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It is proved that a finitely spaced module over a k-category admits a multiplicative basis (such a module 
gives rise to a matrix problem in which the allowed column transformations are determined by a module 
structure, the row transformations are arbitrary, and the number of canonical matrices is finite). 

It was proved in [1] that a finite-dimensional algebra having finitely many isoclasses of indecomposable repre- 
sentations admits a multiplicative basis. In [2, Secs. 4.10-4.12], an analogous hypothesis was formulated for fi- 
nitely spaced modules over an aggregate and an approach to its proof was proposed. The purpose of  the present pa- 

per is to prove this hypothesis. Below, k always denotes an algebraically closed field. 

Let us recall some definitions given in [2] (see also [3]). 

By definition, an aggregate A over k is a category that satisfies the following conditions: 

(a) for each X, Y s N, the set A(X,  Y) is a finite-dimensional vector space over k: 

(b) the composition maps are bilinear; 

(c) A has finite direct sums; 

(d) each idempotent e s A(X,  X) has a kernel. 

As a consequence, each X ~ A is a finite direct sum of indecomposables and the algebra of endomorphisms of 

each indecomposable is local. 

We denote by f lA  a spectroid of N, i.e., a full subcategory formed by chosen representatives of the isoclasses 

of indecomposables; let RA be the radical of A. Suppose that flA has finitely many objects. For each a, b ~ fiN, 

the space !1~(a, b) consists of all uninvertible morphisms of A(a, b); therefore, A(a,  b) = Ra(a,  b) for a ~e b, 

A(a,  a) = k 1 a @ k ~ ( a ,  a). 

A module M over an aggregate A consists of finite-dimensional vector spaces M(X) ,  one for each object 

X ~ A, and of the linear maps M ( f ) :  M(X)  --~ M(Y),  m ~ fro, f ~ A(X,  Y), which satisfy the standard ax- 

ioms, namely, 

1xm = m, ( f  +g)m = f m  + gm, (g f )m  = g( fm) ,  f(o~m) = c~(fm) = (o~f)m, C~ ~ k. 

It gives a k-linear functor from A into the category mod k of finite-dimensional vector spaces over k. We say 

that a module M over A is faithful if M ( f )  ~ 0 for each nonzero f ~ A(X,  Y). 

Define the basis of (M, A )  as a set { m  a, y~ba} consisting of bases m~, m~ . . . .  of the spaces M(a),  

a ~ JN, andbases  fba, f2ba . . . .  of the spaces 9 ~ ( a ,  b), a, b ~ J.ft. Themaximal  rankof  M ( f ~  a) is called the 

rank of a basis. A basis is called a scalarly multiplicative basis if it satisfies the following conditions: 
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(a) each morphism fba is thin, i.e., the equality fl ba = g + h implies that rank M ( fba) <_ rank M(g) and 

rankM(ft ha) <rankM(h)  for all g, h e  A(a, b); 

(b) each product f l  bam a has the form )~mbp, )~ ~ k; 

(c) flbama = Lmbp, fbamja = gmbp, and )~,g e k\{0} imply i = j .  

b We say that the basis is multiplicative if each nonzero product fba m a is a basis vector rap. 

Denote by M k the aggregate formed by all triples (V, h,X), where V ~ modk,  X e A, and h 

Homk(V, M(X)). A morphism from (V, h, X) to ( V ;  h', X')  is defined by the pair of morphisms q0 e 

Hom k (V, V') and ~ e A(X, X') such that h'q0 = M(~) h. These triples are called spaces on M. We say that M 

isfinitely spaced if M k has a finite spectroid. 
The present paper deals with the proof of the following theorem: 

Theorem. I f  M is a faithful finitely spaced module over an aggregate A ,  then (M, A)  admits a 
muItiplicative basis of rank < 2. 

We wish to express our deep gratitude to P. Gabriel, Th. Brtistle, T. Guidon, and U. Hassler for discussions and 
essential corrections. 

1. Construction of a Scalarly Multiplicative Basis 

In Secs. 1-3, M always denotes a finitely spaced module over an aggregate N. 

As shown in [2, Secs.4.7, 4.8], for each a ~ JN, the space M(a) has dimension d(a) < 3 and a sequence 

ml, m2, . . . ,  rod(a), where 

m i e (s a ) ) i - l M ( a ) \ ( ~ ( a ,  a))iM(a), 

is a basis in M(a). It is called a triangular basis because the matrix of each map M(f) ,  f e A(a,  a), has a 

lower triangular form. We assume that each basis m~ .. . .  , mad(a) in a scalarly multiplicative basis is triangular (it 

is always triangular up to permutations of vectors). 

A scalarly multiplicative basis is called normed if it satisfies the following condition: 

(d)  jlrba mia= ~.m b and )~ ff {0, 1} imply that flbam a, = mp,b for some i '  < i. 

A scalarly multiplicative basis can be reduced to a normed basis by means of multiplication of f l  ba by scalars. 

A scalarly multiplicative basis is called reduced if it satisfies condition (d) and the following condition: 

(e) If a morphism 

Za s, 
l 

is a product of basis morphisms, then 

rankM(qo) = Z rankM(fba) �9 
k t eO 
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At the end of this section, we prove that every multiplicative basis of  (M, A )  is reduced if char(k)  ~: 2. 

Let m~ . . . .  a a m/t?, we a , rod(a) be a fixed triangular basis of M(a)  for each a s JA.  For mj and define 
a b ba a j ,  ba. M(a) --~ M(b)  such that e~ a mj = m i and eij mj, = 0 for all :~ j.  linear map eij 

Let f ~ ~a(a,  b), a , b ~  JA.  We say that f i s a s h o r t  morphismif f ~ - ~ ( c , b ) ~ ( a , c )  for all 
ba c ~ JA,  f is a prime morphism if M(f )  = eij , and f is a double morphism if 

ba b j ,  ba .t  .p M(f )  = e U +~.e , eij f~ M(a,b),  i < t ,  j < j ,  0 ~ : ~  k. 

The coefficient )~ is called the parameter of a double morphism. 

Propos i t ion  1. A set { m~, fl  ba } is a normed (reduced, respectively) scalarly multiplicative basis if and 

only if the following two conditions are satisfied: 

(i) m~, m~ . . . .  is a triangular basis of M(a), a ~ JA; 

(ii) f t a  , ba f~ . . . .  is the set of all prime and double morphisms of A (a, b), a, b ~ JA,  except for one 

double morphism (one short double morphism, respectively) if the number of double morphisms is 
equal to three. Moreover, the number of double morphisms of A ( a, b) is equal to zero, one, or 
three, and, in the last case, there exists a short double morphism. 

The statement of Proposition 1 about a normed scalarly multiplicative basis follows from Lemmas 1 and 5. The 
complete proof of Proposition 1 will be given in Sec. 2. 

L e m m a  1. If d(a) = 2, then M ( a , a )  = klM(a)+ ke~.  I f  d (a )  = 3, then M ( a , a )  = klM(a)+ ke~  + 

ke3~ or 

aa aa aa 
M(a, a) = klM(a) + k(e21 + ~aae32) + ke31 (I) 

and 0 ~ ~'aa ~ k. 

The proof of Lemma 1 is obvious. 

For every linear map cp : M(a) ~ M(b) ,  we denote by cPi j ~ k e }  a the linear maps such that q~ = ~ cPi j. On 

{1, 2 . . . . .  d ( b ) }  x {1, 2 . . . . .  d ( a ) } ,  we introduce an order relation by ( i , j )  > (l, r) if i <_ l and j > r. A pair 

(/, r) is called a step of q~ ~ M(a, b) if (Plr ~ 0 and cpi j = 0 for all (i, j )  > (/, r). A pair (1, r)  is called a step 

of M(a ,b )  if ~Sl r*0  for some ~ M(a ,b )  and q>ij = 0  for all q~E M(a ,b )  and all ( i , j ) >  ( / , r )  ( l > _ r  

because each basis m e, m~ . . . .  is triangular). 

L e m m a 2 .  I f  a, b e  JA, a ~ b, d ( a ) =  d(b)= 3, and M ( a , b )  has two steps (1,2)  and (2, 3), then 

M(b, a) = k e ~ .  

Proof. Let ~ ~ M(b, a). There exists q3 ~ M(a, b) having the steps (1, 2) and (2, 3). By Lemma 1, there 
exist e ~  M(a,a )  and g E M ( b , b )  suchthat  qf=q0~+Sq~ has the steps (1,1) ,  (2,2),  and (3,3).  The in -  

clusion A(b,  a)A(a ,  b) c 5~(a ,  a) implies that 

M(b, a)M(a, b) C M ( R a ( a  , a)) = k e ~  @ ke~  @ k e ~ .  
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Since ~(p' ~ M ( R a ( a ,  a)), all steps of ~ are not higher than (2, 1) and (3, 2). Since ~q~ ~ M(IPva(a, a)), we 
ab have ~t ~ ke31. 

Therefore, M(b, a) C ke~bl. 
b 2) e M k, where 

Assume that 

k 6 = k @ k G k @ k @ k @ k ,  

and h)~ is a linear mapping of k 6 into 

with the matrix 

M(b, a) = O. Let us examine the space 5-{;~ = (k 6, h~., a 2 

a2= a@a,  b 2 = b@b, ~ k, 

M ( a 2 @ b  2) = ( k m ~ ) 2 ~ ( k m { ) 2 @ ( k m ~ ) 2 0 ( k m b ) 2 ~ ( k m b ) 2 ( ~ ( k m b 3 ) 2  

(V) (10 * (I), 

We show that Y-/)~ 4 ~ Y-/u if 9~ • g. Let (% ~) be an isomorphism 5-/9~ -+ -q/r*" The linear mapping M({) 

has the block matrix (Kij), i , j  < 6, where K/j are 2 x  2 matrices. By the equality M(b, a) = 0 and Lemma 1, 

we have K~/= 0, provided that i < j. Evidently, Kll = /222 = /(33, K44 =/(55 = K66, and K43 = 0. 
Since hgq0 = M(~)h)~, the matrix of the nondegenerate mapping q~ also has the block form (~6) '  i, j <_ 5, 

where the blocks ~11, ~22, ~44, and q~55 are 1 x 1 matrices, the block qb33 is a 2 x 2 matrix, and d~ij = 0 if 

i < j. Moreover, 

0 K 0 (1o)O1 : 
(10 0 1 ~)TdP33 = (/s �9 (1 0 [ 1  ~)T, 

1 0 K44) 0 1 0 

K 1 
( i ) ~ 1 7 6  �9 

By the third equality, we obtain /(33 = K44; the first and second equalities yield 

Kll = K22 = "'" = K66 = (0  ~)' 

and it follows from the fourth and fifth equalities that c~ = 13 and ~, = It. We have infinitely many nonisomorphic 

indecomposable spaces ,q-/~, )v ~ k, on M. This proves Lemma 2. 

Let (l 1, r 1 ) . . . . .  (l v r t) be all the steps of M(a, b ). We set 

S ( a , b ) =  2 k e ~  a (resp. S ( a , b ) =  ~,  kei~ a ), 
(i,j) (i,j) 

where the sum is taken over all (i,j) such that there exists a step (lp, rp) > (i,j) ((lp, rp) > (i,j), respectively). 
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Lemma 3. Let a ~ b and M ( a, b) have the steps 
M(a, b) such that M(a, b) = k~g +S(a, b). 
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(1, 1), (2, 2), and (3, 3). Then there is no tg 

Proof Assumethat there exists ~g s M(a, b) such that M(a, b) = k~g+S(a, b). By the form of M(a, b) 

and A(b, a)A(a, b) C !~(a,  a), we have M(b, a) c ke~} + ke~ + ke~b2. 

Let us examine the space Y-/'~. = (k 3, h~, a �9 b), where ~ e k and h~. is a linear map from k 3 into 

with the matrix 

M(a@b) = kmf @km~ @km~ ~ k m  } ~km~ @km b 

0 0 0 0 0 ~  T 

1 0 0 1 0 / . 
0 1 0 0  

Let (% ~) be an isomorphism Y-/~. --+ Y-/'~t- 

M(b, a) and M(b, b) that the matrix of M({) has the form 

It follows from the conditions imposed on M (a, a), M(a, b), 

r0r 1 0 0 

a2 % 0 

0~4 0~3 (~1 

81 0 0 

8 4 8 2 0 

,8 6 8 5 8 3 

0 0 0 

Y1 0 0 

Y3 72 0 

[~1 0 0 

132 o 

[34 [~3 ~lJ 

Moreover, 81 = 8e 1, 8 2 = 8e 2, and 8 3 = 8e 3, where 8 e  k and e l , a 2, and ~3 are diagonal elements of the 

lower triangular matrix of g. By hgq~ = M(~)hz, we find successively that 8 = 0, the mapping (p has the lower 

triangular matrix with the diagonal (c~ 1, oq, o~ 1 ), oq = 13 l, and X, = g. 

Hence, Y-/~. ~ Y/u for )v ~ bt and M is infinitely spaced. We arrive at a contradiction that proves Lemma 3. 

Lemma 4. S(a, b) c M(a, b). 

Proof We must show that if (l, r) is a step of M(a, b), then 

Sir(a, b)  = E ke~ a C M(a, b). 
(i,j) < (l,r) 

By Lemma 3, there exists a ~g a M(a, b) having the step (l, r) but not more than two steps. If ~ and M(a, b) 

have the steps (1, 2) and (2, 3), then, by Lemma 2, e~blgl e M(a, a) has the unique step (3, 2). Hence, 

M(a, a) = klM(a)�9 ke~ �9 ke~ @ ke~. 

In all other cases, it follows from Lemma 1 that Sir(a, b) is contained in the space generated by all 8~e, where 

e e M(a, a) and g ~ M(b, b). This provesLemma4. 
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Lemma 4 implies the following assertion: 

L e m m a  5. Let a, b 
occur (~ab ~: 0 :/: gab): 

609 

JA, a ;~ b, and M ( a, b) * if(a, b ). Then only the following three cases can 

(a) M ( a, b) has two steps (l 1, rl ) and (12, r2), I1 < I2, and is equal to 

k ( e ~  + "  ba aabel2r2 ) @ S(a, b); 

(b) M(a, b) has the steps (1, 1), (2, 2), and (3, 3) and is equal to 

k(eb~ + )~ab ezb~) @ ke3b~ @ S(a, b), 

or  

k(ebl~ + )~abe3t~) @ keb2~ @ S(a, b), 

o r  

e ba k(e2L~ +'Oab 33)@keb1~ @S(a,b);  

(c) M(a, b) has the steps (1, 1), (2, 2), and (3, 3) andis equal to 

k(ebl~ + )~abe2b~) @ k(eb~ + gabe3~) @ S(a, b). 

Remark 1. In a normed scalarly multiplicative basis, each long double morphism q0 ~ A(a, b) is a product 

of double basis morphisms. Indeed, let q0 = "W, where gt ~ ~ ( a ,  c) and 1: ~ PLa(c, b). Then ~ is a unique 

double morphism of A(a,  c) (otherwise, q) is a sum of prime morphisms). Therefore, ~ is a basis morphism. 

Similarly, "c is also a basis morphism. 

Remark 2. A normed scalarly multiplicative basis is reduced if and only if all long double morphisms are 

basis morphisms. Indeed, let a long double morphism (p s A(a, b) be not a basis morphism. Then A(a,  b) has 
two double basis morphisms and qo is their linear combination. But this contradicts the definition of a reduced 
basis. 

Remark 3. Lemma 1 and Lemma 5 imply the statement of Proposition 1 about a normed scalarly multipli- 

cative basis. By Remark 2, to complete the proof of Proposition 1, we must prove that each A(a ,  b) (a, b ~ flA) 
does not contain three long double morphisms. 

Remark 4. If char (k) ~ 2, then every multiplicative basis is reduced. Indeed, otherwise, in view of Remark 

2, there exists a long double morphism q0 ~ A(a,  b) which is not a basis morphism. By virtue of Lemma 5, 

ba ba Remark 3 q~ = ~ - ' c ,  where gt and z are basis long double morphisms of A ( a, b). Hence, M(q0)= eii -e j j .  
ba ba implies that q0 is aproduct of basis morphisms; hence, M(q0) = eii + ejj and char(k) = 2. 
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2. The Graph of a Scalarly Multipl icative Basis 

In this section, we study some properties of a scalarly multiplicative basis and give the proof of Proposition 1. 

Following [2, Sec. 4.9], we define a poset P whose elements are the spaces a i = ( ! ~ ( a ,  a ) ) i - l M ( a )  (a ~ f f i ,  

1 < i < d ( a ) )  and where a i < b j  i f a n d o n l y i f  A ( b , b ) f a  i = b j  for some f ~ A ( a , b ) .  The elements a i ~  P 

are in a one-to-one correspondence with the basis vectors m a of every scalarly multiplicative basis {m a, f l  ha}; 

fbama = )~m~ for s o m e  f l  ba and 0 ~: ~, ~ k. Decompose the poset P into moreover, a i < bj if and only if l i 

the disjoint totally ordered subsets {a  I . . . . .  as(a)}, (a 1 < a 2 < ... < aa(a), d ( a )  < 3); each of them is called a 

double if d ( a )  = 2 or a triple if d(a )  = 3. 
The following three lernmas were given in [2] without proofs: 

Lemma 6 (see [2, Lemma 4.12.1]). The union U {a 1, a 2, a 3 } of all triples is totally ordered. 

Proof. The elements of a triple are totally ordered. 

Let { a 1, a 2, a 3 } and { b 1, b 2, b 3 } be triples and let some a i be not comparable with some bj. We construct 

the indecomposable spaces H~, = (k 6, hL, a 2 @ b 2) on M, 9~ ~ k, such that H~. g~ Y-/~t for X ~ ~t. 

For i = 3 and j = 1, the spaces H~. were constructed in the proof of Lemma 2. For arbitrary i and j, H~. 

is constructed by analogy with the block 

of h)~: k 6 ----> M ( a  2 @ b 2) located in the rows of 

km a @ km a @ km b @ km b C M ( a 2 @ b 2 ). 

Let (% ~): ~ -~ H~t and let (Mij)  be a block matrix of M(~). Then (Mij )  is not upper block-triangular, but 

we can reduce (Mo.) to the upper block-triangular form by means of simultaneous transpositions of vertical and 

horizontal stripes, since the set { a l, a 2, a 3, b 1, b 2, b 3 } is partially ordered. Hence, M is infinitely spaced. We 
arrive at a contradiction that proves Lemma 6. 

Lemma 7 (see [2, Lemma 4.9]). There are no the elements a i, ai , ,  bj, and bj ,  such  that  a i ~: ai,, 

bj ~: b),, a i is not  comparable to bj,, and  bj is not comparable to ai,. There are no elements a i, ai,, bj, bj,, 

c l, and c l, such  that a i --1= ai,, bj r bj,, c I r cl,, a i is not comparable to bj,, bj is not  comparable  t~o el,, 

and c l is not comparable to a i,. 

Proof. In the first case, we set 

H)~ = ( ke 1 @ ke 2, h)~ , a @ b ) ~ M k, 

= = b )~ ma,. In the second case, we set where h~e 1 m a + m b, and h)~e 2 mj + 

Hn = (ke  l @ke 2 @ k e  3, hn, a @ b @ c ) ,  

where h)~e 1 -= m a + m~,, h)~e 2 = m~ + mT,, and h~e 3 = mCl + )~ma,. Obviously, H~. 4~ H~t for )~ ~: g. 
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L e m m a  8 (see [2], Lemma 4.12.2]). Each triple contains at least two elements comparable with all elements 
of all doubles. 

Proof Assume that Lemma 8 is not true for a triple { a I, a 2, a 3 } and doubles { b 1, b 2 } and { c 1, c 2 }. 

Case I. Assume that b r c. For definiteness, we assume that a 2 is not comparable to b 1 and a 3 is not 

comparable to c r 

For each representation 5-/ 

k q 

A 1 ,[, 
kr4 B2 B1 A2 A3 C2 ) kt2 ( kr2 ) kq ( kr3 C1 ?, kt3 ( kr5 

of the quiver /~7 (see [2, Sec. 6.3]), we construct the space 

5{ = (kr~+"'+rs,h, a t~ @ b t2 ( 9 c  t3) E M k, 

where 

(A21 (A3) @ �9 B 2 @ C 2 h = Al ~ B1 C1 

is a linear mapping of  k r~ + ' + r5 into 

M ( a  q (9 b tz @ c t3) = (km~) q (9 [(km~) q @ (km~) t2 ] @ [(km'~) q (9 (kmCl) t3 ] (9 (km~) t2 @ (km~) t3 . 

The functor 2 - / ~  5{ on the representations 5{ with injective A 1, A2, A 3, B 2, and C 2 preserves inde- 

composability and heteromorphism (i.e., 5{ = 5-/' if 5-/ = 5{') .  Indeed, let ( % {)" 5{ 2_> 5{ ' .  The nonde- 

generate linear maps (p and M({)  have the block forms (ePij), i, j < 5, and (Kij), i, j < 7. The equality h'cp = 

M(~)  h implies that AidPll = Kl lA p 

( A ~ ) _  = (K22 K23)I;213 ' ~ C ~ )  ~ = (KsK~ K45 ) (;31) , 
~ B~ ) 1J)22 ~K32 K33 J K55) 

B~(I)44 = K66B 2, C2(I~55 = K77C 2. 

Since {a  1, a 2, a3} is a triple and { b I, b2} and {c  1, C2} are doubles, we have Kl l  = /(22 = K44, K33 = /(66, 

and /(55 =/(77. Since a 2 is not comparable to b I and a 3 is not comparable to q ,  we have Kz3 = 0, /(32 = 0, 

K45 = 0, and /(54 =0. Hence, the diagonal blocks of (cbij) and (K 0) determine a morphism 27-/~ 5-/'. 

Let  us show that this morphism is an isomorphism, i.e., the diagonal blocks d) u and Kii are  invertible. By 

strengthening the partial order relation in { a l, a 2, a 3, b 1, b 2, c v c 2 }, we obtain a total order relation << such that 

a 2 << b I and a 3 << c 1 (these pairs are not comparable with respect to < ). 

We transpose the horizontal stripes of the matrices of h and h' according to the new order. Then we trans- 

pose the vertical stripes to get the lower trapezoidal matrices. Correspondingly, we transpose the blocks of  (~ij) 
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and (K~/). Then the new matrix (Kij.) has a lower triangular form. The upper nonzero blocks of vertical stripes are 

theinjective maps Ap A 2, Ay B 2, and C 2 (since a 2 << b 1 and a 3 << Cl). It follows from h'qo = M ( ~ ) h  that 

(dPij) also has a lower triangular form. Hence, the diagonal blocks dPii and gii a r e  invertible and J-/= 5{'. 

However, the quiver /~7 admits an infinite set of nonisomorphic indecomposable representations of the form 

.q-/with injective Ap A 2, A 3, B 2, and C 2 (and surjective B I and Cp which will be used in case II). These rep- 

resentations are determined by the matrices 

(AI IA2IA3)  = 
1 

0 

1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

0 1 , 

1 

0 

( B I I B z )  = ( C 1 1 C 2 ) =  0 1 ' 

and they are nonisomorphic for different a ~ k. This contradicts the assumption that M is finitely spaced. 

Case II. Assume that b = c. By Lemma 7, if a i is not comparable to b 1 and aj is not comparable to b 2, 

then i = j .  Let a 2 and a 3 be not comparable to b I. Then a 1 < b 1 and a 3 < b 2. 

As incase  I, for eachrepresentation 5{ of the quiver /~7 with injective Ap A 2, A 3, B 2, and C 2 and sur- 

jective B 1 and C 1, we construct the space f /  = (k  n + + rs, h, a tl @ b t2 + t3) ~ M k, where 

h = Al ~ 131 C1 

is a linear mapping of k n + "  + r5 into 

M ( a  tt ~ btz+t3) = (km~) t~ ~ [(km~) q �9 (kmbl) t2] ~ [(km'~) h �9 (kmb) t3] ~ (kmb2) t2 ~ (kmb2) t3. 

Let (% {), .q~ -~ 52/'. It follows from the order relation for { a 1, a 2, a 3, b 1, b 2 } that all blocks over the 

diagonal of the block matrix K = (Ku)i, j = 1, 2 ... . .  7 of the mapping M({ )  are zero except the blocks /(35 = K67. 

Let us prove that they are zero, too. 

Indeed, by comparing the blocks with index (2, 3) in the equality h'(p = M(~)h,  we obtain A~q:~23 = 0 and 

~23 = 0, since A~ is injective. By comparing the blocks with index (3, 3), we obtain B~ ~23 = /(35 CI and 

/s = 0, since C 1 is surjective. 
Hence, K is a lower block-triangular matrix. Therefore, �9 is also a lower block-triangular matrix, whose 

diagonal blocks Kii and I~ii a r e  invertible, 5{--- 5{'. This proves Lemma 8. 

Now fix a normed scalarly multiplicative basis { m~, fba  I } and define the oriented graph F, whose set of 
ba ba, vertices F 0 is aposet  T andthere is  an a r r o w  ap ---> bq (ap, bq E 1"0) if and only i f  M ( f t  ba) = ~.eqp + ~eq,p 

for some short double morphism f l  ba (in this case, there is an a r r o w  ap, --~ bq, and we say that the arrows 

ap --4 bq and ap, --~ bq, are connected). An arrow ap -~ bq is called a weak arrow if A(a ,  b) contains three 

double morphisms. Each weak arrow is connected with two arrows. The others are called strong arrows, and each 
of them is connected exactly with one arrow. 
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Lemma 9. Let  a i < bj < c r and let a i ~ c r be an arrow. Then a ~ b ~ c ~ a, i = r, the spaces 

A (  a, b ), A (b ,  c), and A (a, c) contain exactly one, one, and three double morphisms, respectively, and there 

exists a pair o f  oriented paths (a i ~ ... ~ bj -+ ... ~ c i, a i, ~ ... ~ bj, --~ ... ~ ci,) consisting of con- 

nected strong arrows and a pair of  connected weak a r r o w s  (a i ~ ci, ai , ,  ----~ci,, ),  i "  r i " .  In the case o f  a 

reduced scalarly multiplicative basis, there is no other arrow from { al} to { cl}. 

Proof  Since a i < bj < c r, thereare morphisms g ~ A ( a ,  b) and h ~ A ( b ,  c) such that M ( g )  = aej~ a + 
ba 

ej, i, and M ( h )  = yeCrj b. + 5eCrb,,j,, (cz, [~, y, ~ ~ k and c~ ~: 0 e y). If hg is a prime morphism, then M(hg)  = 

o~y eCr a contradicts the existence of the arrow a i --~ c r. Hence, hg is a double morphism, 13 e 0 ;e 5, j '  = j " ,  

and g and h are unique double morphisms of A(a,  b) and A ( b ,  c), respectively. The space A ( a ,  c) contains 

the double morphism hg and the short double morphism corresponding to the a r r o w  a i ~ Cr, whence M(a, c) 

has the form given in case (c) of Lemma 5. 

If the basis is reduced, then, by Remark 2 in Sec. 1, the double morphism hg is a basis morphism and there is 

only one pair of connected arrows from { a t } to { c l }. This proves Lemma 9. 

Proof o f  Proposition 1. In view of Remark 3 in Sec. 1, we must prove that each space A ( a ,  c)  (a, c ~ J A )  

does not contain three long double morphisms. By contradiction, let f p f z , f 3  ~ A(a ,  c)  be three long double 

morphisms and let fr = hrgr, where gr is a short double morphism and r = 1, 2, 3. The morphisms gl, g2 '  and 

g3 correspond to the pairs of connected arrows (a 1 --~ x i, a 2 ~ x i ,  ), (a 1 ~ y j ,  a 3 ~ yj,),  and (a 2 ~ z l, 

a 3 --~ Z l,). 

Assume that x i < yj. By putting (ai, bj, Cr) = ( a  1, x i, yj) in Lemma 9, we establish that A ( a ,  y )  contains 

three double morphisms. By putting (ai, bj, Cr) = (al, yj, Cl) in Lemma 9, we obtain that A ( a ,  y)  contains exactly 

one double morphism. 

Hence, x i is not comparable to yj. Similarly, x i, is not comparable to z t and yj, is not comparable to zl,. 

This contradicts Lemma 7 and proves Proposition 1. 

Assume that the graph F is obtained from a reduced scalarly multiplicative basis. 

Lemma 10. I f  two arrows start from (stop at) the same vertex, then the arrows connected with them start 

from (stop at) different vertices. 

Proof  By contradiction, let bj ~- a i ---> c r and bj, +-- a i, --~ c r, be connected arrows. If bj < Cr, then 

a i < bj < c r and, by Lemma 9, the arrows connected with a i ---) bj and a i ---> c r must start from different vertices, 

but they start from ai,. By analogy, bj, is not comparable to Cr,. This contradicts Lemma 7. 

Lemma 11. There are no two arrows starting from (stopping at) the same vertex of  a double. There are no 

three arrows starting from (stopping at) the same vertex of a triple. 

The proof follows from Lemma 10. 

Lemma 12. There are at most two different pairs of  connected arrows starting from (stopping at) the same 

triple. 

Proof  By contradiction, assume that three pairs of connected arrows from a triple { al, a2, a3 } to { b i } ,  

{c i } ,  { d i }  exist. Since there are at most two pairs of connected arrows from a triple to a triple, we do not have 
three coinciding objects among a, b, c, and d. Hence, the following five cases are possible (up to the permutation 
of b, c, d): 



614 A.V. ROITER AND "V. V. SERGEICHUK 

(I) a = b ~ c ;~ d, a ~ d; 

(II) a = b ~ c = d; 

(UI) a ~ b = d ;e c, a ~ c; 

( IV )  a, b, c, d are distinct and there are two arrows a i .-~ bj and a i --~ Cr, bj < c r ; 

(V) a, b, c, d are distinct and, for each pair of arrows a i ~ x, a i --~ y, the vertices x and y are incom- 

parable. 

By Lemmas 9 -11 ,  we have the following subgraphs of F in cases (I), (III), and (IV): 

d j, 
/ 

a3 ai,, a, bi,, 

(I) (]l-I) ai" ~" bi" l \c, 
al  a i ~ bi 

Ci 

a i Ip "a 
d r , 

OV) a i, 

~- c i , ,  

c i , 

, /bj. . . . .  ,. 

a i : ,  c i 

Consider these cases. 

(I) If c i < a 2 or dj < a 3, then, by Lemma 9, A (a, a )  contains three double morphisms, which is a contra- 

diction. If  a 2 < c i or a 3 < dj, then, in view of Lemma 9, there is an arrow a 2 ~ c i or a 3 --+ dj, in contradic- 

tion with Lemma 11. Hence, a 2 is incomparable with c i and a 3 is incomparable with dj, which is impossible by 

Lemma 8. 

(II) This case is similar to the previous one. 

(HI) By Lemma 9, the inequality b i, < cj is impossible because A ( a ,  b )  contains three double morphisms. 

Lemma 9 also implies that the inequality b i, > cj is impossible because there are four arrows from { a l } to { b I }. 

Hence, bi" is incomparable with cj .  By analogy, bi" is not comparable to cj, in contradiction with Lemma 7. 

(IV) The inequalities c i, < d r and ci" < dr" are impossible by virtue of Lemma 9 because A ( a ,  c) contains 

three double morphisms. If  d r < c i, or d r, < ci,,, then the double morphism ~, ei'i'ca + ktei,,i, ,ca ( ~, ~ 0 r g )  is a 

product of double morphisms in A(a ,  d) and ,q(d,  c). Hence, .R(a, c) contains two long double morphisms in 
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contradiction with the arrows a i ~ c i and ai,, ~ ci,,. This implies that C i,  is not comparable to d r and ci,, is not 

comparable to dr', which contradicts Lemma 7. 

(V) This case is impossible by virtue of  Lemma 7. 

The proof of  Lemma 12 is thus completed. 

3. The Construction of a Multiplicative Basis 

In this section, we prove the following proposition. 

Propos i t ion  2. From every reduced scalarly multiplicative basis, we can obtain a reduced multiplicative basis 

by multiplying the basis vectors by nonzero elements of  k. 

Let F be a graph of a reduced scalarly multiplicative basis { m a, ba f~ } and let F 1 be a set of its arrows. An 

integral function z " F 1 --~ ~- is called a weight function and its value at an arrow is called the weight of  the ar- 

row if 

(a) Z(IX 1 ) = --Z((Z2) for each pair of connected a r rows  ~1,  0~2; 

(b) the sum of  the weights of all arrows stopping at a vertex v ~ F 0 is equal to the sum of the weights of all 

arrows starting from v (this sum is called a weight of  v and is denoted by z(v)) .  

L e m m a  13. A nonzero weight function does not exist. 

Proof. By contradiction, let z : F1 --~ 7Y. be a nonzero weight function. An arrow ot is called nondegen- 

erate if z(c~) r 0. 

Let v 1 < ... < v m be the set of all vertices of the triples of F. For each vertex vi, we denote by vi,, vi,, the 

two vertices such that { v i, vi,, vi,, } is a triple. 

By an elementary path o f  length s, we mean a sequence of arrows of  the form 

~'2 ~'s 
1)p ~-I ) Ul ) U2 ) "'" ) U s - 1  ) 1)q, (2) 

w h e r e  u 1 . . . .  Us- 1 are vertices of  doubles (they may be absent, i.e., a path may consist of  exactly one arrow) and 

z (9~1) ~ 0. Then, by Lemma 11 and item (b) of the definition of a weight function, z ()~1) = z ()~2) . . . . .  z ()~s); 

this nonzero integer is called the weight of  path (2). We say that the elementary path (2) avoids  a vertex v i if  

p < i < q. We now establish some properties of elementary paths. 

A. The intersection of two elementary paths does not contain any vertex of a double. 

B. Each nondegenerate arrow is contained in an elementary path. 

C. If  a vertex v i is avoided by an elementary path (2) having length at least two, then v i is incomparable with 

some vertex u I in this path. Otherwise, Vp < u 1 < ... < u s _ 1 < Vq implies one of  the following conditions: 

Vp < V i < U 1 or uj < V i < Uj+ 1 for some j or us_ 1 < vi < l)q. This contradicts Lemma 9 because the vertices 

Ul . . . . .  Us- 1 are contained in doubles. 
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D. If  a vertex of a triple is avoided by an elementary path of length at least two, then ali other vertices of this 
triple cannot be avoided by any elementary path of length > 2. This follows from property C and Lemma 8. 

E. The sum of the weights of all elementary paths avoiding a vertex v i is equal to - z ( v i ) .  Indeed, this is ob- 

vious for v I because, by property B, only arrows having weight zero can stop at v I. If property E is true for v i, 

then the sum of the weights of all elementary paths avoiding v i or starting from v i is equal to zero. But the set of 

these paths coincides with the set of all elementary paths avoiding v i + 1 or stopping at v i + 1" Hence, property E is 

true for l) i + 1" 

F. Let a triple s b 1, b 2, b 3 } satisfy the following conditions: 

(i) there is no nondegenerate arrow starting from a < bl; 

(ii) there is a pair of connected degenerate strong arrows starting from (b l ,  b 2 ) or ( b  1, b 3 ); 

(iii) there is a pair of connected nondegenerate weak arrows starting from (b2,  b 3 ). 

Then there exists a triple { a 1, a , ,  a 3 } satisfying the same conditions and relation a 1 < b I. Indeed, let, for 

definiteness, the pair of connected degenerate strong arrows start from (b 1, b2). It follows from z ( b  1 ) = O, 

z ( b 2 )  = - z ( b 3 )  :~ 0, and properties D and E that b 2 or  b 3 is avoided by a nondegenerate arrow. Let b 3 be 

avoided by a nondegenerate arrow a i --~ c j .  Then a i < b 3 < cj .  By Lemma 9, there exists a path a i ---> . . .  --+ 

b 3 ---> . . .  ---> c j  consisting of strong arrows. However, by Lemma 12, there is only a weak arrow starting from b 3. 

Hence, b 2 is avoided by some nondegenerate arrow a i ---> cj.  By Lemma 9, it is a weak arrow, i = j ,  and there is 

a path a i --~ . . .  --~ b 2 ~ . . .  --4 c i consisting of strong arrows. However, there exists only one strong arrow 

starting from b 2 and it is connected with an arrow starting from b I. Hence, the arrows connected with 

a i ---) . . .  ---) b 2 ---> . . .  --9 c i compose the path a i,  ---) . . .  --~ b 1 ~ . . .  - - )  c i , .  T h e  triple { a 1, a 2, a 3 } satisfies 

our requirements. 

Let c l be a vertex such that there is a nondegenerate arrow starting from Cl and there is no nondegenerate ar- 

row starting from b < c I. Then there is no nondegenerate arrow stopping at c I. Hence, z ( c t )  = 0 and there are 

two arrows starting from c l and having weights n and - n ;  moreover, l = 1 and the arrows connected with them 

start from c 2 and c 3. Since z(c2) = -z (c3)  = + n  ~ 0, the vertices c 2 and c 3 are avoided by elementary paths, 

and one of them is a nondegenerate arrow. For definiteness, assume that c 2 is avoided by a nondegenerate arrow 

b i ~ dj. By Lemma 9, i = j and there exists a path b i ---) . . .  ---) c 2 ---> . . .  ~ d i. Since there exists exactly one 

arrow starting from c2 and this arrow is connected with an arrow starting from cl, we conclude that the arrows 

connected with b i ---) . . .  - - )  c 2 ---) . . .  --~ d i compose the path b i ,  --Y . . .  --~ c I --4 . . .  ---) d i , .  Since b i ,  < c 1, 

there is no nondegenerate arrow starting from b i , .  Hence, the a r r o w  b i --4 d i is connected with the arrow 

b i,, - - )  d i,,, where i" :~ i "  and i '  = 1. By applying property F to the triple { b 1, b2, b3 }, we obtain a triple 

{ a 1, a 2, a 3 }. By applying property F to the triple { a 1, a 2, a 3 }, we obtain another triple and so on. This contra- 

dicts the finiteness of the graph F and proves Lemma 13. 

P r o o f  o f  P r o p o s i t i o n  2.  Number all the vertices and all the arrows of the graph F :  

1"0 = { a l ,  a2  . . . . .  a r } ,  F1 = { f l l ,  f12, " " ,  fsl,  f s2} ,  

where f j l :  ap(i l  ) ~ a q ( j l )  and fj2: ap(/2) ~ aq(i2 ) are two connected arrows and apl i l  ) < ap(i2 ). Let the basis 
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vector m i correspond to the vertex a i and let the double morphism fi  correspond to the pair 

f jmp( j l  ) = mq(]l i and f jmp(j2 ) = )~jmq(j2 ), where )~j is a parameter of a double morphism f j. 

By changes of the basis vectors 

(fjl, f j2)"  Then 

m �9 mi = xi i, 0 ~ x i ~ k, (3) 

we obtain a new set of double morphisms f j  = Xp( j l )Xq( j l ) f j  , - 1  1 <--j <--S, with the parameters 

, -1  -1 
~ j  = )~jXp(jl)Xq(jl  ) Xp(j2)Xq(j2)" 

Change (3) gives a multiplicative basis if L~ = )~ . . . .  = %s = 1, i.e., if Xl, x 2 . . . . .  X r satisfy the system 

of equations 

-1 -1 
~,jXp(j l )xp(j2 ) -- -- = Xq(] l )Xq( j2 ) ,  1 < j < s. (4) 

We solve the system by elimination, namely, we solve the first equation for some x i and substitute the result in 

the other equations. This amounts to the multiplication of each of them by a rational power of the first equation. 

Further, we solve the second equation of the obtained system for some xj and substitute the result in the other 

equations, etc. There are two possibilities. 

I. After the sth step, we obtain the solution (x  1 . . . . .  xt)  ~ ( k \ { 0 } )  t of (4). 

II. After the ( t -  1 )th step (1 < t < s), we obtain a system, the tth equation of which does not contain 

unknowns. In this case, the tth equation of (4), up to scalar multiples )~t, is the product of rational 

powers of the 1st, . . . ,  ( t -  1 )th equations. This means that there exist integers z l  . . . . .  zt such that 

zt r 0 and the equality 

-1 \Zl i X-1  \z t  -1  Zl l" X-1 "~ Zt 
( X p ( l l ) X p ( 1 2 ) )  "'" I, Xp( t l )  p ( t2 ) )  = ( X q ( l l ) X q ( 1 2 ) )  "'" t, Xq( t l )  q(t2))  (5) 

is the identity, i.e., each x i has the same exponents at the two sides of (5). 

Define an integer function z" F1 ~ ~ by z ( f j l )  = - z ( f j z )  = zj for j < t a n d  z ( f j l  ) = z ( f j 2  ) = 0 for 

j > t. Since x i corresponds to the vertex a i of F, we have by (5) that this function is a nonzero weight function, 

which contradicts Lemma 13. Hence, case II is impossible. This completes the proof of Proposition 2. 
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