,

Xig a YjRad‘V(xy), Xi,F, a Yj,Rad,V(XY),

and thereisno { e (X, Y) suchthat m}{ = mJY , m¥{ = 0. On the basis of the completed biordered set S
with given equivalence relation =,y on edges, we can similarly define a vectroid Vect(S,=.4) such that

S(Vect (S, =¢4)) = (S,=¢q). Notethatif def ¥/<1, then the equivalence relation =4 coincides with the equi-
valence relation for edges introduced in Sec. 1.

Lemma 6. If a vectroid 'V is finitely represented, then def V<1 and the completed biordered set S( V)
satisfies conditions I-V and the following one:

VL d(a)<3 forall ae S(Y).

Proof. Condition VI is satisfied because ‘V is a chain vectroid and dim %< 3. Let us prove that def ¥<1.
According to Lemma 1 in [4], if dimX = 2, then

i) X, X)=kly ® ke,
and if dimX = 3, then
() VX, X)=kly ® kel @ kel © kefs

or

(i) WX, X) = kly @ k{efs” + he; ) @ kel he k.

It is clear that def (X, X) = O in cases (i) and (i) and def (X, X) = 1 in case (iii).

Let X,Ye 7V andlet X#Y. According to Lemma 5 in [4] (this also follows frorn the proof of Lemma 2), the
space (X, Y) admits a basis consisting of linear maps of the form efY and e Yy oce Y (0#0,i%r and
j # 1). Moreover, it contains at most two morphlsms of the second form, and if there are two such morphisms, then
they have the form e;! + redy el + ue33 , A, € k*. Therefore, def (X,Y) = 1 and def ¥<1. By virtue
of Lemma 2, S(¥) satisfies conditions I-IV. Condition V is satisfied because the equivalence class containing
more than two edges has the following form: {x; =y;: i =1,2,3} According to Proposition I in [4], it contains

a short pair of edges.

Proposition 2. The map V — S( V) establishes a bijection between the isoclasses of finitely represented
vectroids and the isoclasses of finitely represented locally finite completed biordered sets satisfying conditions
I-VI.

Proof. Let M, be the class of all finitely represented vectroids and let M, be the class of all finitely repre-
sented locally finite completed biordered sets satisfying conditions I-VI. By virtue of Lemma 6, if YeM 1> then
S(%V) e M,. Inthe proof of Lemma 5, we have constructed, for every Se M,, a vectroid Vect (8)e M, such
that S(Vect(S)) = S. It remains to prove that Vect (S(¥)) = ¥/ forall Ve M;.
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Let Ve M. Every space Rad (X, Y) has the form described in step I of the proof of Proposition 1, where
(s1:11)sooeu (s t,,) are minimal elements of the set Nyp= {(i,/)| X; <Y;, X;, Y e S( V) }. By analogy with
the proof of Lemma 5, S( V) defines the set of linear maps L(X,Y). Accordmg to Propositions 1 and 2 in [4], the
bases (mff yeens mff(X)) of the spaces X € ¥ can be chosen so that L(X,Y) c Rad(X,Y), and m} together
with e ,f,{ Y (x, <¥;) and morphisms from L(X,Y) forms a multiplicative basis of the vectroid V. Thus, we get

Vect (S(V)) = V.

Remark 5. Two vectroids ¥ and V" are called locally isomorphic if there exists a bijection f: Ob ¥ —
Ob 7 and, for every pair of objects X, Ye ¥ (including X =7Y), there exist nondegenerate linear maps ¢ :
X —f(X) and w: Y= f(Y) such that X, Y)y = ¢ V' (f(X),f(Y)). Let us prove the following assertion:
If finitely represented vectroids V and V' are locally isomorphic, then they are isomorphic.

It is sufficient to show that the equality V(X, Y)y = @ V'(f(X),f(Y)) implies that Kyy= Ksx) sy and

{r] Xt ¢O} = {rl PLASORAC R 0} for all X,Ye ¥ (because, in this case, S(9)) = S(7) and we can

use Proposition 2).
For dim X =2, the statement is obvious. Let dimX =3 and let X =Y. It follows from the proof of Lemma 6

that U(X,X) hastheform k1y @k (ey" + €35 ) @ kej" or k1y®kes" ® ke)y® @ ke, Since the map

o — @ 'ay defines an isomorphism of the spaces U(X,X) and V'(f(X),f (X )), we can conclude that
W(X,X) and V' (f(X),f(X)) have the same dimension and, hence, the same form.

Let X#Y. We can write the following equality in the matrix form: V¥ = ®V’, where V = (X, 7),
V' = Ry (f(X), f(Y)), and ¥ and @ are the matrices of the maps y and ¢, respectively. Since V = SVR
and V' = S’V'R’ for arbitrary upper triangular matrices S, R, S, and R’ with unit diagonal, we can replace the
matrices ¥ and ® by R¥YR 1 and S~'®dS with exactly one nonzero element in each column and each row
(i.e., by permutation matrices). However, it is impossible to pass from any staircase form of &A(X,Y) to another
one by permutations. Remark 5 is proved.

3. §-Graphs

Let S denote a completed biordered set. A collection (B,T,—, -, @) is called an S-graph if the following
conditions are satisfied:

(i) B is a finite set (of vertices of the S-graph);
(i) T < B is a subset (of nondegenerate vertices):
(ili) ~ is a pseudoequivalence relation on B;
(iv) — is a symmetric binary relationon I';
(V) ¢z B-S,
and, moreover,

(vi) if x—y belongsto T, then @4(x) % @5z(»); [T (x)] <1 forany Xe I';

(viD) if x;~x, (in B), then @u(x1) ~ @z(x,) (in §); P B7(x)) =S7(P4x)) forany xe B.
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The set of vertices of the S-graph (B,T,-,~, @) can be decomposed into nonintersecting subsets B~ (x),

. x€ ‘B. We call them nodes of the S-graph. The node B~(x) is called the node of the vertex x or the node that
belongs to the equivalence class S™(@ 4(x)).
The nodes of the S-graph B form a graph K(B) (nonoriented and, possibly, possessing loops and multiple
edges), in which the edges between two nodes X, Y e K(‘B) are the pairs {x, y}, where x€ X, ye ¥, and x-y.
The S-graph B is called connected if the graph K(B) is connected. The S-graph B is called nondegen-

erate if TN B™(x) # & forall xe B.
Morphisms of S-graphs are defined in a natural way. In particular, one can speak about isomorphic S-graphs

and S-subgraphs. Denote by C(S) the set of isoclasses of connected S-graphs.

Remark 6. The definition of an S-graph immediately implies that (p$|$=(x) is a bijection of B~(x) onto

S z((pfg(x)) forevery xe ‘B. A connected S-graph is always nondegenerate except the case where T’ =& and
| B/=| = 1.

Remark 7. We depict nondegenerate vertices of the S-graph by dots with the values of the map ¢, written

above them. Two dots corresponding to vertices x,y € I' are joined by a wavy line if x~ y and by a straight line
if x—y. It follows from Remark 6 that a nondegenerate S-graph can be uniquely reconstructed by the quadruple
(T, =, ~p» @ glr), where ~ is the restriction of ~ to T.

Remark 8. The definition of an S-graph does not take into account the relation < on §, i.e., it is defined by

S"™. In Sec. 5, we define the set C(S) of (connected) S-graphs with marked vertex and introduce an order relation
depending on < on this set.

The sequence of vertices of an S-graph (x{, Xy, X1, .., Xy_1» Xp_1> X,), 7 € N, such that B~(xj) = X,
B(x,) =Y, x;~x} if i =TLn-1, and x}-x;,; if i = 0,n—1, is called a path in the S-graph B from
the node X to the node Y. Note that (B~ (xp), B (x;), B (x,). ..., B™(x,)) isapathin K(B) from X to
Y. Conversely, if (X = Xo, X1, .-, X,_1» X, = Y) isapathin K(B) from X to Y, then, in the S-graph B,
there exists a path (x{y, X{, X, ..., X,_1, Xp_1» X,) from X to Y suchthat B (x;) = X;, i = Ln. By virtue of
Remark 6, a path in the S-graph B consists of only nondegenerate vertices.

An S-graph ‘B is called acyclic if the graph K(‘B) is a forest (i.e., contains no cycles). A completed bi-
ordered set S is called acyclic if every S-graph is acyclic. It obviously follows from the definitions introduced

that if B is an acyclic S-graph, then
(i) ‘B is a connected graph if and only if K(B) is a tree,

(ii) if B is a connected graph, then the path in B from X to Y exists and is unique for any nodes X, Ye
K(B).

Lemma 7. Let S be acyclic, let X, Y, Z, Te K(B) be nodes of the connected S-graph ‘B such that
0p(X) = 0 u(Y) = ¢04(Z) = 94(T) in S, let (xp,....,x,) be a path in B from X to Y, and let
(20s---»2,m) beapathin B from Z to T. Then the following relations hold:

(@) @p(xp) =0g(x,),
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(b) 9g(z5) = 95(xp).

Proof. (3) Let ¢5(xh) # @4(x,). Then

0z(x) Oz(x() Qg(xy) @z(x) Pp(x,-1) @g(x,_1)

95(xp)  @©g(x,)

is an S-graph, which contradicts the assumption that S is acyclic.

(b) By virtue of (a), we have @g(z) = ¢ 4(z,,). Therefore, it follows from the relation @ g(z5) # ¢ 5(x5)
that @4(z,,) # @ 5(x,) and

P 5(zp) Qzlxp)

9z(z;) ©(z]) 03(z,) Q(x,) Pz(x{) = @glx)

is an S-graph, which contradicts the assumption that S is acyclic.

Lemma 8. If S is acyclic, the S-graph ‘B is connected, and K(‘B) contains at least three vertices, then
there exists a node X € K(‘B) such that the following relations hold:

(@) ©z(X) #* @4(Y) for an arbitrary node Y e K(‘B),
(b) X contains at most one nondegenerate vertex.

Proof. (a) Assumethat 4 = (A Lo, A™) is the set of all classes from S/= such that there exists a node
Ye K(B) with ¢4(¥Y)c A’ foraproper i=1,m. Letus transform 4 into an oriented graph. For this purpose,
we assume that the arrow A’ — A/ exists if there are nodes X;, ¥, and Z; in B such that og(X;)c A,
o4(Y;)cAl, 94Z)c AJ, and the path from X; to ¥, [in K(B)] passes through Z;.

Let us prove that 4 contains no oriented cycles. Indeed, assume that, after a proper enumeration, it contains
the cycle

42 5435 At

T I, n=l.
Alé____ An

This means that, for every i = 1,n, there exists apath (s;[a;|¢;, p;[b;|r;) in the S-graph B with @ 4(s;).
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og(ri)e AL, o) o4(p))e A", and t,~p; in B; here, a; and b; are pathsin B, the symbol | denotes
linking of paths, and

By virtue of Lemma 7, @4(s;) = @ 4(r;). By the definition of a path, @ 4(z;) ~ ¢ 4(p;). Let

(sila; 1) if 0g(1) # 05(si),
(uileilv;) = -
(r:1b; 1 p)  if 9g(;) = @5(sy).

Here, b isthepath b passed in the opposite direction. Then

VUp-i u, Uy L]
/'W/\f\/\.‘— o ——M/\/‘\\
| 4]
A\.ﬁk Cypg —® N NG G “‘”\ﬂ&
un_z ‘U2 uz Ul

Up_1 Un—o

is an S-graph, which contradicts the assumption that S is acyclic.

Thus, either 4 is a disconnected union of points or 4 contains at least one sink (i.e., a point with no outgoing
arrows) with an arrow really entering this point. In the first case, the number of nondegenerate vertices of a node is

not less than the number of edges of K(‘B) originating from this node, and two nodes from this equivalence class in
S cannot be joined by an edge [in K(B)]. Therefore, as the required node X, one can take any node such that at
least two edges originate from it.

In the second case, we assume that Be 4 isasink, A€ 4, and A — B. Then,in K(B), there exists a path
of the form ¥; —...— X — ... — ¥, where 1} and Y, belongto A, X belongsto B, and X contains at
least two vertices. If X & K (B) and X'# X is a node that also belongs to B, then it cannot be joined with X by
a straight line in K(B) and there is a node between X’ and X that does not belong to B. Hence, B is not a sink.
‘Thus, X is the required node.

Proposition 3. A completed biordered set S is finite and acyclic if and only if | C(S)] < o».

Proof. The necessity is obvious. To prove the proposition it suffices to show that, for a finite acyclic
biordered set S, we have sup {|T || (B.T, -, ~, 0z € C(S)} < oo. For this purpose, we define functions Qg:
B—>S/~ and Gz = cano @ and note the following: By virtue of Lemma 7, for any path (x4s X15-ec, X,) iD
the acyclic S-graph B and for any i = 1,n, there exists at most one j = I,n such that §p(x;) = B5(x;)-
Therefore, the length of a path that joins two arbitrary vertices of K (B) does not exceed 2|S/= |. Since K(B)
isatree, |/~ does not exceed the number of vertices of a complete tree of height 2|S/= | onthe set S/=. This
immediately implies that the value |T'| is bounded .
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4. Elementary Representations

For a chain vectroid 4, weset S = S(%) and C(¥) = C(S(V)). A vectroid ¥ is called quasifinite if -

c (7)) is afinite set and def /< 1. Below, we show that finitely represented vectroids are quasifinite.

We fix triangular bases (mIX ) of objects X of the vectroid ¥ and identify s € S(/) with the corresponding

vector.
A representation M of a locally finite completed biordered set S is called elementary if the following condi-

tions are satisfied:
(i) the elements of the matrix M are equal to either O or 1;
(i) every row of M contains at most two unit entries; each of its columns contains at most one unit entry;

(iii) if there are two nonzero elements in a row of M, they belong to incomparable columns.

In particular, by setting S=S(%), we arrive at the notion of elementary representation of the vectroid V' [in
. X
the basis (m; )].
For every matrix of elementary representation nondegenerate with respect to rows, we construct an S(‘V)-
graph as follows:

(i) vertices of the graph are considered as columns of the matrix M of the given representation;

(i1) nonzero columns of the matrix M are regarded as nondegenerate vertices;

(iii) above each vertex, we write the element of S( 1)) related to the corresponding column;
(iv) we join two vertices by a straight line if these columns have a unit entry in a common row;

(v) we join two vertices by a wavy line if these columns are equivalent.

Conversely, an arbitrary S-graph Be é(‘V) is associated with a nondegenerate elementary representation
R(B) e Rep V. Foranode X e K(B), wedenote by Vy a uniquely defined object of the vectroid 4/ such that

05(X)c Vy. Let
Xop= @ Vi,
2 xex® X

let Uy be a subspace of Xz spanned either on the vectors @4(x) if xe I' and I'"(x) = & or on the vectors
Pp(x)+ Qp(¥)€ V=) ® Vge(,) if x—y in I, andlet iz Uy— X be the imbedding of subspaces. Thus, we
obtain the representation R(B) = (U # g Xg), which has the matrix required in the definition of elementary rep-
resentations in the basis S( 7)) of the vectroid ¥ and in the basis U g formed of the generating vectors. Further-
more, R(B) e’ Rep V because I is an injection. In what follows, we identify a vertex x of the S-graph B and
the vector @ g(x)€ Vg=(,). Notethat {x|xe B} isabasis of the space X.

Note that R establishes a bijection between the set of classes of isomorphisms of S(9/)-graphs and the set of

matrices of elementary representations nondegenerate with respect to the rows of the vectroid 9/ in the given basis
S{V); here, the matrices are considered up to permutations of rows and columns.
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In view of the structure of the bijection R, we can assume that every node B~(x) of the S-graph B consists

of elements of the set SX N of the form (s, i), where se S7(@g(x)) and i is the number of the corresponding
columns in bands determined by elements s of a certain matrix of the representation R(B).

Example 3. Generally speaking, an elementary representation in one basis can be equivalent to a nonelemen-

o , 0
tary representation in another basis. Let % be the vectroid defined in Example 2 and let (0 8 : 8) be

the matrix of a representation of /. In this case, the representation is elementary in the basis m{, m}, mé( , my.

. . X X ) —_ — .. . .
However, in the basis m{ = mj —mj , mé‘ = m%‘, mf = mg, mf = mf, it 1s determined by the matrix
( 1 1 0 O

0 0 1 o j , which is not equivalent to an elementary one.

Let % and 7} be two chain vectroids, S; = S(7,), S, = S(¥,), andlet f be an injective map S, — S,
(which does not take into account structures on S, and S,). Assume that f is induced by a morphism (F,®)e
M, U)).

For a nondegenerate S;-graph (B, T, ~, -, ¢ ), we define a nondegenerate S,-graph (D, A,~',~", @) as
follows: A =T and, for x,ye A,

() x="y if x=y (in T') and fo®z(x) 3 fo@u(y) (in S,);
(i) x~"y if x~y (in T) and fo@4(x) ~fo@g(y) (in S,);
(iii) (PDIA =f°(sz;|r-

Then we reconstruct 2 by using Remark 6. Obviously, f.(B) is a nondegenerate S,-graph.
Let f be such that, for s, 7€ §;, it follows from s 3 ¢ that f(s) x f(¢). Then, clearly, Der (F, ®)(R(B)) =

R(f.(B)).
Example 4. Let B be anondegenerate S-graph.

(a) Let ¥ be avectroid, S = S(¥), let §* = (S,<,=) be a weakly completed poset (Sec. 1), and let
w’: § —S" be an identity map of supporting sets. By using §*, we construct a vectroid 9 (whose
rank does not exceed one) and obtain a morphism We M( ¥V, ¥*) from w*. Then R(wi (fB)) =

Der (W) (R(‘B)).

(b) For a weakly completed poset (S, <,~) and Q c S, we construct S = (5, <,="); let d2: § —5¢
be an identity map and assume that x~"y if and only if x~y and x, y & Q. The operation of passing
from S to S2 with the help of d2 (or a morphism of the corresponding vectroids d2: V— ¥€) is
called a wave break for Q. The following equality is true:

R(d2(B)) = Der(D?)(R(B)).

Below, we obtain criteria for quasifinite vectroids to be indecomposable and for elementary representations to
be equivalent. First, note that if an S-graph B is disconnected, then the representation R(‘B) is decomposable.
Indeed, let B = B; lL B,. In this case, R(B) = R(B,) ® R(‘B,). which directly follows from the construction.



ELEMENTARY AND MULTIELEMENTARY REPRESENTATIONS OF VECTROIDS 1679

Proposition 4. Suppose that a vectroid V is acyclic, B and D are S-graphs, and the S-graph B is
connected. Then the following statements are true:

(a) If R(B) = R(D), then B is isomorphic to D.
(b) R(B) is indecomposable.

Proof. First, note that Example 4(a) allows us to regard S as a weakly completed poset. We prove the
proposition by induction on d(B) for all weakly competed posets S and S-graphs B simultaneously. Denote by
d(B) the number of wavesin T, ie., d(B) = [{{x,y} < T |x~y}|. Inthis case, if there is anode in B that
contains at least two nondegenerate vertices and one of them belongs to an element of @, then d(d2(B)) <d(B).
If T'=(J, the proposition is obvious (see Remark 6). Therefore, we assume that I' # &.

We take d{B)=0 as a basis of induction. By virtue of connectedness, B has the form

B = or B=0—e ,
s s t

where s,t€ §. In this case, the proposition can easily be proved by using the fact that S is acyclic and the ex-
change theorem ([1], 3.3, b). ’

Induction step. By virtue of Lemma 8, there are two possibilities for the connected S-graph B, namely, either
it contains no vertices joined by wavy lines, i.e., d(B) = 0, or there is a node containing at least two vertices and
there is no other node in B that bélongs to the same equivalence class in S. By choosing an arbitrary vertex x
from this node and setting Q = {@4(x)}, weget B = d2(B) and D’ = d2(D), where B = B, 1L B,, B,
and B, are connected S(¥2)-graphs, and R(B’) = R(D’) [see Example 4(b)].

By the induction hypothesis and the uniqueness of the decomposition in direct sum in Rep ¥ 2 we establish
that D'=B =B, Il B,, R(D’') = R(B,) ®R(B,), and R(B,) and R(B,) are indecomposable. Therefore,
either D=3 or D= B, Il B,. In the latter case, X contains two direct summands of the form Vg~(,) and Xy
contains one such summand, which is impossible. If R(‘B) is decomposable, i.e., R(B) = (U,,i;,1;) ® (U,, i,,
L,), then Der(D9)(U,, i;, 1) = R(B,) and Der (D2)(U,, iy, 1,) = R(B,). We again get two direct sum-
mands of the form Vg=(,y in [ @ ,, but X has one such summand. Thus, R(‘B) is indecomposable. Proposi-
tion 4 is proved.

Corollary 1. Let a vectroid V be acyclic and let ‘B and D be two arbitrary S (V)-graphs. Then the
relation B = D follows from R(B) = R(D).

This statement is a consequence of Proposition 4 (a) and Remark 6.

Example 5. Let v be a chain vectroid and let S(/) be not acyclic. Let us prove that ¥ has infinitely
many nonisomorphic indecomposable elementary representations.

Assume that the nondegenerate S = S(%/)-graph

is a cycle (note that n > 3). We assume that the cycle 2 is minimal. We define the S-graph
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N1 Y2 Y3 Ya Ymn -1 Ym
D, = O NN 8 NN O . — 8NN " »

(Pﬂ)m(yi)= ®p(x;), where 1<i <n and i modn=imodn. Then, for any m e N, the representation R(D,)e
Rep ¥ is indecomposable. In this case, obviously, R(D,,) #* R(D,,-) if m#m’. Example 4 (a) allows us to
assume that S is a weakly completed poset.

For a vertex y of the S-graph D,, we denote by y’ the nondegenerate vertex such that y'~y. For y ¢
{y:, ym"}, we denote by ¥ the vertex such that ¥ —y.

Let M be the matrix of the representation R(D,,), dim U p, =!, dimXp =k. Let us introduce a partial
ordering = on the set of nondegenerate vertices A, of the S-graph D,,. Let y; and y; belongto A,. In the
case (p,Dm(y,-) # (p@m(yj), weset y; < y; ifandonly if @, (y;) < Pp ;) I Op (y;) = ®g, (), then, in
order to define <, we construct the following two sequences of integer pairs (possibly, of zero length):

(al,bl), veey (aa,ba), (aa+1,b(x+]), ee sy

(Cl’dl)’ ces (Cowda)’ (C(x+1’d(x+1)a e

If je {1,mn}, weset y; < y; and do not start the construction; if i€ {1,mn}, weset y;, ¥ y; and also do
not start the construction. If i,j¢ {1, mn}, then (yal,ybl) = (y;,y;) and (ycl,ydl) = (3, 5;)-

We continue the construction by induction. If (a4, by) = (¢ dy) = (0,0), then the construction is com-
pleted and we set y;<y;. If (aq.by) = (0,0), then (ayi1:bq41) = (0,0). I (cqdy)=(0,0), then
(cqsrdos1) = (0,0). If y, or y, belongsto {y;, ¥, then the construction is completed and we set
yi*y;. If bge {1,mn}, then (agi;,bge1)=(0,0). If dye {1,mn}, then (cgui,dgs1)=1(0,0).
Otherwise, if (ag, bo) # (0,0) and ¥, ¥, #31. Y then (g 233, )= (04,07 05,)7)- X (coud) #
(0,0) and ¥, ¥a, # Y1, Yme then

Gegora) = (0607 04,)7)-

By construction, the relation y; X y; X y; implies that y; =y;.

Let us introduce a partial ordering == on rows of M. For this purpose, note that the set of rows of M is bijec-
tivetotheset K(D,,) = {{y1}-{v2: 3% s Lmn2s Ymmi ts LVmuar t- Weset ALEB, A,Be K(D,), if,
forevery z€ B, onecan find Z € A suchthat z <z (cf. [S5,p.13]).

Let (¢,&) € Endge,v(R(D,,)) be an endomorphism and let (F=(f;;), G=(g;;)) be its matrix notation.
In particular, FM = MG. Then, by analogy with the proof of Lemma 10, we can show that f;; #0 for some
(¢, &) ifand only if iL=j, i,j=1,1, and g;j #0 forsome (9,&) ifand only if ixj, i,j= 1, k. Hence, we
conclude that E= and = are transitive and, therefore, they are orders.

Let us introduce linear orders on the bases Uy, and Xp  so that iT=j yields i<j (for Up ) and i=j
yields i<j (for X@m). This can be done because every order can be extended to a linear one (see [14], VILSE,
Theorem 8). For such an ordering of bases, the matrices F and G are upper triangular.

Assuming that R(D,,) is decomposable, we can find an idempotent (@, &). Then, for arbitrary A € k™, the
pair (¢+Aidy,, , E+Aid X@,,,) is an endomorphism of R(D,,). An arbitrary nonzero element of the matrix ( F +
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ME;))M has the form (A +f;;)m;, or Zﬁl_ a;m;, . Similarly, every nonzero element of the matrix M (G +
AE}) hasthe form m;, (A + g,,) or ij,mijgj,. Since (AE;+F)M = M(AE,+G) forall Le k*, the non-
zero element of this matrix is equal to (A +f;;)m;, = m;, (A +g,,) or Z

(@,&) € End (R(D,)) (here, § is the diagonal of the matrix ¢).
But then we can conclude that the S-graph D, is disconnected, which is not true. Therefore, the representa-

i By = 2j¢imijgjt' Therefore,

tion R(D,,) is indecomposable.

Proposition 5. Every chain vectroid ‘V has finitely many classes of isomorphisms of indecomposable ele-
mentary representations if and only if |C(V)] < oo.

This statement obviously follows from Propositions 3 and 4 and Example 5.
Corollary 2. A finitely represented vectroid ‘V is quasifinite.

The validity of this statement follows from Proposition 5.

5. Orderon C(S)

A pair (B, x), where B is a connected S-graph and xe B\T, is called an S-graph with marked vertex.
Denote the set of classes of isomorphisms of S-graphs with marked vertex by C(S). We assume that the com-
pleted biordered set S is acyclic.

Let (B,T,-,~ ®z) beaconnected S-graph andlet xe B be its vertex. We define (connected) S-graphs

[, B and r,B as follows:

(a) Let xe I andlet I'"(x) = {y}. We remove the straight line that joins x and y from I, ie., we
introduce a relation —" on T" as follows: For z,z, € I', wehave z, ~ z; if and only if z; -z, and

{z1.22} # {x,¥}. Then,since § is acyclic, (B, I'\{x,y},-",~, @) is a disconnected S-graph
with two connected components. One of these, denoted by [/, B, contains the vertex x, and the other
one, denoted by r,B, contains y.

(b) Let xe T andlet I'"(x) = &. Inthiscase, [, B=(B,T\{x},-",~,9z), where ~" is a restriction
fo F\{x} and rx$ = (fB:(X), @, "'IBz(x), (Pﬂlﬁz(x))'

(¢) Let x¢ I". Inthiscase, [, B= Band r,B= .

For (B.x)e C(S) and se S7(@g4x)), we now introduce derivatives 0}(B,x) and 0%(B,x). Let
y€ B(x) andlet @4y) = 5. Weset

(B.x) = (1,B.y).

(ryB,z) if yeT and y-z;
3%(B,x) = 0 if yel';
1 if yeI', T™(y) = &.
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We denote 0.(B,x) =0y, (,~(B,x) foraverex x"e B (x). Foran S-graph (D,y) with @ 5(y)= ¢ 5(x)

and for a vertex y'e D7(y), ¢ 5(y") ~ @4(x), we write 0,(B,x) = B('pg(y,)(ﬂ X).

Let us introduce a relation < on C(S). First, we add the maximal element 1 and the minimal element 0 to
C(S) (therelation < on C(S) is induced by the relation < on C(S) LL {0, 1}). Consider the S-graphs (B, x)
and (D,y)e C(S). Therelation < is defined by induction on the common number of vertices of both ~§-graphs
B and D.

(@) If @z(x) x @p(y), weset (B,x) x (D,y);
(b) If 9g0x) < @(y), weset (B,x) < (D, y):

© If ¢u(x)=0@(¥)=s and s 45, then (B,x)<(D,y) if and only if 3X(B,x) < 32(D,y) for every
re S7(s);

(d) If 51=0@4x) = s,=04(), then (B,x) < (D,y) if and only if there exist 7;, 2, & S such that
S1=>8,, ty=>1,, §; ~ 1, S ~ 1y, and at least one of the following conditions is satisfied:

dn afl(ﬂ,x) < afz(ﬂ,y);
d2) 9, (B.,x) < 3. (D,y);
@3 92 (B.x) < 9, (D,y).

The reason for introducing the relation < is clarified by the following construction: Let ¥ be a chain vectroid
and let S=S(%V). We define a spectroid El of elementary representations with marked zero column as follows:
The objects of the spectroid El are the elements of the set C(¥)=C(S(¥)). For (B,x),(D,y)e C(¥)=H],
morphisms (¢, &) € Rep V(RB,RD)) such that x§ € Uy+ yk form the set of morphisms El(( B, x), (D, y)).
Note that y & Uy, and Uy + yk is a subspace of X, Obviously, El is a category because El((B,x), (D,y)) o

EL((D,y),(E,z)) c EI((B.x),(E.z)).
Lemma 9. If a vectroid ‘V is acyclic, then Bl is a spectroid.

Proof. The indecomposability of the representation R(‘B) proved in Proposition 4 (b) implies that the object

(B, x) e El is indecomposable.
Let us show that different objects of the category El are not isomorphic. Let (B, x), (D,y)e El. If

B = D, then R(B) * R(D) by virtue of Proposition 4 (a). Hence, (B,x) # (D,y). If B=D but x#y,
then the isomorphism (@, &): (B, x)— (D, x) induces the isomorphism (@, &): R(B") = R(D’), where B =
(B, TU{x},~.~. 95 and D' = (B,TU{y},-.~, 4. Recallthat B= D and x,ye I'; the relation — on
B and 7’ is atrivially extended relation — on T. Thus, it suffices to prove that the S-graphs B" and D’ are not
isomorphic if x#y.

If B =17, then Qg(x)=@4(y). By Lemma 8, there exists anode R in K(B) such that ¢ 4z(R) # ¢ 4(0)
for any node Q € K(T'). The connectedness of B implies that there exist paths (x(, X1, X7, ..., X,_1, Xp_1> X,,)

and (34, Yi» Vs -+ » Yime1> Yini1> Ym) thatjoin B~(x) and B~(y), respectively, with R for which x; = x, yo =y,
x,€ R, and y,_eR.
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If f: B'— D’ is an isomorphism, then, for any ze RN, we have f(r,B) cr D'. This readily follows

from the facts that f| R is an identity and f transforms the path joining some node with R into the path that joins
the image of this node with R. Therefore, f induces the isomorphism r, B =r 2 T forevery ze TNR.

If x,=y,, then,passing to thethe S-graph r B, we can assume that x,#y,. If x,#y,, then, as proved
n
above, we get 1, B’ = Iy, 7, which is not true because x is a nondegenerate vertex in Iy 7' and a degenerate

vertex in r, B’ Lemma 9 is proved.

There is a one-dimensional (nonfaithful) module N, N(B,x) = ag k (=Ug+xk/Upy), over the category

El. Every morphism (¢,&)e E1((B,x),(D,y)) induces a linear map &: N(B x)— N(D,y), which estab-
lishes the structure of the El-module on N. The correctness of the definition is obvious.
We set El = El/AnnEIN.

Lemma 10. Let a vectroid V be quasifinite. Then E1((B x),(D,y))#0 ifand onlyif (B, x)<(D,y).

Proof. 1. For the S-graph B, we denote by {1,,ze B} the basis of the space D Xgz(= modk(Xsz, k))
dual to the basis {z,ze B}. In this case, it follows from step I of the proof of Lemma 2 that ¢ z(x) < ¢ ,(y) for
xe B and ye D if and only if there exists & e MV g=(,), V() suchthat (x)&t, # 0.

In particular, if EI((B x), (D, y)) # 0, then ¢4x) < ¢ H(»).

2. Let s = @g(x) <7 = @p(y). Then there exists a morphism &e W Vge(,), Vp(yy) such that x& = y.
Therefore, 0 # (0,&) € EL((B,x), (D, y)).

3. Let s = @4(x) = ¢ (y) andlet s 5. Letus prove that EI((Bx),(D,y)) # 0 if (B,x)< (D,y).
By the definition of <, we have 02(B,x) < 9%(D,y) forevery te S™(s). In particular, for an arbitrary nonde-
generate vertex x” & I'"(x), there is a unique nondegenerate vertex y,- € A™(y) such that @g(x") = 0p(¥y).
We set R, = {x'el’"(x)l ai,(za, x) # 1}.

By the induction hypothesis, we can assume that there exist nonzero morphisms fy = (y,/.&,) €

El (8 i (B, x),0 i,(@, y)) defined for every x"€ R . Letus decompose the vector spaces

XQ-‘—‘- Vg.:(x)@ ( 6—) Xaz,(g,x)),
x’eR, o

Xp = Virgy) @ ( ® xaz,@,y)] @( @ xaz,@,y)).
X' €R, * y'e *

Ry, y'#y%y

Taking into account that Vg~(,) = Vp~(y), we define the morphism § as follows:

lypo, O 0
é = 0 @ &x' 0 : x$ -—> X@.
x"eR,

We also define ¢: Ug— U as a unique linear map such that (@, &) e Rep Y R(B), R(D)). One can directly
verify that 0 # (¢,&) € El.
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Assume that E1((B, x), (D,y)) 3 (¢,&) #0. Letus prove that (B x)< (D, y), ie., 92(B,x) < (D, y)
forevery re S7(s). Let x"€ B7(x) and y’e D(y) denote vertices such that @z(x") = Q) =t; wecan

assume that 8?‘(@, y) # 1. Furthermore, we set

{x' if T7(x)={x};
o =
0 if T"(x)=0.

Let Ee Y Vg~(xy Vo=(y)) be acomponent of the morphism &. Note that & is invertible. If 0%(D,y) =0,
then 1,/|Up=0. If 3%(D,y) 20, then x'+ e Ug and 0% (x'+ oc)g'cy/= (x"+ @) 9t,. However, we have
(x’+ o) @€ Ugp. Thus, we arrive at a contradiction. Therefore, 92(B, x) = 0.

Consider the case 92(D,y) # 0. Let A be the component of the morphism & that transforms Xaf(ﬂ )
into xaf(m, y) - Also assume that 1}: Ua?z,x— Xaf(@, y) is a uniquely defined linear map such that (n,2) e
El (8?‘(273, x), 0%(D, y)). Let us prove that (1, A) # O in EI.

For this purpose, it suffices to prove that x"Aty # 0. We have 0 # (x"+ E’)&,Ty, = (x"+ X")o1y. By
virtue of step 1 of the proof and the fact that @ ,(y") % ¢p(3’), the conditions Bt # 0 and Bty = 0 are
equivalent for e Up This implies that 0 # (x"+ ¥")E15 . Furthermore, @4(x") = ¢4(y") % 90p(5") and,
according to step 1 of the proof, (x"+ X")Ety = ' &1y . Thus, 0 # ¥ {1y and 0 # (M, ) e EL.

4. 5 = Qg4(x) = t = @ (y). The proof is similar to step 3; one should take into account that, in this case,

there exists a morphism & & WV g=(,), V() of rank two such that x&t, # 0.

Corollary 3. For a quasifinite vectroid V, the relation < on C( ‘V)_is a partial ordering. The spectroid
constructed on the basis of the poset C(V) is isomorphic to the spectroid El.

Remark 9. One can also define the poset C( %) for a chain vectroid 9/ without assuming that def /< 1.
In this case, the notions of S{¥)-graphs and elementary representations remain the same, but, in item (d) of the de-
finition of the ordering < on C(%/), one must demand that the edges s, => s, and t;=>t, be equivalent (see
Remark 4).

6. Multielementary Representations

In this section, ¥/ denotes a chain vectroid. Let U be another chain vectroid. Then the completed biordered
sets S(7) and S(7) and the set C(V) of S(V)-graphs are given. Consider the map C(V)— C(7),
(B, x) = B. Denote its composition with the map R: C(%) — Rep ¥ by P.

Assume that the map A : () — C(¥) is given. Then the map of objects Ex (A): ObRep U —ObRep ¥
is defined; it associates the representation Ex (1) g of the vectroid ¥ with the matrix

M(g) 0

M(Ex (A)g) = M(\(sy))

M (0 (s,))
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with the representation (W, g, Z) € Rep U with the matrix M(g). Here, M (A(s;)) is the matrix of the element-
ary representation P(A(s)) in which the (zero) column corresponding to the marked vertex A(s;) of the S(¥)-

graph is omitted and replaced in the matrix M(Ex (X)g) by the column of the matrix M(g) marked by the ele-
ment s;.
Assume that the map A satisfies the following conditions:

(i) If tl’ t2€ S(ﬂ) and tl ztz, then P}\,(tl) = P?\,(tz),
Gi) if A(ry) <A(z,) (ie, A(t) # A(zy) and EI(A(t;),A(z5)) # 0), then ;< ¢,.
In this case, the representation Ex (A) g is called the A-extension of the representation g. In particular, let
YV be a quasifinite vectroid. Then the partial ordering < is defined on C(%) (see Sec.5). Let U be a one-di-
mensional vectroid constructed on the basis of C( 7). For this vectroid, S( U) = (C(¥),<, <, A), where A s

the diagonal. The image of the map Mul =Ex (id o 4)): ObRep U=0bRep C(¥) — ObRep ¥ consists of rep-
resentations of the vectroid ¥V called multielementary representations.

Example 6 (Nonmultielementary representation). Let

ce® ep ao=—=>o0 b
¢ I w I
a0 —>ob q ® e d
E= E:

a0 T—> 0 b’ ce® oy

v I y T
9 e o d a0 —T"—>0b
a~a’, b~b’, 11l a~a’, b~b’, 111

be completed biordered sets and let E = Vect(E) and E" = Vect(E™) (see Sec.2). Then E and E* can
naturally be regarded as bipartite completed posets in the sense of [11, 12]. It was proved in [11, 12] that £ and

E* are finitely represented and each of them admits a faithful indecomposable representation unique to within an
_isomorphism, namely, the representation g with the matrix

1 61 00 0 0 O
M(g) = 1 001 06 0 0O
0 0001 1 0090
6 00 01 0 1 1

The columns of this matrix correspond to a, b, ¢, p, a’, b’, d, g. The representation g is not multiclementary.
It is called the exceptional representation (of E or E’).

Proposition 6. Let V be a quasifinite vectroid and let g, and g, be representations of the poset C(‘V).
Then the following assertions are true:
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(i) Mul(g;®g,) = Mul(g;) ® Mul(g,);
(ii) if g, =g; [in Rep C(V)], then Mul(g,) = Mul(g,) (in Rep V).

To prove the proposition we perform the following construction: Let (A, M) e M be a module over the ag-
gregate and let Der (A, M) = (RepM, E;;) be a derivative module. Assume that another module (B,N)e M
over the aggregate and the morphism (F, ®): (B, N)— Der (A, M) € Mor M are given. In this case, we can de-
fine a morphism (/,IT): Der(B,N)— Der(A, M). Here, I: RepN —Rep M is the functor that takes the value

(W,g.Z) = (W@v,(g(’?(z)), X)

on the representation (W, g,Z) € RepN with F(Z) = (V,£,X), and I1: Ey— I"E,, is the homomorphism of
B-modules defined by the following diagram:

W,g,Z
Ex(W.g,2) — 2885 E (1(W,8,2) = Ey(F2)

(. o |
N(Z) M(FZ)

Under certain additional conditions, which can easily be written in the explicit form, I(W, g,Z) is the A-ex-
tension of the representation g. '

Proof of Proposition 6. Assume that ( B, N) is a module over the aggregate obtained from the module over
the spectroid (El, N), ie., B = @EI (see Sec. 5). We define a morphism (F,®): (B, N)— Der (), setting
F(B,x) = R(B), as follows:

@(@,X)Z N(@,X) = ag’xk e Xg = Eq/(Ug,ig,X@),
ag P(B,x) = xe Xg.

By applying the construction described above, we obtain a functor /: Rep N —Rep 7. On the other hand, the cat-
egory Rep N is naturally epivalent to the category Rep C( V) (see Corollary 3). It is easy to see that every pre-
image f of a representation g€ C(9/) in Rep N has the same matrix as g, and I(f) is the representation of
Mul (g). This obviously proves Proposition 6.

If dim % = 2, then the poset C(7/) coincides (by definition) with the poset of “flaggened sequences”
St(9)) defined in ([1], 5.8). It was proved in [7-9] that a vectroid ¥ of dimension <2 is finitely represented if
and only if the poset C (V) is finitely represented. However, in this case, not all indecomposable representations
are multielementary [11, 12].

Hypothesis 1. A vectroid V is finitely represented if and only if V is a chain vectroid, def V<,
dim V<3, and the poset C(‘V) is finitely represented.

Hypothesis 2. Suppose that a vectroid ‘V is finitely represented and g is its faithful representation. Then
g satisfies one of the following conditions:
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(i) g is decomposable;
(i) g is indecomposable and multielementary;

(iii) g is the \-extension of the exceptional representation of E or E * for proper A : E—=C(V) or
A: E*— C(V) (inparticular, g is indecomposable).

The authors are indebted to P. Gabriel for discussions, in which the idea of this paper emerged, and numerous

remarks taken into account in the final version of the paper.
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