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EXISTENCE OF A MULTIPLICATIVE BASIS
FOR A FINITELY SPACED MODULE OVER AN AGGREGATE

A. V. Roiter and V. V. Sergeichuk UDC 519.1

It is proved that a finitely spaced module over a k-category admits a multiplicative basis (such a module
gives rise to a matrix problem in which the allowed column transformations are determined by a module
structure, the row transformations are arbitrary, and the number of canonical matrices is finite).

It was proved in [1] that a finite-dimensional algebra having finitely many isoclasses of indecomposable repre-
sentations admits a multiplicative basis. In [2, Secs.4.10-4.12], an analogous hypothesis was formulated for fi-
nitely spaced modules over an aggregate and an approach to its proof was proposed. The purpose of the present pa-
per is to prove this hypothesis. Below, k always denotes an algebraically closed field. ‘

Let us recall some definitions given in [2] (see also [3]).

By definition, an aggregate A over k is a category that satisfies the following conditions:

(a) foreach X, Y e A, theset A(X, Y) is a finite-dimensional vector space over .

(b) the composition maps are bilinear;
{¢) A has finite direct sums;
(d) each idempotent e € A(X, X) has a kernel.

As a consequence, each X € A4 is a finite direct sum of indecomposables and the algebra of endomorphisms of
each indecomposable is local.

We denote by JA a spectroid of 4, i.e., a full subcategory formed by chosen representatives of the isoclasses
of indecomposables; let & ; be the radical of 4. Suppose that 74 has finitely many objects. For each a, b € J4,
the space R z(a, b) consists of all uninvertible morphisms of A(a, b); therefore, A(a, b) = Ry(a, b) for a # b,
A(a, a) = k1,9, R4(a a).

A module M over an aggregate A consists of finite-dimensional vector spaces M (X), one for each object
X € 4, and of the linear maps M (f): M(X) = M(Y), m — fm, f e A(X, Y), which satisfy the standard ax-
ioms, namely,

Iym=m, (f+g)m=fm+gm, (gf)m=g(fm), f[flam)= o(fm)=(af)m, oeck

It gives a k-linear functor from A into the category modk of finite-dimensional vector spaces over k. We say
that a module M over 4 is faithful if M(f) # O for each nonzero f € A(X, Y).
Define the basis of (M, A) asaset {m?, £} consisting of bases m{, m3, ... of the spaces M (a),

a e 94, andbases fP°, f2%, ... of the spaces R,(a b), a, b € JA The maximal rank of M (fP%) is called the
rank of a basis. A basis is called a scalarly multiplicative basis if it satisfies the following conditions:
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(a) each morphism f7° is thin, i.e., the equality f2® = g+ h implies that rank M (f°) < rank M(g) and
rank M(fP®) <rank M(h) forall g he A(a b);

(b) each product f, m{ has the form 7\.m re k;

© fPmd= kml;,, fhe mj = um ,and A, pu e k\{0} imply i =j.
b
-

Denote by M k the aggregate formed by all triples (V, 2 X), where V € modk, X e 4, and s €
Hom, (V, M(X)). A morphism from (V, h X) to (V' k, X”) is defined by the pair of morphisms ¢ €
Hom, (V, V') and § € A(X, X”) such that A'¢ = M(E)h. These triples are called spaces on M. We say that M

is finitely spaced if M* has a finite spectroid.
The present paper deals with the proof of the following theorem:

We say that the basis is multiplicative if each nonzero product f7* m? is a basis vector m

Theorem. If M is a faithful finitely spaced module over an aggregate A, then (M, A) admits a
multiplicative basis of rank < 2.

We wish to express our deep gratitude to P. Gabriel, Th. Briistle, T. Guidon, and U. Hassler for discussions and
essential corrections.

1. Construction of a Scalarly Multiplicative Basis

In Secs. 1-3, M always denotes a finitely spaced module over an aggregate 4.
As shown in [2, Secs. 4.7, 4.8], for each a € 74, the space M(a) has dimension d(a) £ 3 and a sequence
my, My, ... ,md(a), where

m; € (Ra(a, @) ' M(a)\(Ra(a a))' M(a),

is a basis in M (a). Itis called a triangular basis because the matrix of each map M(f), f € A(a, a), has a

lower triangular form. We assume that each basis m{, ..., mg, in a scalarly multiplicative basis is triangular (it
is always triangular up to permutations of vectors).
A scalarly multiplicative basis is called normed if it satisfies the followmg condition:

@ frmé = km and A ¢ {0,1} imply that f* mi = mi: for some i’ < i.

A scalarly multiplicative basis can be reduced to a normed basis by means of multiplication of flb“ by scalars.
A scalarly multiplicative basis is called reduced if it satisfies condition (d) and the following condition:

(e) If a morphism
= Z A 7
l
is a product of basis morphisms, then

rank M(@) = 2 rank M( £2).
Ay #0
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At the end of this section, we prove that every multiplicative basis of (M, 4) is reduced if char (k) = 2.

Let m{, ..., mg, beafixed triangular basis of M(a) for each a € J4. For mfj and m?, we define a
linear map ega : M(a) = M(b) such that eé’-a mi = mf-’ and ega mj =0 forall j* # j.

Let fe Ry(a b), abe JA Wesay that f is ashort morphismif f & Kgy(c, b)Rz(a ¢) for all

ba

i » and f is a double morphism if

c € JA, f is a prime morphismif M(f) = e
M(f) = ef® +hefs, el e M(ab), i<i, j<j, O#kek
The coefficient A is called the parameter of a double morphism.

Proposition 1. A ser { m%, %} is a normed (reduced, respectively) scalarly multiplicative basis if and
only if the following two conditions are satisfied:

(i) m{, m3, ... isatriangular basis of M(a), a € JA4;

(i) FP2, 24, ... is the set of all prime and double morphisms of 4 (a, b), a, be JA, except for one
double morphism (one short double morphism, respectively) if the number of double morphisms is
equal to three. Moreover, the number of double morphisms of A (a, b) is equal to zero, one, or
three, and, in the last case, there exists a short double morphism.

The statement of Proposition 1 about a normed scalarly multiplicative basis follows from Lemmas 1 and 5. The
complete proof of Proposition 1 will be given in Sec. 2.

Lemma 1. If d(a) = 2, then M (a, a) = kly)+ keyi. If d(a) =3, then M(a a) = klygq+ ke3i +
kes; or
M(a a) = klyg + k(€] + R, e35) + ke (1)
and 0 # Ay, € k.

The proof of Lemma 1 is obvious.

For every linear map ¢: M(a)— M(b), we denote by 9; € keg-“ the linear maps such that ¢ =Z ¢, On
{1,2,...,d(B)} x{1,2, ... ,d(a)}, we introduce an order relationby (4, j) 2 (L, r) if i £ and j 2 r. A pair
(4, r) iscalled astep of ¢ € M(a, b) if ¢, # 0 and ¢, = 0 forall (i j) > (I r). Apair ([, r) is called a step
of M(a, b) if y, # 0 for some ¢ € M(a, b) and 9y = 0 forall © € M(aq, b) andall (i, ) > (L r) =27

because each basis m{, mj, ... is triangular).

Lemma 2. If a, be J4, a # b, d(a) = d(b) = 3, and M(a, b) has two steps (1,2) and (2,3), then
M®, a) = kess.

Proof. Let y € M(b, a). Thereexists ¢ € M(a, b) having the steps (1,2) and (2,3). By Lemma 1, there

exist € € M(a, a) and 8 € M(b, b) such that ¢’ = @e+ 8¢ has the steps (1, 1), (2,2), and (3,3). The in-
clusion A(b, a)A(a, b) < R4(a, a) implies that

M(b, a)M(a, b) T M(R 4(a, a)) = ke5] @ ke @ ke3s.
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Since W' € M(R;(a a)), all steps of y are not higher than (2, 1) and (3,2). Since W@ € M(R4(a, a)), we
have y € kelt.

Therefore, M (b, a) C ke%. Assume that M(b, a) = 0. Let us examine the space H, = kS5, h;, a2 @
bHe M k where

=k@kOkOk®LkOk a’=a®a, b*=b®b Aek
and h;, is a linear mapping of k° into
M@ @b%) = (km$)?*® (km3)? ® (km$)? @ (km?)? ® (kmb)? @ (km§)?

with the matrix

Gle@el to ) o()el)

We show that #; # H, if A # 1. Let (¢,§) be an isomorphism #, — H,. The linear mapping M (&)
has the block matrix (Kj), 4j < 6, where K;; are 2x 2 matrices. By the equality M(b, a) = 0 and Lemma I,
we have Kl] = O, prOVided that <j. EVidently, Kll = K22 = K33, K44 = K55 = K66’ and K43 = O.

Since b ¢ = M (€)1, the matrix of the nondegenerate mapping ¢ also has the block form (@) i,j £5,
where the blocks @y, @,5, P4y, and Pss are 1 X 1 matrices, the block @33 isa 2x2 matrix, and ®;; = 0 if

i < j. Moreover,
1 1 0 0
0/2u = Kul ] | ]P2 =Ko}

1 011 oY 1 0/1 0
0 0 1 @33 = (K33 ® Kyy) 0 1)’

(el (ool

By the third equality, we obtain K33 = Kj4; the first and second equalities yield

o O
Kijj =Kp=..=Kg= 0 )

and it follows from the fourth and fifth equalities that & = 8 and A = p. We have infinitely many nonisomorphic
indecomposable spaces %, A € k, on M. This proves Lemma 2.
Let (!, 71), ..., (I, ;) beall the steps of M(a, b). We set

S(a, b) = Zkefj’-“ (resp. S(ab) = Y keg-a )
.7 )

where the sum is taken over all (i, j) such that there exists a step (1, r,) > (i, j) ((lp, n) 2 (4 ), respectively).



608 A. V. ROITER AND V. V. SERGEICHUK

Lemma 3. Let a # b and M (a, b) have the steps (1,1), (2,2), and (3,3). Then there is no Y €
M(a, b) such thar M(a, b) = ky +S5(q, b).

Proof. Assume that there exists Wy € M(a, b) such that M(a, b) = ky +S(a, ). By the form of M(qa, b)
and A(b, a)A(a, b) € R4(a, a), wehave M(b, a) C ke + kel + keb.

Let us examine the space H, = (k3, by, a ® b), where A € k and Ay is a linear map from k3 into

M@a®b) = kml @kms ®kms @ km’ @ kmb & km

with the matrix

o O =
S = O
—_ 0 O
[«B el e]
S = O
> O O

Let (@,&) be an isomorphism }[x - }[u. It follows from the conditions imposed on M (a, a), M(a, b),
M(b, a) and M(b, b) that the matrix of M(&) has the form

o, O 0 0 0
a o 0|7 O
Oy O3 O | Y3 T2
3 0 0 By 0
8 & 0 B B
8 & & [ By By B

O ol o o O

Moreover, &, = d¢;, 8, = 8¢,, and &, = d¢;, where 8 € k and g, €,, and €; are diagonal elements of the
lower triangular matrix of y. By hu(p = M(E)h,, we find successively that 6 = 0, the mapping @ has the lower

triangular matrix with the diagonal (o, 0, ), oy = B;, and A = .
Hence, J{X # % for A # L and M is infinitely spaced. We arrive at a contradiction that proves Lemma 3.

Lemma 4. S(a, b) C M(aq, b).
Proof. We must show that if ([, ») is astep of M(a, b), then

Spab) = Y kel CMab).
@) <r)

By Lemma 3, there exists a ¥ € M(a, b) having the step (/, r) but not more than two steps. If v and M(a, b)
have the steps (1,2) and (2, 3), then, by Lemma 2, eg’;w € M(a, a) has the unique step (3, 2). Hence,

M(a, a) = klM(a)@ke%‘f @keg‘]l @kegg.

In all other cases, it follows from Lemma 1 that S;.(a, b) is contained in the space generated by all dye, where
¢ e M(a, a) and 6 € M(b, b). This proves Lemma 4.
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Lemma 4 implies the following assertion:

Lemma 5. Let a, be 94, a # b, and M(a, b) # S(a, b). Then only the following three cases can
occur (Mg #0 # Py )

(a) M(a, b) hastwo steps (1}, r|) and (L, r,), I, < I, andis equal to
k(ef‘jI + Xabei‘;) ®S(a, b);
(b) M(a, b) has the steps (1, 1), (2,2), and (3, 3) and is equal to
k(eff + Ay els) @ kels © S(a, b),
or
k(eff +hyels) @ kels ©S(a, b),
or

k(eé’éZ + kabeé’g) @kelbla ® S(a, b);
(¢) M(a, b) hasthe steps (1, 1), (2,2), and (3, 3) and is equal to
k(eff +gpe35) @ k(eff +yess) @ S(a b).

Remark 1. In a normed scalarly multiplicative basis, each long double morphism ¢ € A(a, b) is a product
of double basis morphisms. Indeed, let ¢ = Ty, where v € ;(a, ¢) and T € K (c, b). Then y is a unique

double morphism of A(a, ¢) (otherwise, ¢ is a sum of prime morphisms). Therefore, y is a basis morphism.
Similarly, T is also a basis morphism.

Remark 2. A normed scalarly multiplicative basis is reduced if and only if all long double morphisms are
basis morphisms. Indeed, let a long double morphism ¢ € A(a, b) be not a basis morphism. Then A(a, b) has

two double basis morphisms and ¢ is their linear combination. But this contradicts the definition of a reduced
basis.

Remark 3. Lemma 1 and Lemma 5 imply the statement of Proposition 1 about a normed scalarly multipli-

cative basis. By Remark 2, to complete the proof of Proposition 1, we must prove that each A(aq, b) (a, b € JA)
does not contain three long double morphisms.

Remark 4. If char (k) # 2, then every multiplicative basis is reduced. Indeed, otherwise, in view of Remark
2, there exists a long double morphism ¢ € A(q, b) which is not a basis morphism. By virtue of Lemma 5,

¢ = y—1, where ¥ and 1 are basis long double morphisms of A(a, b). Hence, M (@) = ef;“ - ejl;f'. Remark 3
ba

implies that. @ is a product of basis morphisms; hence, M(¢) = ¢;° + ezf’ and char (k) = 2.
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2. The Graph of a Scalarly Multiplicative Basis

In this section, we study some properties of a scalarly multiplicative basis and give the proof of Proposition 1.

Following [2, Sec. 4.9], we define a poset P whose elements are the spaces a; = ( R 4(q, a))i'lM (a) (ae 94,
1 < i<d(a)) and where a; < b; ifand only if A (b, b)fa; = b; for some f € A(a, b). The elements q; € P
are in a one-to-one correspondence with the basis vectors m{ of every scalarly multiplicative basis {m? f,ba};
moreover, g; < b; if and only if fmé = Am| for some f24 and 0 # A € k. Decompose the poset P into

the disjoint totally ordered subsets {ay, ..., a4}, (@ < ay < ... < ayq, d(a) < 3); each of them is called a

double if d(a) = 2 oratripleif d(a) = 3.
The following three lemmas were given in [2] without proofs:

Lemma 6 (see [2, Lemma 4.12.11). The union U {ay, a,, a5} of all triples is totally ordered.

Proof. The elements of a triple are totally ordered.
Let {a}, a5, as} and {by, by, b3} be triples and let some a; be not comparable with some b;. We construct

the indecomposable spaces H = (k% hy,a> @b%) on M, A € k, suchthat H; # H, for A = p.
For i = 3 and j = 1, the spaces F, were constructed in the proof of Lemma 2. For arbitrary i and j, H,
is constructed by analogy with the block
1 0j1 oY
0 1]0 1

of hy: k® = M(a?® b?) located in the rows of
km? @ km @ km? @ km? C M (a2 @ b2).

Let (9,8): H, = H, andlet (M;;) be ablock matrix of M (§). Then (Mj) is not upper block-triangular, but
we can reduce (Mij) to the upper block-triangular form by means of simultaneous transpositions of vertical and

horizontal stripes, since the set {ay, ay, a3, by, by, b3 } is partially ordered. Hence, M is infinitely spaced. We
arrive at a contradiction that proves Lemma 6.

Lemma 7 (see [2, Lemma 4.9]). There are no the elements a;, a;-, bj, and bj, such that a; # ap,
b; # bj., a; is not comparable to bj,, and b; is not comparable to a;.. There are no elements a;, a;», b;, b;,
¢, and cpo such that a; # a;r, by # by, ¢; # ¢yv, a; is not comparable to b;:, b; is not comparable to cy,

and ¢, is not comparable to a;.
Proof. In the first case, we set

Hy, = (ke, @ key, by, a®b) e MY,
where hye, = m{ + mb and ke, = mj-’ + Am$. In the second case, we set

J

Hy, = (ke, ® ke, key, by, a®@b®c),

where hye, = mf + mj?:, hye, = mﬁ-’ + mf, and hyeq = mi +Amf. Obviously, H; # H, for & # p.
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Lemma 8 (see [2], Lemma 4.12.2]). Each triple contains at least two elements comparable with all elements
of all doubles.

Proof. Assume that Lemma 8 is not true for a triple {ay, a, a3} and doubles {b,,b,} and {c;, ¢, }.
Case I. Assume that b # c. For definiteness, we assume that a, is not comparable to b, and a; is not

comparable to ¢;.
For each representation H

kn
Al
g Baygn B 13 A2 b <i3__ k’s__gg kr3<_§z_kr5

of the quiver E’7 (see [2, Sec. 6.3]), we construct the space

}_[- - (kr1+...+r5,h’ all @ btz @ Ct3) e Mk,

where
h @ A2 @ 43 ®B,®
= A B, c, B,®C,

is a linear mapping of X" "% into
M@@" ® b2 ® c) = (km®)' @ [kmd)? ® (km?)2] @ [(kmD)" @ (km$)3] @ (kmb)? & (km§)>.

The functor H > # onthe representations # with injective A, A,, Az, B,, and C, preserves inde-
composability and heteromorphism (ie., H= H' if H = H'). Indeed, let (@,&): H > H'. The nonde-
generate linear maps @ and M(&) have the block forms (@), Lj < 5, and (Kij), i, j £7. The equality '@ =
M(E) h implies that A1®,, = K}, A,

B2 208 (e 2
B )% Ky Ky j\Bi) ci)® Ksy Kss)\C1)
2@y = KgeB,, G5 = Kypp G,

Since {aj, a,, a3} isatripleand {b;,b,} and {c;,c,} are doubles, we have K| = K,, = Ky, K33 = K,
and K5 = K,;. Since a, isnot comparable to by and a; is not comparable to ¢;, we have K,; =0, K3, =0,
K,s = 0, and K, =0. Hence, the diagonal blocks of (®;;) and (Kj;) determine a morphism H - H.

Let us show that this morphism is an isomorphism, i.e., the diagonal blocks ®;; and K;; are invertible. By
strengthening the partial order relation in { a,, a,, a3, by, b, ¢, ¢, }, we obtain a total order relation << such that
a, << b; and a; << ¢, (these pairs are not comparable with respect to <).

We transpose the horizontal stripes of the matrices of £ and k' according to the new order. Then we trans-
pose the vertical stripes to get the lower trapezoidal matrices. Correspondingly, we transpose the blocks of (®;)
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and (Kj;). Then the new matrix (K,-j) has a lower triangular form. The upper nonzero blocks of vertical stripes are

the injective maps A, A,, A;, B,, and C, (since a, << b, and a; << ¢,). It follows from A'¢p = M(E)h that

(®;) also has a lower triangular form. Hence, the diagonal blocks &®;; and Kj; are invertible and H=5H
However, the quiver E, admits an infinite set of nonisomorphic indecomposable representations of the form

H with injective A, A, A; B,, and C, (and surjective B, and C,, which will be used in case II). These rep-
resentations are determined by the matrices

1 |1 0 0/0 0 O

1 1/0 1 0lo 0 1
AAA= .
(4,14, 145) 1 0/0 0 1{0 1 O

0 110 0 0|1 0O

318 = @1 = (g o 1 o)

and they are nonisomorphic for different o e k. This contradicts the assumption that M is finitely spaced.

Case Il. Assume that b = c¢. By Lemma 7, if a; is not comparable to b; and g; is not comparable to b,
then i = j. Let a, and a5 benot comparable to b;. Then a; < b; and a3 < b,.
As in case I, for each representation # of the quiver E7 with injective A, A,, A;, B,, and C, and sur-

jective B, and C,, we construct the space H = (K'"*5, b, a" @ B2 B) e M k where

h=aol?e(Besec
I | B1 CI 2 2
is a linear mapping of k¥ *’ into
M(a" ® b2*5) = (km)' @ [(kmd)' @ (kmd)?] @ [(km$)" ® (km?)5] @ (kmb)? @ (kmb)s.

Let (@,&), H = H’. 1t follows from the order relation for {ay, ay, as, by, by} that all blocks over the
diagonal of the block matrix K = (Kj;); j=1,2, ... 7 of the mapping M (&) are zero except the blocks K35 = K.
Let us prove that they are zero, too.

Indeed, by comparing the blocks with index (2, 3) in the equality A'¢ = M(E)h, we obtain A5P,; = 0 and
®); = 0, since A5 is injective. By comparing the blocks with index (3, 3), we obtain B]{®,; = K35C; and
K35 = 0, since C is surjective.

Hence, K is a lower block-triangular matrix. Therefore, @ is also a lower block-triangular matrix, whose
diagonal blocks Kj; and @;; are invertible, % = #’. This proves Lemma 8.

Now fix a normed scalarly multiplicative basis { m?, flb“} and define the oriented graph I', whose set of
vertices T is a poset P and there is an arrow a, —> b, (a, b, € T}y) if and only if M(flb“) = keé’l‘j + uef]’f;,
for some short double morphism flb“ (in this case, there is an arrow  a,» — b, and we say that the arrows

a, = bq and a, — bq/ are connected). An arrow a, = b, is called a weak arrow if A(a, b) contains three

double morphisms. Each weak arrow is connected with two arrows. The others are called strong arrows, and each
of them is connected exactly with one arrow.
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Lemma 9. Let a; < bj <c, and let a; = ¢, be an arrow. Then a # b #c # a, [ = r, the spaces

A(a, b), A, c), and A(a, ¢) contain exactly one, one, and three double morphisms, respectively, and there
exists a pair of oriented paths (a; — ... > bj =D = bj, — ... = c¢;) consisting of con-

7

nected strong arrows and a pair of connected weak arrows (a; = ¢, a;» —>Cin), 17 # i”. In the case of a

reduced scalarly multiplicative basis, there is no other arrow from {a,} to {c}.

Proof. Since a; < b; < c,, there are morphisms g € A(a, b) and h € A(b, ¢) suchthat M(g) = oce}’,-" +

Bej?f‘}' and M(h) = yeijl-’ +5eil7/jn (0, B,7,6€ kand oo # 0 # v). If hg is a prime morphism, then M(hg) =
aye;; contradicts the existence of the arrow a; — c,. Hence, hg is a double morphism, B # 0 # 8, j” = j”,
and g and & are unique double morphisms of A(a, b) and A(d, c¢), respectively. The space A(a, ¢) contains
the double morphism Ag and the short double morphism corresponding to the arrow a, — ¢,, whence M(q, ¢)
has the form given in case (c) of Lemma 5.

If the basis is reduced, then, by Remark 2 in Sec. 1, the double morphism Ag is a basis morphism and there is

only one pair of connected arrows from { g} to {¢,}. This proves Lemma 9.

Proof of Proposition 1. In view of Remark 3 in Sec. 1, we must prove that each space A(a, ¢) (aq,c € JA)
does not contain three long double morphisms. By contradiction, let f,,f,,f; € A(a, c) be three long double
morphisms and let f, = h,g,, where g, is a short double morphism and r = 1, 2, 3. The morphisms g,, g,, and
g5 correspond to the pairs of connected arrows (a; = x;, a, = x;1), (@ = Yp a3 = yj,), and (a, = z;
as = zp)

Assume that x; < ¥ By putting (a,, bj, c,)= (a}, x; yj) in Lemma 9, we establish that “A(a, y) contains
three double morphisms. By putting (a;, bj, ¢,)= (ay, Yj ¢;) in Lemma 9, we obtain that A (q, y) contains exactly
one double morphism.

Hence, x; is not comparable to Y- Similarly, x;. is not comparable to z, and ¥ is not comparable to z;..
This contradicts Lemma 7 and proves Proposition 1.

Assume that the graph T' is obtained from a reduced scalarly multiplicative basis.

Lemma 10. If two arrows start from (stop at) the same vertex, then the arrows connected with them start
from (stop at) different vertices.

Proof. By contradiction, let b; < a; = ¢, and bj» < a;- = ¢,» be connected arrows. If b; < c,, then
a; < b; < ¢, and, by Lemma 9, the arrows connected with a; — b; and 4; — ¢, must start from different vertices,
but they start from g;-. By analogy, b;- is not comparable to ¢,.. This contradicts Lemma 7.

Lemma 11. There are no two arrows starting from (stopping at) the same vertex of a double. There are no
three arrows starting from (stopping at) the same vertex of a triple.

The proof follows from Lemma 10.

Lemma 12. There are at most two different pairs of connected arrows starting from (stopping at) the same
triple.

Proof. By contradiction, assume that three pairs of connected arrows from a triple {a;, a5, a3} to { b;},
{c¢;},{d;} exist. Since there are at most two pairs of connected arrows from a triple to a triple, we do not have
three coinciding objects among a, b, ¢, and d. Hence, the following five cases are possible (up to the permutation
of b, ¢, d):
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A a=bzxtc#d a=#d
[ a=b#c=d,
) a#zb=d#c a#c
(V) a, b, ¢ d aredistinct and there are two arrows a; — b; and a; = ¢, b; < ¢;;

(V) a, b, ¢, d aredistinct and, for each pair of arrows a@; — x, a; — , the vertices x and y are incom-
parable.

By Lemmas 9-11, we have the following subgraphs of I" in cases (I), (IIT), and (IV):

dj @ .
i’ > C;”
a/ ai';\*"’ by \d
A ,
. ,
J bjl\

W az/ am ay —>br V) ay T~
3 1
1 . \d,

b; ~
a1 a; 2 b / e,

Consider these cases.

(@ If ¢; < ay or d; < a;, then, by Lemma 9, A (a, a) contains three double morphisms, which is a contra-
diction. If a; < ¢; or a3 < dj, then, in view of Lemma 9, there is an arrow a; — ¢; Or a3 — d;, in contradic-
tion with Lemma 11. Hence, a, is incomparable with ¢; and a; is incomparable with d;, which is impossible by
Lemma 8.

(II) This case is similar to the previous one.

() By Lemma 9, the inequality b;- < ¢; is impossible because A(a, b) contains three double morphisms.

Lemma 9 also implies that the inequality by > ¢; is impossible because there are four arrows from {a;} to {5;}.
Hence, b;- is incomparable with ¢;. By analogy, b;~ is not comparable to ¢;’ in contradiction with Lemma 7.

(IV) The inequalities ¢;- < d, and ¢;» <d, are impossible by virtue of Lemma 9 because A(a, ¢) contains
three double morphisms. If d, < ¢;s or d,» < ¢;», then the double morphism Aefl +pei, (A =0 =) isa
product of double morphisms in A (a, d) and A(d, ¢). Hence, A(a, ¢) contains two long double morphisms in
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contradiction with the arrows a;, — ¢; and a;» — c;» This implies that c;, is not comparable to d, and c;. is not
comparable to d,-, which contradicts Lemma 7.

(V) This case is impossible by virtue of Lemma 7.

The proof of Lemma 12 is thus completed.

3. The Construction of a Multiplicative Basis
In this section, we prove the following proposition.

Proposition 2. From every reduced scalarly multiplicative basis, we can obtain a reduced multiplicative basis
by multiplying the basis vectors by nonzero elements of k.

Let T be a graph of a reduced scalarly multiplicative basis {m?, f,ba} and let I'; be a set of its arrows. An

integral function z: I’y —> Z is called a weight function and its value at an arrow is called the weight of the ar-
row if

(@ z(o;) = —z(a,) foreach pair of connected arrows o, 0.,;

(b) the sum of the weights of all arrows stopping at a vertex v € I’y is equal to the sum of the weights of all
arrows starting from v (this sum is called a weight of v and is denoted by z(v)).

Lemma 13. A nonzero weight function does not exist.

Proof. By contradiction, let z: I'; — Z be a nonzero weight function. An arrow o is called nondegen-
erate if z(o) = 0.
Let v; < ... <v,, be the set of all vertices of the triples of I'. For each vertex v,, we denote by v,,, v, the

two vertices such that {v;,v,,, v, } is a triple.
By an elementary path of length s, we mean a sequence of arrows of the form

;\'S
ol =, @)

Uy Uy > ... > U

where u, ..., u,_; are vertices of doubles (they may be absent, i.¢., a path may consist of exactly one arrow) and
Z(Aq) # 0. Then, by Lemma 11 and item (b) of the definition of a weight function, z(A;) = z(A;) = ... = z(A);
this nonzero integer is called the weight of path (2). We say that the elementary path (2) avoids a vertex v; if
p < i < g. We now establish some properties of elementary paths.

A. The intersection of two elementary paths does not contain any vertex of a double.
B. Each nondegenerate arrow is contained in an elementary path.

C. If avertex v; is avoided by an elementary path (2) having length at least two, then v; is incomparable with

some vertex u, in this path. Otherwise, v, <up < ...<u_ <V implies one of the following conditions:

q

U, <v;<uy or u; <v; <uy,q forsome joor u._; < v, <v,. This contradicts Lemma 9 because the vertices

Uy, ..., Ug_1 are contained in doubles.
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D. If a vertex of a triple is avoided by an elementary path of length at least two, then all other vertices of this
triple cannot be avoided by any elementary path of length > 2. This follows from property C and Lemma 8.

E. The sum of the weights of all elementary paths avoiding a vertex v, is equal to —z(v;). Indeed, this is ob-
vious for v; because, by property B, only arrows having weight zero can stop at v;. If property E is true for v,
then the sum of the weights of all elementary paths avoiding v; or starting from v; is equal to zero. But the set of
these paths coincides with the set of all elementary paths avoiding v;, , or stopping at v, ;. Hence, property E is

true for v;_ ;.

F. Letatriple {b,, by, by} satisfy the following conditions:

(i) there is no nondegenerate arrow starting from a < by;

(ii) there is a pair of connected degenerate strong arrows starting from (by, b,) or (by, b3);
(iif) there is a pair of connected nondegenerate weak arrows starting from (b,, b3).

Then there exists a triple {a;, a,, a3} satisfying the same conditions and relation a; < b;. Indeed, let, for
definiteness, the pair of connected degenerate strong arrows start from (b;, by). It follows from z(b;) = 0,
z(by) = —z(b3) # 0, and properties D and E that b, or b; is avoided by a nondegenerate arrow. Let b; be
avoided by a nondegenerate arrow a; — ¢;. Then g; < b3 < ¢;, By Lemma 9, there exists a path a; — ... -
by — ... — c; consisting of strong arrows. However, by Lemma 12, there is only a weak arrow starting from  bs.
Hence, b, is avoided by some nondegenerate arrow a; — ¢;. By Lemma 9, it is a weak arrow, i = j, and there is
apath g; = ... - by = ... = ¢; consisting of strong arrows. However, there exists only one strong arrow
starting from b, and it is connected with an arrow starting from b;. Hence, the arrows connected with
a; = ... = by = ... = ¢; compose the path a;; = ... = b; = ... = ¢;~. The triple {ay, a;, a3 } satisfies
our requirements.

Let ¢; be a vertex such that there is a nondegenerate arrow starting from ¢; and there is no nondegenerate ar-
row starting from b < ¢; Then there is no nondegenerate arrow stopping at ¢;. Hence, z(c;) = 0 and there are
two arrows starting from ¢; and having weights n and —n; moreover, / =1 and the arrows connected with them
start from ¢, and c;. Since z(c;) = —z(c3) = £n # 0, the vertices ¢, and c3 are avoided by elementary paths,
and one of them is a nondegenerate arrow. For definiteness, assume that ¢, is avoided by a nondegenerate arrow
b; — d. ByLemma9, i = and there exists a path b; — ... = ¢, = ... = d;. Since there exists exactly one
arrow starting from ¢, and this arrow is connected with an arrow starting from ¢;, we conclude that the arrows
connected with b, — ... = ¢y — ... = d; compose the path b;, — ... = ¢; = ... = d;.. Since b <cy,
there is no nondegenerate arrow starting from b;.. Hence, the arrow b; — d; is connected with the arrow
b;» — d;», where i’# i” and i’ = 1. By applying property F to the triple {&;, by, b3}, we obtain a triple
{a;, ay, a3 }. By applying property F to the triple { a;, a5, a3}, we obtain another triple and so on. This contra-
dicts the finiteness of the graph I" and proves Lemma 13.

Proof of Proposition 2. Number all the vertices and all the arrows of the graph T':
Lo={apay ....a,}, Ty ={fnfio-s fip S}

where fj;: a1y = 961 and fj5: Ay () > Q) ArE WO connected arrows and 4,1y < Gy Let the basis
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vector m; correspond to the vertex a; and let the double morphism f; correspond to the pair (f;;, fj2). Then
M1y = Mygry and fim, ny = Am, o), where A; is a parameter of a double morphism f;.
By changes of the basis vectors

x.m’

3
]

0=x¢ek ©)
we obtain a new set of double morphisms f] = (1 )x;(1 Sy 157 <s, with the parameters

r -1 -1
M= A X6 Xg(n X a0 X gy

Change (3) gives a multiplicative basis if A{ = A5 = ... = A{ = 1, ie., if x;,x,, ..., x, satisfy the system

of equations

IA

~1 - -1 .

Kjxp(jl)xp(jz) = xq(jl)xq(jz), 1 J < . (4)

We solve the system by elimination, namely, we solve the first equation for some x; and substitute the result in

the other equations. This amounts to the multiplication of each of them by a rational power of the first equation.

Further, we solve the second equation of the obtained system for some X; and substitute the result in the other
equations, etc. There are two possibilities.

L. After the sth step, we obtain the solution (x;, ..., x,) € (K\{0})" of (4).

II. Afterthe (z—1)thstep (1 < ¢t <s), we obtain a system, the rth equation of which does not contain
unknowns. In this case, the tth equation of (4), up to scalar multiples A, is the product of rational
powers of the 1st, ..., (¢#-1)th equations. This means that there exist integers zi,...,z, such that
z, # 0 and the equality

-1 % -1 N\ -1 YA -1 &
(Fan®pan) - Gaa) ' = (gan¥aan) -+ (FganXgen) )
is the identity, i.e., each x; has the same exponents at the two sides of (5).

Define an integer function z: I'j — Z by z2(fj) = -z2(fjp) = z; for j <t and z(f;;) = z2(fj») = 0 for
J > t. Since x; corresponds to the vertex g; of I', we have by (5) that this function is a nonzero weight function,
which contradicts Lemma 13. Hence, case II is impossible. This completes the proof of Proposition 2.
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