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APPLICATION OF MODULES OVER A DYAD
FOR THE CLASSIFICATION OF FINITE

P ~-GROUPS POSSESSING AN ABELIAN
SUBGROUP OF INDEX P AND OF PAIRS

OF MUTUALLY ANNIHILATING OPERATORS

L. A. Nazarova, A. V. Roiter,
V. V. Sergeichuk, and V. M. Bondarenko

In [1] it was shown that the classification of finite P -groups possessing an Abelian subgroup of
index P can be reduced to a certain matrix problem ([1], p. 75). The resulting matrix problem ad-
mits of an entirely visible solution ([1], §4). However, the construction of the groups themselves (from
the given matrix invariants) was no’é carried out. Furthermore, as was ascertained while writing the

present article, two inaccuracies were admitted in [1].*

In this paper we give another simpler method of reduction to this same matrix problem and,
using its solution, obtained in [1], we write out a complete catalog of the groups of the type mentioned
above in terms of the defining relations. As in [1], the classification of the groups indicated is obtained
from the classification of modules over a dyad of two local Dedekind rings (see §4). As the last author
of the present article has noted, from the classification of modules over a dyad there directly ensues
also (see §5) the classification of pairs of matrices A , B for which AB=BA=0, obtained in [2] in

connection with the study of indecomposable representations of the Lorentz group.

The fact that two problems, so unlike at first glance, admit, essentially, of a like solution is, in

our opinion, a very curious circumstance.

*Namely, the assertion that @ can be treated like a module over the ring D,®D, ([1], p. 67) and the
assertion on the indecomposability (without the imposition of additional conditions) of module 1 ([1],

pp. 80-81) are false.
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§1, Comparison of a Finitely-Generated Module

over a Dyad of a Pair of Matrices with Rows

and Columns Furnished with a Weight*

We recall [1, 3] that a dyad of two local Dedekind rings D, and D, for which the residue fields

are isomorphic is the ring

D-{,, d,)e D,® D, le,d = &, i,

where &, and & are given homomorphisms of rings D, and D, , respectively, onto their "common®

residue field,

By =,%,) we denote the prime element of ring D, (D)) . Then R, =D (R,=%D,@2,D,) is the

unique maximal ideal of ring D, (D).

If @t is an arbitrary finitely generated module over dyad D, then its submodule ®1'= TR, can
obviously be treated as a module over D, , while the quotient module M'= 21/ , as a module over
D/R,=D. . D.D,) is a ring of principal ideals, therefore, the module 71 (%1") splits up into a direct
sum of indecomposable cyclic modules with generators u, (v, each of which is isomorphic to either
the quotient module D,/%* D, (D,/2)*D,), or D, (D,) ; in the latter case we take c, - oo (k,=00). The

number ¢, (Kg) will be called the weight of wu, (¥p) .

We select a representative 7, from the co-set v, of module 1 . Then %9, and T, 4% (with

- - Ca-1

Uo Gap and, in view of the relation 4,7,-0 7,5 = 3 Ua bap %

ot
Crn=o0

Ky # oo ) belong to W ; therefore, 3,1, = 21

=

where &, ; b, ¢D.

Let o,, (s, be an element of field K , into which &, (Zup) goes under the natural homomor-
phism of D onto K=D/R . We set b,,-0 if ¢ -co or Kp=o0 . It is easily verified that o., (b,,)

does not depend upon the choice of the representative #, from the co-set v, .

As a result, with finitely generated module over a dyad, for a fixed choice of {u,tc @31’ and
{vp}—c " (but not { Byt m ), we associate a pair of matrices A=(o,), B =(ba,) of like dimension over the
residue field K ofdyad D = 1,...,m, p=1,.. ,n) . The weight c, tnp cf element w, (v, is called
the weight of the « ~th row ( p -th column) of this pair.

Let us now ascertain to what extent the pair of matrices A , ® depends upon the choice of gen-

erators u,, v, ,Letu,,...,u, be some collection of generators in the direct summands of module
M, We replace w, by ul=u,d, deD, deR, i.e., we construct the new collection of generators
Ugyee oy Uy s Uiy Uy pgeentiye  HET@, Obviously, the o -th row of matrices A and 8 is divided by the element

ae K corresponding to the element deD under the natural homomorphism of D onto K . ¥ we set

Ug=Uq+ upd , where d e D, then, as is not difficult to be convinced, a necessary and sufficient condition

*In [1] (§2) the description of the modules was reduced to a pair of matrices for which a weight was
furnished only to the rows, while here, to both rows as well as columns. However, this distinction is
unessential since under a trivial reduction of one of the matrices to diagonal form, relative to the other

we obtain one and the same matrix problem in both cases; see p. 75 of [1] and §2 of the present paper.
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that the collection obtained is a collection of generators, is u, D~u,D . Therefore, the substitution
Ug=Ug* Upd is admissible if and only if c,>c, (for any deD)or ¢, = ¢y forde g=**p. K c,>cp,
then from the p -th row of matrix A we subtract the « -th row multiplied by aek, corresponding to

d » while the matrix B remains unchanged. I c,=¢, , then from the p -th row we subtract the

@ ~th row multiplied by @ in matrices A and B, simultaneously. If c_ < ¢, andde 5, "°* D, then

from the p -th row of matrix B we subtract the o -th row multiplied by &< K corresponding to dage” s,
while matrix A is unchanged.

Analogously, if {»,} is a collection of generators in the cyclic direct summands of module 7'
then the substitution v, = v,d , de D, deR,is admissible; here the « -th columns of matrices A
and B are multiplied by aeK corresponding to d. Also admissible is the substitution v, = et v, d,
where de D for k, » k, , and here, to the « -th column of matrix A is added the p~th column mul-
tiplied by a <K corresponding to d ; or where de D for «, =k, , and here, to the o ~th column is
added the f# -th column multiplied by a < K corresponding to d, in A and B , simultaneously; or where
den,* D for «, <«

P and here, to the & -th column of matrix B is added the p -th column multiplied

by be K corresponding to da,* "%

Finally, we can rearrange the places of the direct summands in 7' and %' by rearranging the
rows and columns "together with their weights™ in A and B, simultaneously.

Thus, by reselecting the generators in @1 and %! we can make the following elementary trans-
formations in the matrices A and B:

I. Row (columns) can be relocated "together with their weights" simultaneously in both matrices.
II. A row (column) can be multiplied by ac Kk simultaneously in A and 8 ,

I. For c,=-c, (where c (c, isthe weightofthe a-th (p -th) row) we can add the B -th row,

P
multiplied by a , to the ®-th row simultaneously in A and B .,

IV. For K, =x,

column, multiplied by a , to the o -th column simultaneously in A and B .,

(where «,(xp) is the weight of the a-th ( P-th) column) we can add the p -th

V. For c¢,<c, we canadd the B -th ( o-th) row of matrix A(B) , multiplied by a, to the «-th
{ p-th) row, not changing B (A) .

VL. For k, >k,
o ~th ( B -th) column, not changing B (A) .

we can add the p ~th (a -th) column of matrix A (B) , multiplied by o, to the

Conversely, if two pairs of matrices are obtained from one module 71 , then we can pass from

one pair to the other by a finite number of transformations of type I-VL

The pair of matrices A , B will be called decomposable if after several transformations I-V1
we can find a proper subset of the set of rows and columns, one and the same for both matrices, such
that the nonzero elements of the rows and columns selected can occur only at the intersections of the

rows and columns of this subset. Otherwise, the pair is called indecomposable.

It is obvious that a finitely generated module over a dyad is indecomposable into a direct sum if

and only if the corresponding pair of matrices is indecomposable.
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The aim of the next section is to ascertain the form to which an indecomposable pair of matrices,
whose rows and columns are furnished with weight, can be led by transformations I-VI

§2, Reduction of a Pair of Matrices Whose Rows

and Columns Are Furnished with Weight

Let us rearrange the rows and columns of matrices A and B so that every row with lesser
weight occurs below a row of greater weight, while every column with lesser weight occurs to the left
of a column of greater weight. Matrices A and B are divided into horizontal and vertical strips

within which the weight of the rows (columns) is equal. Starting from the upper strip we reduce A to
the form:

Elol-lolojojo]-|olo]- -lolo]-lo]o
ool TololE[ol-[0l0)- ~ {00 T0l0
oo Toolo0 - 10l0): ~JE[0 010
010~ {o 0l0l0-[ol0l- - 16l0 {0l 0
SIE o 0lo 000l 100150
000 0f0E- 1010 - {0 0-10l0C
A= DI0[-[010]0/ 0] - 1010 -{0IEI-{0(0 (1)
0[01-[o[0jolol-10[0] . -l0l0l-1010
|
01010101001~ 0101- ~1010, -~ 01D
0101010010 [E10f- ~10/0[-]D[0
010~ (01010 0~ 0l0- ~I0/0[-IE1D
of0-[oTojoi0(-10/01. ~folol. 010

We partition matrix B8 into cells in accordance with the partitioning (1). Retaining the terminology in
[1], a cell of matrix B , corresponding to a zero (unit) cell of matrix A , will be called a cell of type

I (II). A horizontal and a vertical strip of matrix B, intersecting in a cell of type II, are said to be
dual.

On B we shall make only those sequences of transformations I-VI from §1 which do not spoil
the form of A in (1):

1-2) any elementary row (column) transformation within each horizontal (vertical} strip not con-
taining a cell of type II;

3) the B ~th row of a horizontal strip containing a cell of type II, multiplied by ae K , can be
added to the o -th row of this same strip, but here the o -th column of the dual vertical strip, multiplied
by o , must be subtracted from the p ~th column of this same vertical strip;

4-5) the rows (columns) of any lower-standing (right-standing) horizontal {vertical) strip can be
added to the rows (columns) of any higher-standing (left-standing) strip.

Thus, our problem is reduced to the problem of the reduction, by transformations of form 1)-5),
of one matrix B divided into cells of two types, I, II; moreover, cells of type II are square and no more
than one cell of type II occurs in each horizontal and vertical strip. The reduction problem for such a

matrix B by transformations 1)-5) has been solved in [1]. For the reader's convenience we cite this
solution here.
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We shall take B to be decomposable if in the set w of rows of B and in the set + of columns

of B we can find subsets u' and v' satisfying the following conditions:
1) u' is a proper subset in u or v' is a proper subset in v ;

2) if u' () contains the oo -th row (column) from the horizontal (vertical) strip passing through

a cell of type II, then »'(u) contains the o -th column from the dual vertical (horizontal) strip;

3) zero elements in the rows of u' (columns of v') can occur only at the intersections with the

columns of »' (rows of u').
Otherwise we shall say that B is indecomposable.

It is easily verified that the pair of matrices A , B is indecomposable in the sense of the defi-

nition in §1 ifandonly if B is indecomposable in the sense of the definition given above.

Proposition 1. Let B be indecomposable. Then, after applying certain transformations 1)-5) to
B , we can make additional horizontal and vertical partitions in it such that the new cells (obtained as
a result of subdividing the old ones) satisfy the following conditions:

1) all cells are square;
2) each cell is either a zero matrix or a nonsingular matrix;
3) no more than one nonzero cells occurs in each (new) horizontal and vertical strip.

The proof of the proposition will be carried out by induction on the dimension of B . The base

is trivial.

We select the lowest one of all the horizontal strips containing nonzero elements. Next, from

the cells of this strip we select the rightmost nonzero cell. We denote it B, .
Our arguments will depend essentially on what type this cell is.

At first we assume that B, is a cell of type I. By admissible transformations we lead B, to the

form

[w]w]
S

In accordance with the partitioning of B, we make new partitions in the horizontal and vertical strips
of B containing cell B, . Next, by transformations 4), 5) we make zero the parts of the vertical and

horizontal strips being considered, standing opposite the nonzero part of B, .

It is not difficult to see that there is a cell of type II in the horizontal or in the vertical strip
containing B, , since otherwise B is decomposable, If B, is a cell of type II occurring in one horizon-
tal strip with B, , then in the horizontal strip containing B, we have already made a partition in ac-
cordance with the partition in B, . We now partition the vertical strip containing B, into two strips
such that the upper left cell of the four cells into which B, has been divided, is square. In exactly the
same way, if B, is a cell of type II occurring in one vertical strip with B, , then besides the partitions
of the vertical strip containing them, we partition the horizontal strip containing B, such that the up-

per-leftpart of B, is square.
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Note that if even one of the cells B, , B, (or both at once) were zero and occurred, respectively,

to the right of or below B, , then all the arguments would be preserved.

We now examine the matrix B obtained from B after the deletion of the rows and columns

containing the nonzero elements of B, .

It is easy to establish that, not changing the form of cell B, , we can make the very same ele~
mentary transformations 1)-5) on B as well, if we take the following cells to be cells of type Il in
matrix B' : cells of type Il of matrix B , which do not touch the new partitions; the lower-right cell
of B, ; the lower-right cell of B, ; the upperdeft cell of the matrix occurring in one horizontal strip
with B, and in one vertical strip with B, . If, as a matter of fact,a cell of type II exists only in the
horizontal (vertical) strip, i.e., there is only B, (B,) but no B, (8, , then, naturally, we obtain only

one new cell of type II, namely, the lower-right part of B, (B,) .

Here, if some of the transformations 4), 5) in B' change the form of B , then we can restore it

by making transformations on the deleted rows and columns of B .

Thus, we have constructed a matrix B' of lesser dimension than B , admitting of elementary
transformations of the same form. It is easy to be convinced that the decomposability of B follows
from the decomposability of B . We apply the induction assumption to B' and, if necessary, we make
additional divisions corresponding to the division of B, in the vertical and horizontal strips fo be

deleted. In this case the theorem is proved.

We now assume that B, is a cell of type II. Making simultaneous elementary transformations
in the horizontal and vertical strips containing this cell, we decompose B into a direct sum of matrices

each of which is an indecomposable Frcbenius cell,

If even one of the Frobenius cells is a nonsingular mairix (and if does not coincide with the whole
B ), then by transformations 4), 5) we can isolate its direct summands from B . Hence, B, consists
only of singular Frobenius cells and, as is well known, they can be reduced to a normal Jordan form
with a zero eigenvalue. Obviously, by an appropriate renumbering of the rows and columns we can

reduce B, to the form:

/OUDOOO--oo-»oo\
/OGEOOO--OO'-OO\
ololojololol--lolol- -[0j0 |
010,000} -l0j0]- -10[0_ |
oJolofololE}--0l0[~ 010 |
00lolciolol- - Joloi-~Tol0 |
B -
0]0/0[0/0]0 0[E 010
olololololo[~-folol~ (ol
0looololo]l ool 10lE
olololololo olol Tolo

As before, we make new partitions in B corresponding to the partitions in B, and next we make zero

all the elements occurring in the rows and columns of B , containing the nonzero elements of B, .
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Let us examine the matrix B' obtained from B after the deletion of the rows and columns of B ,

containing nonzero elements of B, ,

Let us show that for the matrix B’ the admissible transformations (i.e., transformations not
spoiling the form of B, ) will be transformations satisfying conditions 1)-5) if only we can find cells of
type II in B in an appropriate manner. Namely, as cells of type II we shall take the cells on the main
diagonal in the matrix obtained from B, after the deletion of the above-mentioned rows and columns
(and, of course, of the cells of type I in matrix B , which do not touch the partitions). Indeed, let us
number from left to right (from top to bottom) the vertical (horizontal) strips into which the vertical

(horizontal) strip containing B, has been split after the new partition (but before the deletion).

Suppose that the o -th one of these strips is left in the matrix after the deletion, Making ele-
mentary transformations on the columns of this strip, we should (according to condition 3) for B ) make
the inverse transformation on the rows of the o ~th horizontal strip. This transformation spoils the
form of the (unit) matrix occurring at the intersection of the o -th horizontal and (o +1)st vertical
strip. In order to "restore” this form we need to make transformations in the (o +1 )st vertical and,
hence, also the horizontal strips (we remark that both these strips will be deleted). This spoils the
form of E at the location oc+1 , o +?2 . We "restore" it by making a transformation in the (o + 2)nd
strips, etc. This process terminates after p stages. Here, on the (o +p)th horizontal strip (which is
the only one of the strips being transformed here to remain after the deletion) we make an elementary
transformation inverse to that made on the o -th vertical strip (while the part of the matrix to be
deleted is not changed). Therefore, as a cell of type II we should take the cell occurring at the inter-
section of the a -th vertical and (o +p )th horizontal strips (before deletion), but this cell exactly falls

on the diagonal in the matrix obtained from B after the deletion.

By analogous arguments we can show that transformations 4), 5) are admissible for cells appear-

ing as a result of the deletion (no other transformations besides transformations 1)-5) are admissible).

Thus, we have once again led the reduction of matrix B (in the case when B8, is a cell of type
II) to the reduction of a matrix B' of lesser dimension by precisely those same transformations 1)-
5); moreover, yet again it is not difficult to see that B8 and B' are simultaneously decomposable and

indecomposable. Applying the induction assumption to 8' completes the proof of the proposition,

Remark. It is easy to verify that if two matrices 8 and B go into each other by transformations

1)-5), then during the proof of the proposition they are reduced to one and the same form.

Using Proposition 1 it is not difficult to write out all the indecomposable pairs of matrices with
rows and column furnished with a weight. Indeed, first of all, taking the proposition into account we
can reduce any pair of matrices, using only a rearrangement of rows and columns, to one of the fol-
lowing forms (depending on the ratio of the numbers of rows and columns and on the singularity or non-

singularity of matrices A and B ):

E 0|0 0 .OBq\

0 0i0 By 00\
I A’ 3 B= 7

0 0|k 0|+ .|B«yO
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ElL..lolo / ol...lgle
1. Al _'DO, Bzx&._.ooi;
0] - 10[E | ol
ol...|olo , /8. ofo |
El...10]0 NIRRT
m. A=" T s B= B
\o.ﬂEo) I ;O'Ba/
ol...lo | [ lo )
ElL..JC [ \
V. A< 7T ; B=| 4b
g L |
\ol e | vl o
1 '»' ; \
0JE[...10 ;_Bi:_'#czp,\
V. A= i , B={ IR
0|0 |E ‘\ﬂﬁi. _;E, /’
where B,,. .., B, are nonsingular matrices. Further, using elementary transformations on the rows
(columns) lying in one strip, we can, obviously, reduce all cells B,,. . ., B, to unit form in cases II-V.

From the indecomposability of the pair it follows that all cells B, are one-dimensional. By a
direct examination of all possible cases of decomposition of pairs of form II-V it is easy to be con-
vinced that pairs with one-dimensional B, are indeed indecomposable. It is completely obviocus also
that different pairs of matrices of form II-V cannot be led one to the other or to a pair of form I by

transformations I-VI.

Let us consider case I. We denote the weight of the ) ~th horizontal strip of matrices A and B
by +. , the weight of the columns of the 4 -th vertical strip, by s, . In this way we associate with each

pair A, B of form I the sequence of pairs

(B 8y)y v o oy (19 8g). 2)

Let us present (2) in the form (v,s,),...,(v,s5), 445, . . - , (4-s,). The smallest ¢ for which this pre-

sentation holds is called the period of (2). A sequence (2) of period ¢ is called apericdic.

Let us show that each pair A, B of form Iis reduced by a rearrangement of strips and a con~
solidation of strips to a form I with an aperiodic sequence (2). Indeed, let a sequence (2) of the pair
A ,B have aperiodt=<gq, §=tx . We rearrange the strips (horizontal and vertical simultaneously}
of matrices A and B so that each (at+B)th strip (0< o <k}, (0<p=t) occupies the place of the
{a+1+(p-1)k)th strip. Next, for each 1=1,...,t we combine the strips with numbers x(-1)1,....x1
(having equal weight) into one. As a result the pair A , B is reduced to form I where in the place of
cells B,,...,B,.,, B, there stand the cells Eq,.,., BH, B,:

(s MR +

'8, 0 (é.. .0 . B,
- Bl.e-t = (ST O 0
o s . * B; . ’
0 ‘B 0.. . B

et -1t
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where A =1, ..., t-1 . Here the sequence of pairs of weights of the new strips {4 5,50 - o3 (4, 8,) 18
already aperiodic, which is what we had to show.

Let us reduce the cells 8,,...,B,., of the pair A, B of form I with an aperiodic sequence (2)
to unit form. Cell B, can be reduced by similarity transformations (without changing the form of the
cells already reduced). From the indecomposability of B it follows that By can be made an inde-
composable Frobenius cell:

PN o

0 8,

Bee| 1 3)

—_—
O o e
r'

whose characteristic polynomial

$)=xt -8 x - - B, (8,#0)

is a power of an irreducible polynomial over field K .

The pair A , B takes the form:

/E 0lo /0 0le

or——jofo"| E[1000

A- ) a= |- @
o ol 5 Eo/

with an aperiodic sequence (2). Let us show that pair (4) is indecomposable. For this we convince
ourselves that the partitioning of A and B into cells is unique, i.e., the partitions in the matrices
arise as a result of the process of reducing B used in the proof of the proposition. Indeed, it is easy
to see that by applying this reduction process to matrix 8 (A has been reduced to form (1) before-
hand), it is sufficient for use from the elementary transformations 1)-5) only a rearrangement of
strips (taking into account that a Frobenius cell can always be driven to such a location that it is re-
duced in the last turn). Consequently, a natural subdivision could be obtained from subdivision (4)
only by a rearrangement of strips and a consolidation of cells. But, as is easy to be convinced, it is
impossible to reduce pair (4) to form I by these transformations. From the remark to the proposi-
tion and from the naturalness of the partitions indicated in (4), it follows that the decomposition of
pair (4) should be consistent with the partition of this pair into cells, but this is not possible in view
of the indecomposability of ¢ . The indecomposability of pair (4) is proved.

Analogously we can show that two pairs of matrices A , B and A , B' of form (3) with an
aperiodic sequence of weights (%, 5,), . . -, (% 8¢) and (1, s), . . ., (1, s;) go one into the other by trans-
formations I-VI only in the case when A= A’ , B=B' and the sequence (4084),. - -, (15 s has the
Orm (yirs Syurdye v s g So)y  (B48ady e o oo (i 34,
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Conclusion. We have shown that every indecomposable pair of matrices with rows and columns

furnished with weight is uniquely reduced to one of the following forms by transformations I-VI:

El_[ojo) (0] _lo]e
0. I _E 010
A= . B‘( - )
o Jo/E \oT TED

where ¢ is the indecomposable Frobenius cell (3). The weights of all rows (columns) belonging to the

A -th vertical (horizontal) strip are equal to each other and equal to some <, (5,), (1= 7, s00), {5 =0 ,

V=1,...,8» The sequence of pairs (1,,5,),...,(%3,) is aperiodic and is determined to within any cyclic
permutation.
/0 00)
1.. 00 \
I A=E, B= . |
\o S0

D

0t...0

w
L
-
L)
(=)
e

00...1 0...10

In cases II-V the weight ¢, of the o -th row ( x, of the ¢ ~th column) is any positive integer or

the symbol .o . The weights are uniquely determined by the pair (independently of the reduction method}.

Pairs of form I-V are indecomposable,

§3. Generating and Defining Relations for Finitely

Generated Modules over a Dyad

Thus, to every finitely generated module % over a dyad D , indecomposable into a direct sum,
there is uniquely associated a pair of matrices A , B of dimension m=xn of one of the forms I~V and
two sequences of weights c,,...,¢,, and #,,..-, %, (in case I the aperiodic sequence (1,,3,),...,(%q. 5 is
determined to within any cyclic permutation). From the method of construction of the pair of matrices
A= (@ap) 5 B=(bap) from the module @1t (see §1) it follows that b,;=0 as soonas c,=oc0 OF Kk =00 ,
Therefore, C. canequal o only for «=1 for a pair of type II and.for « =n for a pair of type IV; «,

can equal oc only for p=m for pairs II and V. In all the remaining cases the weights are finite.

Conversely, we can restore module %t {rom the pair A=(a,,) , B=(bsp) corresponding to it.

We select an element a,;ﬁ((‘»'q p)€ D, going into a,, (8.5 K under the natural homomorphism of D onto
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K=D/R (R is the radical of the dyad); moreover, we agree to choose always !¢ D as the represent-
ative of 1€ K. We construct the module 91 with generators w, and v, by specifying the relations;

Ug 7 =0 ( absentfor ¢, =o0 ),

(5)
& ' Kp < ' e,
e
Yy Ty= D Uy Gop, Bl = GZ Uy By, 2, ( absent for k,=co ),
o=l Co $00
where a=1,...,m, p=1,...,n,

It is not difficult to verify that in §1 precisely the pair A , B 1is constructed from the new

module 0 if and only if WiR, = Zm u,D (R, =2,D), in other words, if for every % we can find ele-

o=t
m .
ments d, of the dyad such that v, 2, } u,d,. Therefore, pairs of types I, II, V, and only they, can be
G
obtained from an indecomposable finitely generated module over a dyad.

Thus, we have established a one-to-one correspondence between, on the one hand, finitely gen-
erated modules over a dyad, indecomposable into a direct sum, and, on the other hand, pairs of matrices

of types I, II, V for which the above~-mentioned restrictions on the weights are fulfilled,

Let us remove (in cases I, II, V) the elements u, from the system of generators {u., v} of

module @1 and the relations u, 512“ = 0 (which follow from the remaining relations and from the equali-

ty 2,%,=0) and v, %,= °tZm__' Uy Qqp from the system (5) of generating relations, having replaced in all the
remaining relations the element u. by 7,4, in cases], Il and by %,,,%, in case y . In case I we de~
note by v,, the element »,,,, , O=v=<t (t is the degree of the characteristic polynomial §u)=
x*- B\ x*-'-.. .- 6, of the indecomposable Frobenius cell in matrix B ) and we renumber the sequences
{vw,}, HETE ) {8} , replacing everywhere the indices p , v byg-pm+1, t-v+1 ., IncasesIl
and V we introduce the notation: £ =c, incasell, { =0 , ¢f,,,=¢c, incaseV (by this change the
‘relations in cases II and V reduce to one series); we replace x, by k, +1 and then we renumber the

sequences {v,} andf{k,, L)} , replacing everywhere the index & by n-o+1.

Finally, every finitely generated module, indecomposable into a direct sum, over a dyad D of
local Dedekind rings with prime elements %, and 1, is given by defining relations of one of the following

two forms:

g, v
I »n""'=0 (absentfor k,-eo ), w,,, 8" =95 (p=1...,n-1), % 4" -0(absent for ¢, - ),
IL Uy, 5= (0, byt B BOTST, Wy )= 8, B 0t ) Py B, B (=, 01, et ).
A module of type I is uniquely determined by the sequence (k,,,),- -+, (k,, £,) , where «, , £,

are nonnegative integers of the symbol oo ; Kuy.vvp ks byy..., 8., are positive integers.

A module of type II is uniquely determined by the following invariants: (=,, s,),...,.(%5, $;) is an
aperiodic sequence of pairs of positive integers, determined to within any cyclic permutation; s =xt
~bix*'-...-6, (b,=0)is the power of an irreducible polynomial over the residue field K of dyad D .

Then b, is some element of the dyad, which goes into 8, under the natural homomorphism of D

onto K (v=1,...,t).
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Let wi-m,®. .. 00, 000, 9% be the decomposition of a finitely generated module %1 over adyad
into a direct sum of indecomposable ones. Each module w1, of type I ( 7, of type II) is given by the
generator system {v,,} ({»,,,}) and by the system of defining relations ¢ o Of type I ( w, of type ).
Then the set {v,,, »,,.,} will be the generator system for module @t , while the union {®_, V,} of all
sets ¢, and W, will be its system of defining relations. It can be shown that for a finitely generaled
module over a dyad there holds a unique decomposition into indecomposable ones (for modules of finite
length the uniqueness of the decomposition follows immediately from the Krull -Schmidt theorem).
Therefore, the set {(kup, lap » (Ky., S ap) » 4, 0} does not depend upon the method of decomposi-

tion of module #1 into a direct sum of indecomposable ones and is its complete system of invariants.

If we consider only finite modules over a dyad, the only change will be that in this case the

parameters «x, t, cannot equal oo .

L n

§4, Finite P -Groups Possessing an Abelian

Subgroup of Index P

In this section we aim to obtain the defining relations for finite P -groups possessing an Abelian

subgroup of index P . We also find the complete system of invariants.

Let G be a finite P ~group, A be an Abelian subgroup of index p , g be some element of the
group, not contained in A . A is a normal divisor of G (as a maximal subgroup of a finite p-group
([4], Corollary 4.2.2)); therefore, it is natural to treat it as a module over Z,(u) where 7, is the
ring of P -adic integers, p is the root of the polynomial x" -1 , having defined for any heA and
Z()=z v+ vz, 1 Z,

O e S T HOR PP las AT TN

n-t
hz"=hf"°‘cﬂp“"‘*ct,n—4p ,

where p" isthe order of h , z;=c +c, p+-..+¢,,p™..., 0=Cy<p.

It is easy to verify that the equality

z(py=(z(€), z(1),

where z(x) is a polynomial with coefficients in Z, , £ is the root of the polynomial 1+ +, 4 P-1 , ir=
reducible over the field of P -adic numbers, yields the composition of Z, (u) into a dyad (§1) of local
Dedekind rings Zp(e) and Z, with prime elements ¢ -1 and p. To these prime elements corre-

sponds the dyad's elements f,=px-1=(e-1,0) and ﬂ1='1+,u.+...+f-tpﬂ= 0, p)-

Let us derive one relation between elements ¢, and %, which we need subsequently. As is easily
shown, z(u)=z +zpu+.. .+zp_4pf" e Z, (1) is invertible if and only if z(1)=z,*2z,+...+2,_, € pZ,. Fur-
thermore, z(p)%, = 2%, for every z(we Z,yy. Therefore, in the obvious equality Ty - ﬁf" =pt the ele-~
ment t is invertible and

P-1

a, 't =q,-p, wT'=g%,, (5)

Thus, with the group G we associate, with respect to fixed A and § , a module #% over the

dyad Z, () with a preferred element w»e @1 which is identified with the element gpe A under the
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natural identification of the elements of 91 with the elements of A . It is clear that the pair (%1, »)
completely defines the group G . Modules over a dyad have been described in §3. Therefore, for a
complete description of all groups of the form being considered by us it is sufficient to ascertain what
pairs (@1, ») can indeed be obtained from such groups, as well as to study when different pairs (¢, »)
and ( m‘, »') defines one groups G (with respect to different A , 9 ).

Suppose, as a matter of fact, that with the groups G we have associated, with respectto A and
¢ , amodule %t and, with respect to A and g¢,¢ A, a module 71’ . It is easy to see that if gA=gTA
(0<n <p), then, having replace the dyad's element p by u" in the defining relations (%, V¥,} of
module %t (see §3) (here %,=p -1 is replaced by z/=p"-1=%, (I+p+...+pg"™", g, = lep+. ..+ p1'7 by
Ty=d+pu+. ..o pmPT =g 3 we obtain the defining relations @, V,} of module @t'. By the change

of generators

v;p = U,y (14./‘“ ., _+Pn-1)4¢KM+K,,'+ eat qu’

Py = Vapn{ TH* AR R g s )
(admissible in view of the invertibility of 1+g+...*+g"" in Z, () we bring {cp; , 'L]f” to the standard

form with the system of invariants {(k,, bag), (tap, Sau)r §3 Wi (see §3), where
[ fa (XM g Tt ce ) (6)

(k is the image of the number n under the natural homomorphism of the integer ring Z into the
field Z/Z,).

We have shown that two modules 91 and %' can be obtained from one group G with respect
to a fixed A if and only if in the field of P elements we can find a nonzero element » such that as a
result of replacing all §,(x) from the system of invariants of module @t by the polynomials 5,0

from (6) we obtain the system of invariants of module %t'.

Suppose that with group G we have associated, with respect to A and ¢, the pair (@, v) (veam
is identified with g°¢ A ). Let us show that § and the generator system {v,, %7 of module 77 can

be chosen so that v»=1, 1, or »=0 (for the same @ ).

Indeed, it is not difficult to verify (for example, by the method of undetermined coefficients) that

the set K={we wt|rs, =0} equals
Kgm'ﬁz+ Z_vm ‘ﬁ':M ZP‘I“')' (7)

Since veK (v is identified with ¢’ ), where »= w2, + Zm'_ %, %~ d,, where we 71 , 4. is an invertible

A=

element of Z or is zero.
Suppose that not all d,= 0. It is clear that then the set {»,} can be renumbered over the index
o« dothat d,#0 for a=e, » d.=0 fora«=>¢, ,and the following conditions are fulfilled for the

parameterskq,p, byp s n, (@=0,...,¢,, p=0,...,n,):

1) KOP=KU’-"" Kfp[3<Kn)+1,P"“’ KE»P’
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2) byp= L= e bpenpre o beaps

3)if n,=p for some as¢, ,thenn,=n, .
It is easily shown that when these conditions are fulfilled the set {¥ps Yipylo# O and all the elements
Vop = ufo Vap nf“’ “"o* d, together constitute a new generator system, while the relations obtained from the

system of defining relations {¢p_, ¥,} of module 71 by replacing each element v,

,p occurring in @,

by v, constitute a new system of defining relations of standard form for w1’ ,

Thus, v=wi,+v), %" d , where d=-0 or d-1. Let we @ be identified with he A . Then, as
we are easily convinced, v-w1, is identified with (9}{')” . Therefore, with the group G we associate,
Koq

with respect to A and gh" , the pair (1, v, %") for d =1 or the pair (m,0) for d =0, which is
what we had to show,

By h,p (h ) we denote the element of A , which is identified with Vap (Pyuy)e @, where 91 is a
finite module over Z, (p), = 1; therefore, every element of module ! is written as the sum of ele-

ments ¢ v, p, tv,,, 1 (0<k<p, 0sx<p). Hence it follows that the set {hf;'; , h‘;,} (R = §"h¢") generates a

subgroup A in G . Let us write the defining relations {®,, ¥, of module @t in terms of the elements

of group G . The new relations obtained, together with the relations k%, fjs = h?r; h’:p , n‘i": hf;, = h?:,w W

hfz ?h::x = hi‘:x h":ﬁf, ensuring the Abelianness of A , and the relation ¢’=h (he A) yield, as we easily

are convinced, the system of defining relations of group G .

We shall use the usual notation for commutators:
[ gl=xy ey Ix,oglex, I, 91=l0, 90, 91 (6= 0,1, 2,..),

We have proved that a finite P -group G possessing an Abelian subgroup A of index p is given by
the generators g¢ A, hg,, h,,, € A and the following defining relations:

Lo §=lhon 8] [har. . 9171 (for o»0)

pl, Eu,.,“ +1 Pldnu'f“i

_p P EaP ¥
[H,,N,KNM g]‘g {ghup)P (P= 1,00y np=1), 99 Ghan) =1,

where
a=0y..0ym,, . .
-p %, 8, Butn  piry
L. [h,,, 1,‘,9]: g (Ghagae-- ’L"hq»tl) )
-p**9 oo,
[hx1,v+1’ "ugI: 9 (‘thqtv) ety L1
o pEap
(Pporr iy 91 67 (Ghaga)  (=theengyely v= by by
where

A=y, m,.

O [heps Kol=1, [n

g
ré h h’

8
£g? A,’w]=17 { ERpY I”'o"rx]="’

where o<y Oor «=y but p<8; €<6 ,o0r ¢t =0 but a-t or g=5; %Z=% but o<z 1§ K, 1,38=0,...,p-10.
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Let us write the defining relations I-III in another, in a certain sense simpler, form. For a
positive integer « we denote by k' and k' numbers such that k=«'p-9)+x", 0<k"<p. Having multiplied
the relation v, ,, 2/« 5, 2,* by t™ , using (5) and the equalities #,7,=0 and %; =p"’ 5, , we obtain

vu,P w1l P)n

a,p ﬂ;‘:,poa - vup ptﬂP“" L (8)
As the new h,, we select the element which is identified with »,¢"*"” by the natural identifica-

tion of elements of A with the elements of @1 . For «) =p-1 , as the new g we select the element
h-w;‘w"‘)'—‘: .

(4]

In view of (8) it is easy to show that the defining relations I-III of group G relative to the new

generators g, b

ap> Pap can be rewritten as:

(K et 1) '
o o

7(,("”,-:_,9], ["b, Y gy e 9]=1 ( fora=> O}

0" pe fup-a

e
- P P al
[ o, Pt 3 K-;,P'19]=9P(9hup )y (B=Tyeensitg=1, (Qh:n, )p=11

where o =0,..., m,.

' Spg, - 1 Sngy =1
=p M by p M but,p ™ e

-P
Hl . [h'L’H oy 9]=9 (qh’:uh .t 'hlq,t,, 7,

i
ot ] LTI
-P) P

-P
[hM,vu' ", I- 9 (9}‘;9“ ) (Veldyeeny Say)s

oy 1
=P} ~p y‘,sxy.v' p .
o T L L Y TRV

where A=1....ym,.

ml . [hups h:-31=17 [h’e;’ h‘iw—v]-h [hug,h‘qatz]""h

where a<y or o=y but p<3% j} €<o© ort=© but i<? ,org=0, %=7 butp<x 5, 1,8=0,..,p-1

Group G is completely defined by the following collection of parameters: (k,,, L,,),..
£ =-1 L,

» ony,

(K

* 2 Van,? an)

>0 for a>0 |, €ap >0 for

a sequence of pairs of integers «,, =0 , K, >0 for p-1 -
p<n,;if b, =1 s then x,,=0 and n,=1 , a=0,...,m, ( m, is a positive integer or Zero); ary Sardy
cy Uag, v 8,,), 30 aperiodic sequence of pairs of positive integers determined to within any cyclic
permutation; §,00=x"-8 X"~ -8, (8}, #0), apower of an irreducible polynomial over a field of
p elements, where two sequences of polynomials §,(x), - - -+ fm, ¥) and §100,.+ 45 §m (0 define one group

G if in the field of P elements we can find a nonzero element x such that for all 4

Mgt Tag mha (gt er et o)
=5, (e M My I M %

A=1,...,m, (m, isapositive integer or zero). The collection is unordered with respect to the in-

dices o= and 4 .
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Then ‘b, is an integer, 0= 68,, <p , mapping into B‘w under the natural homomorpjism of the

integers ring z onto the field Z/Z,.

Taking into account the method by which we associated with each module 71 over dyad D the
sequences of weights c,,..., c,, and k,,...,x, (see §1), it is not difficult to calculate the order of

group G :

}C,l= p""""ﬂ‘%“‘aﬂ*l(w}* %tﬂ"‘xu*sw)' {9)

If group G is non-Abelian, then its center consists of elements of A commutative with ¢ . In
view of (7), 7 is generated by the elements [h,,., 4], g (gha)’s §igh,..S. Hence it follows that
the relations [h,,,,_¢l=1, ¢ (Ghe) =1, g‘”(ghwv)P =1 together with I-III yield the system of defining
relations for the quotient group G /7 . After the reduction of the system obtained to standard form

I-1I1, using (9) we get that the center's order equals
!Zi:‘p“m”ﬂéz‘w\*%tﬁs‘/“ (10)

It still remains for us to ascertain when different collections of parametersiln,g, fap) (%, , 5.0,

5 (x i} yield one group G . From the preceding considerations it follows that with group G there is
A ? SLP«)
§, (0} . However, it can happen that G possesses several Abelian subgroups A of index p , relative

uniquely associated, with respect to a fixed A, the collection of parameters {{Kup, eap) . [

to which it is specified by different collections of parameters.

I G is non-Abelian and A , B are two Abelian subgroups with index P of it, then, as is not
difficult to show, AnB=7 and the index of the center Z in § equals p* . Therefore, from (9) and
(10) it follows that %KW sz‘_tx 1= 1.

In the general case ( possesses more than one Abelian subgroup of index P if and only if the in-
equalities J ..+ ; t, %, =1 and (m,+m,+ 1)k,+1)~1 are fulfilled for its parameters.
ap I3

We exclude the following collections of parameters:

1) m,>1, n,=1, «,=0, &,> min{l,}; m =0

2) m,2ln,=1, Kgu=0 for o#1,k,=1, L+t=0,, m =0,

3) myzi,n,=1 for a1, n=2, K,=0

o s Kn= 1, 5‘”-*175“, m1=0’

4) m, is arbitrary, n =1, k,=0, f,, isarbitrary; m,=q=1,-1,s, is arbitrary,$m=x-1.
It is not difficult to convince ourselves that the remaining collections of parameters yield all the al~
ready mutually nonisomorphic groups G . Therefore, {(Kas, Lup)s (aps 81,9 s} is a complete collection

of invariants of a finite P -group possessing an Abelian subgroup of index p .

Let us make several more remarks on the group § given by relations I-III. For each index
we denote by A, (B,) the smallest normal divisor of G , containing the elements h,, ,. P R

rshag ) « From the structure of the module 771 associated with group G relative to A it follows that
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A=A@.. ©A, ®Be. . 0p (11)

mk
and each A,(B,) is now decomposed into a direct sum of normal divisors of G. A is picked out by

the semidirect factors of G if and only if k,,=-1

By H,, Wwe denote the normal divisor of ; , generated by the element h,, . Making use of the
fact that H,, is isomorphic to an additive group of the quotient ring Z,/Ann vip , Ann V=

{de Z, )] %, d =0} ,it is not difficult to show that H,p expands into a direct sum of cyclic groups:

fhaptoltbg glte. . Olthepspergll, it |5 by,
H -

! {h’up}@{[h’ap * 9]}@' : '@{[hap'lp-z 9]}®{9_P(9h‘qpf} if [p_’iaH? @GP,

where [q] is the integer part of number o . The orders of the elements h,p ,[h,,.9] (0>0), §7gh,)"

X {[—22Y, Cap) Kap= N 3 i . .
equal p“mm(fp-«h *, pI=l, pr ., The arguments remain in force if H,, » hap » Y ¢ Kap

tap are replaced by H v Sap for g,t,»1. Using this expansion and formula (11)

l}b” t %ﬁl" 1
it is not difficult to obtain an expansion of A into a direct sum of cyclic groups. We shall not do this

},'Ly 1 h'l/’b\) ’

here.

The formula for computing the number of p -groups of given order, possessing an Abelian sub-
group of index p, would be rather long; however, it is easy to calculate the number $§(n) of such groups
of order p", indecomposable info a semidirect product of subgroups and of some normal divisor con-
tained in A . Obviously, groups with parameters m, = m, =0, «,, # - 1 will be such groups. In view of
(9), sty equals the number of representations n in the form of an ordered sum of an even number

of positive integers, i.e., fin)=2"""

§5. Pair of Mutually Annihilating Operators

The following problem was solved in [2] (Chap. II): two nilpotent linear transformations sz, and
i, are given in a finite-dimensional vector space vV over a field K , such that #,%,- 5,2, -0.* Find in
V  the bases in which the matrices of these transformations have a canonic form, and give also the

complete system of invariants.

It is evident that V can be treated as a module over a K -algebra A of infinite rank, having the

basis 1,%,,1,,%,4,..., where 5,%, =25 = 0. If is easy to see that the equality

Vg ey s Yy
* » 2 £1
a+b,n+c, B +b AFec, Biv. . =(arba 4B 0t 2C N, e, 234 0l),

a, b,,c, ¢k, gives a decomposition of A into a dyad) (81) of rings of formal power series K[[«,]] and
JENA

*The requirement of nilpotency of operators a, and =, is not essential. Indeed, if one of these opera-
tors is nonnilpotent and the space V is indecomposable into a direct sum of invariant spaces, then it is
not difficult to show that the other operator is zero.

TInstead of a dyad of rings of power series we could take the dyad of rings of polynomials. In truth, a
dyad of two nonlocal Dedekind rings would be obtained; however, it is not difficult to be convinced that
the considerations of §§1-3 carry over to this case almost without change. Here nonnilpotent operators

would automatically be included in the consideration.
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¥ in,]] is a local Dedekind ring with prime element «,.

Thus our problem is reduced to the problem, solved in §§1-3, of the classification of modules
over a dyad of local Dedekind rings. From the results of §3 it is easily obfained that the vector
in which the pair of nilpotent operators 4, and %, such that 7,7, =%, 1%, =0 act, is decomposable into a

direct sum of indecomposable invariant spaces of the following two types.

A space V, of type I is uniquely determined by the sequence of nonnegative integers («,,1,,.. .,
{Kns ) » where k >0 for a>1 , {,>0for p< n . The space V, is constructed asa 1+ Jx,+0y~
dimensional space spanned by the vectors v, o , »af , », 2", where k=0,...,%, , [=1,..., t-1,

=1,..., n. The equality %,%, =9%1%=0, the form of the basis vectors, and also the relations

£, 1
a=lyeeeyn=l)y v, 5, =0

completely determinetheactionof operators 1, and %, on the basis vectors.
A space V, of type II is uniquely determined by the following collection of invariants: (1,,s,),...,

{19, 3,), an aperiodic sequence of pairs of positive integers, defined to within any cyclic permutation;
s0=x"-8,x"-...-8, (b, #0), a power of an irreducible polynomial over field K . Space VY, is
spanned by the vectors 4, »; , Yy 2P, where +=0,...,v,, s=1,..., 500, tdt,...;9, V=1,

. » t . The operators s, and are completely determined by the relations:

s s x, 5
Yy By = (O bt vV BOES, v, W=, mY (v, ., E-1),

Vyury By =y B (it 4oty ey, £o0)
We easily convince ourselves that in the case field K is algebraically closed spaces of iypes I

and II coincide with the canonic modules of kind I and II defined in [2].
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