2) a Green's function Gy(7, ¢) for the invariant torus problem exists which satisfies estimate (3);

3) the inequality ¥ —| ! > 0 holds, where o > max Il
llnll |

Then estimate (26) holds for the partial derivatives of order ! of Green's function Gy(r, @) with respect to the
variables ®.

Remark 6, The hypotheses of Theorem 4 give prerequisites for obtaining analogous results for the
smoothness of an invariant torus in systems of nonlinear differential equations,
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FINITELY GENERATED GROUPS WITH COMMUTATOR
GROUP OF PRIME ORDER

V. V. Sergeichuk UDC 519.442

In [1] defining relations and a system of invariants are obtained for finite groups whose commutator sub-
group has prime order p # 2, In this paper, we obtain defining relations and a system of invariants for finitely
generated groups with commutator of prime order and for finitely generated groups with a complementable
cyclic commutator of order p¥, p # 2. This result was announced in part in {2],

We recall (cf. [3]) that a product G = G(G,. . . Gy is called a direct product with common subgroup A if
gigj = 8j8i» G;N G = A for all g; €G;j, gj € GJ, i # j. As follows from Lemma 1 of [4], a finite p-group with
commuf] tor A of order p is a direct product with common subgroup A of groups with at most two generators.
However, this decomposition is nonmunique and does not therefore give a complete classification,

In this paper we obtain the following description of finite p-groups with commutator of order p. A finite
p-group with two generators and commutator of order p is defined by the following relations:

[g.h)=a, g*=2a" w'=0d" o"=1, [g,a]=[h a] =1,
g

and is called uninull if A = 1, 4 = 0, except for the case p=2, a = =1; if A =pu = 1 it is called uninull in the
case p=2, @ = f = 1; it is called binull if A = = 0. Let G be a finite p-group with commutator A of order p,and
assume G is indecomposable as a direct product. Up to an isomorphism of the factors, the group G is uniquely
decomposable as a direct product with common group A:

Kiev State University. Translated from Ukrainskii Matematicheskii zZhurnal, Vol. 30, No. 6, pp. 789-
796, November-December, 1978. Original article submitted June 7, 1977,
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G= G.‘G .G,
where G(1 is either a cyelic p-group with subgroup A or else a umnull or binull group with commutator A;
Gy, . . . Gy are binull groups with commutator A.

The following question arises: Is it possible to classify all finite p-groups with cyclic commutator? In
[5], matrix methods are used to prove that there exists no good system of invariants even for finite p-groups
with cyclic central commutator of order p?. A system of invariants is obtained only for the metacyclic p-groups
[6] and finite p~groups {p # 2) with cyclic commutator and two generators [7].

1. Description of the Method Applied. In this paper we apply matrix methods: We define a group using a
larger set of numerical parameters than is necessary, which we write in the form of matrices and vectors,
and then get rid of the superfluous parameters by performing admissible transformations. The remaining
parameters comprise a complete system of invariants for the group.

We give some information on the matrix problem. G denotes a finitely generated group with commutator
G' of prime order p. Let

G ={a)yp, G/G = (b)n X ..  X(Opdnm (1
where (b; >ni is a cyclic group of order nj = « or nj = pfi (p; a prime), and let g; € by,
glag;=d", gl =d'i (n; < o), [g;, g;]=0a",a" =1, @)
where we put r; = 0 for nj = =,

Equalities (2) constitute a set of defining relations for G. Indeed, for any natural numbers @, 3 it is easy
to obtain from them that

ikt At

]

gl =gla ", gral = gligta ' @)
and then to completely determine the multiplication in G of elements which are uniquely expressible in the form
gtgle, . g?‘nmaﬁ, where 0 = a; < nj, 8 is defined modulo p. Since tj, rj, sijj are defined modulo p, we assume
that they belong to the field of p elements Z /pZ.
Consequently, the group G is completely determined by the numbers ny, . . ., ny, p, as well as by the
vectors T= (t;, ..., tm), R= (ry, . .., ry) and the skew-symmetric (since [gj, gj]"1 = [gj» gi]) matrix S =
(sij) over the field Z /pZ. But for another choice of generators €4y . . .+ Em» 4, Of G we obtain another tripie

T, R, S. The purpose of this article is to distinguish among all triples T, R, S obtained from a single group
one such triple which we call canonical. This canonical triple (together with nj, p) will be a complete set of
invariants for the group G.

It is obvious that we can go from the gensrators gy, . . ., gm. @ to any other possible set of generators
g4+ + -5 Em» @ by applying the following changes of generators several times (« is an integer, i, j are fixed
indices):

D gi=gj g =8, ek=8k k=1, e =g

1D gizgia, gl'{=gk (k # i), a' = a, where (@, nj) =1, @ =—1 for nj = =;

110) g{ = gigja, gl‘{= gk (k # i), a' = a, where either p; = Pj» p1 "Il a for vj Z Vi, OF nj = *;
V) gf = a%g;, g =g (k *i), @' = a;

V) a' = a®%, g = gy for all k, where 0 <a <p.

i

The substitutions I)-III) amount to rechoosing the generators bi in the decomposition of G /G' (1), (IV)
to rechoosmg gi € bj, and V) to rechoosing a ¢ G'. We note that in subst1tut10n 1), the set of n; changes: n1 = Ds,
= N, nk ny (k =i, j). To each change of generators I)-V) there corresponds some transformation of the
trlple T, R, S which we call elementary, Thus we need to find the canonical form of the triple T, R, S with
respect to elementary transformations I)-V).

A triple T, R, S is called decomposable if by applying the transformations I)~V) we can arrange that
for some i

t,-=i,r,-—:s“=si2=...=sim=0. (4)
Decomposable triples correspond to groups G which can be decomposed into direct products. Indeed, if (4)

holds, then by (2) (gi) is a direct factor in G. Conversely, if G is decomposable then it has the formG=G,; x(g);
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we obtain (4) by taking the generator g; to be the element g.

Since the group G is uniquely decomposable up to isomorphism as a direct product G = G; X A, where
G, is indecomposable with commutator of prime order p and A is Abelian, it is sufficient to classify indecom-~
posable groups G. We will therefore assume that the group G and hence also the triple T, R, S are indecom-
posable,

2. Groups with Central Commutator., THEOREM 1. A finitely generated indecomposable group whose
commutator subgroup is central and has prime order p is determined by the set of invariants:

Qglly v o« Oy )
(5 BBy ... By T2 V‘)p’

where v, . . ., v;is an unordered collection of nonzero elements of the field Z /pZ defined up to sign and a
common nonzero factor, ! = 0; o; is a natural number, Bj is a natural number of the symbol o, aj = B for

i >0, the set of columns (ay, 8),. .., (g, Bk is unordered, k = 0; for k > 0 or I > 0 the inequality o, = 8, =
0 is admissible; 6 is a natural number, 6 = 1 for §; < ©, 8 < p/2 for §, = =,

The group is defined by the following generators a, g0y hgs o v oy Bt ly hi.7 and defining relations:
D [gi» gj] = [hi, hj] = {gj, hj] = [g;, ] = [hj, @] =aP =1 = j);

G 5 By By

2)gop = ,hg) =1(h0p :aforpzz,a0:30=l),[go,ho]:afor50>0;
pi pﬁi

g =h =1, g hl=a(=1,2,...,k;

4) (g, hj=a K G =k+1,...,k+L g, hy are of infinite order).

It follows from the defining relations 1)-4) that the group decomposes into a direct product with common
subgroup (a>p of the subgroups Gj with two generators gj, h;. The commutator G' = {a), and the center equals
(gg’) x (hP) x ... x (g§+l> x (hﬁ”) (for @, = 0 we must replace (g([))) by (a)). The group is finite if and only
ifall 8j <~ and I =0 [i.e., ¥, ..., vy do not appear in (5)], and in this case the order of G is equal to p?,
where n= 1+ Z(aj + 8;).

The proof of Theorem 1 occupies the rest of this section. We impose an extra condition on the group G
in Sec. 1: The commutator G' is lS:pntained in the center. Then all the t; = 1 in (2), i.e., G is completely deter-
mined by the pair R, S. If nj = p; ", pj * p, then after a substitution IT) gi = g? we get g;" = =1, (i, gi] =
[gf, gl = aSijP = 1, i.e., we obtain (4) tj =1, ri =s{1=...=8{y =0, which contradicts the indecomposability
of G,

Hence each n; = pui or =, We put v; = = for nj = ». We call v; the weight of the i-th row and i-th column
of the matrix S; we also call it the weight of the i-~th element of R. Using (3) it is easy to show that the pair R,
S can be transformed using I)-V) as follows (@ € Z /pZ):

I. The elements of R change places "together with their weight," i.e., the rows and columns of S with
indices i, j are interchanged.

I, The element of R, the row and column of S with index i, are multiplied by @ = 0; a =—1 for v; = =,

1L a) If vj = vj, then the j-th column in § multiplied by a is added to the i-th column, and the j-th row
multiplied-by a is added to the i~th row. In R, a times the j-th element is added to the i-th element, and for
p =2, v = 1 the term asj;j is also added.

b) An element of strictly greater weight multiplied by o is added to any element in R; S is not changed.

¢) A column of strictly smaller weight multiplied by @ is added to any column in S, rows with the same
indices being transformed in the same way; R is not changed.

Vi

Indeed, by (3) the substitution III gives g;”v[== (gigg)”v"=g;}n"ig;"’ia’ii‘” =qitrert Vitsm, wheret =1+ 2+, ., +

pVi = 1/2pui(pui +1), t=0(modp) for p>2o0rvi > 1, t =1 (modp) for p = 2 and v = 1; [g), gu] = a’*T™/* i,e.,
ri = 1 + rjap”i"] + sjjet, Sik = Sik + sk
IV. R and S do not change.

V. R, S are divided by a # 0.



We begin by simplifying the pair R, S using the transformations I-V. If S # 0 we use transformation I
to make the nonzero row with smallest weight the first row, and then we replace the second column hy a
column whose first element has minimal weight. Using the element s;, # 0 obtained, we successively make
the elements sy3, Sy3, - » «» Sym; S33» Sq35 - - - » Sm2 Z€ro using transformations III, a), c). If vy < = or vy < =,
we make sy, = 1. We obtain

0 s5,/0...0
—3S, 0]0...0
s=| 00
Sy
0 0

If S, # 0, we reduce S, analogously. Repeating this reduction sufficiently many times, we obtain the matrix

n blocks

01

—10
01 .
. 0 6)

S= Lo 0 v A y
— v 0
0y
0 -1 0 0.
"0
where vy <@ 0r vy <= {i =1), Vo= Vopnig = ... = Vopgey = .

We determine the form to which the vector R can be reduced by transformations I~V in such a way that
the form of the matrix (6) is preserved. In particular, the following transformations are also possible with R:

a) interchange the pairs {(ry;_;, ryj) and (rzj—p ij) "together with their weight" (transformation I), i,
j=n

#) the pair (ryj_y, ry;) with weight (v,j_,, vyj) can be replaced by the pair (ry;, —ryj—,) with weight (v,j,
Vsi-¢) (using transformation II, we multiply r,; by —1 and then interchange —r,; and r,j_,, with {6) being pre-
served), i, j =n.

Let R # 0. Using transformation III b) and a nonzero element of maximal weight, we make all the ele-
ments of R of smaller weight zero. We obtain a vector R in which all nonzero elements have the same weight
<e (since rj = 0 if vj = =),

If m >2(n+ J), then ryn.47+y # 0; otherwise (4) would hold and the group G would be decomposable, By
transformation II we arrange that ryp,,7:¢ = 1, and then use transformation III a) and this element tc make all
the rj with i # 2(n + ) + 1 equal to zero. Then since G is indecomposable, we obtain m =2(n+ ) + 1, R =
©,...,0, 1.

Let m = 2(n + I), Among all the pairs (ryj_;, ryj) # (0, 0}, we choose a pair such that the sum of the
weights vyj-; + v,j is maximal and use transformation @) to interchange it with the pair (r,, ry). If the new
r, = 0 then ry # 0; we make r; # 0 by transformation 8).

If ryj-y # 0, 1 > 1, weadd r; multiplied by a = -—r?lrﬂ_l to it [transformation IIT a)] and obtain ryj_; = 0.
But this spoils the form of (6). We recover (6) by transformations III a) or b), by adding to the second row
and column of 8 the 2i-th row and column multiplied by —a. This {ransformation is admissible, since v, +
Vo = Vyj_y T Vyj and vy = vyi_q (since ry # 0, ryj_; = 0) implies v, = v,j. Similarly, we make all the r,; with
i > 1 equal to zero.

We have obtained R = (ry, ry, 0,...,0), ry #0. If p=2, v, = vy, = 1, thenin the case R = {1,0,...,0)
we add ry + 555 = 1 to ry = 1 [transformation III a)] and obtain R = 0. In the caseR = (1, 1,0, ..., 0), this
transformation does not alter R since then r, + 5, = 0.

Assume the condition p = 2, v; = v, = 1 does not hold. We then use the element r; # 0 to make r, = 0
[transformation III a}]. If v, # =, we divide r, by r, (transformation II}, and in order to recover the form (6)
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of 8§ we simultaneously multiply the second row and second column of S by r; we getR = (1,0, ..., 0). Ifon
the other hand v, = « then the second row and column of S can only be multiplied by —1, so that it is possible

without changing the form of S in (6) to multiply r; only by +1 and make R = (6, 0, ..., 0), where 0 <6 = p/2.
We have obtained a pair R, S where S has the form (6) and R has one of the forms;
HR=@0,...,0, m=2n+1);
2)R=0,...,0,1), m=2(n+ 1) +1;
3JyR=(,0,...,0 B=(,1,0,...,0 forp=2, vy=vy,=1), m=2(n+J), where 6 = 1 for v, < =,

0 <6 =p/2for v =

It is easy to see that the pair R, S is indecomposable (cf. Sec. 1). The weight of the i-th (i = n) block
of S is denoted by (aj, fj) in cases 1), 2), and by (@j-y, Bj.q) in case 3). We introduce the notation o, = 8; = 0,
k = n for 1); a, is the weight of the last column, 8, =0, k= n for 2); k= n— 1 for 3). Using transformation ),
we can make aj = 35 (1 =i =k).

The elements ¥y, . . ., ¥; in (6) are determined up to order of succession, sign (in place of any Y] we can
take —vy; by applying transformation II}, and up to a common nonzero multiple (by applying transformation V we
obtain y] = Ay, . . ., 7'1 = Ay;, A # 0, which spoils the form of the first n blocks of S in (6) and the vector R; we
correct them by transformation II). It is easy to see that in the definition of vy, . . ., ¥; with this degree of
freedom, distinct pairs R, S of the above form cannot be taken into one another by the transformations I-V,
i.e., we have obtained a canonical form for the indecomposable pair R, S with weight relative to the trans-
formations I-V. The parameters appearing in R, S can be written down in the form of the set (5).

As is shown in Sec. 1, the group G is completely defined by the indecomposable triple T = 0, R, S (and
the set of invariants ny, . . ., ny, p) by means of the defining relations (2), distinct triples defining the same
group if and only if we can go from one triple to the other using transformations I-V. Therefore, (5) is a com-
plete system of invariants for G. Writing (2) in the new notation, we obtain the defining relations 1)-4) in
Theorem 1. The theorem is proved.

3. Groups with Complementable Commutator. It remains to describe the finitely generated groups with
commutator of order p which is not central. It is easy to show that the commutator in such groups is com-
plementable,

Indeed, let G be such a group. Then there exists a t; # 0 in its defining relations (2), We make t; # 0
by an interchange 1. We apply the replacement IV: g; =g g{ = giaai(i >1), a' = a, where aj = —sj,(t; — 1L
Then by (3) [g], g} = a_aigi_lg;lgiglaaitl _ St 1, i.e., s{; = 0. We show that all the s{j =r;=0,ie.,

that G is a semidirect product of its commutator and the subgroup generated by the elements g;, RPN g;n. In
order to do this, we substitutex =g}, y =g}, z = gi'i into the Jacobi identity (which is easily verified directly):

[, v~ 2l [y, z7'), xF [[2, x— 1], gl =1,
w'here x¥ = y Xy, We get [a%, gl= i = I, s;= 0. Let nj < »; then P ‘:—‘grlar':gxa—rizg;—lg;_”ig;g:._"i= 1,
r; = 0.
The following result is proved analogously: A finite cyclic commutator subgroup having trivial inter-
section with the center of a finitely generated group is complementable.

THEOREM 2. Let G be a finitely generated group which cannot be decomposed into a direct product,
and assume G has a complementable cyclic commutator subgroup of order p” (v = 2 for p = 2). Then G is given

by the set of invariants
(7"11 wee A, ( T ) l )
E LR | 1 T »
Begg e oo By Ja, Mgy - v« Wskg Joo  |pv

() W
where the pj are primes in the decomposition (p — 1)p”"!=p, 1. . .p; L=l s>00r1=0), Aj, Kij, T are
nonnegative real numbers satisfying the conditions:

mi>7"ii>2‘i2>-">7"ihi>0’ Pig = Wip = oo > Wiy ®)

T % (p—Dpv—pyhupytar ... phst, k2> 10
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G is given by the defining relations (a is a generator of the commutator subgroup)

L Mty
g;'og=a¥, o = Opt =[gin grpl=1,

supplemented if T # 0 by the relations:

g lag=a, [gi; gl=1,
__A‘»
P
o¥ ,t=¢6T, eisa

i,i'=1,2,...,s8;§,j'=1,2, , ki; g is an element of infinite order. Here f;=¢""" s
i

smallest prlrmtlve root modulo pV i.e., a generator of the cyclic multiplicative group of the rlng Z/pVZ {p
is the order of tjj in this group).

The case p =2, v > 2 requires a special argument since the multiplicative group of the ring Z /2V% is
nongyclic for v > 2. We note that the group in Theorem 2 is finite if and only if v = 0, in which case its order

s TRt ?'ilz‘«
is equal to p'[]AM ™4 and the center Z —= ﬂ[ [ (g2 giy) l-q+1+uu] X (&% ) up. 17 # 0, adirect factor
Pi °.

i S

B, (p—1)pv—! -
(gh...gig” DY )°° is added, where « is the greatest common divisor of the numbers (p ~ 1)p” Land arg

. i
A= p)\”. pgs . Apl}\l‘ﬁl +Ard™! = 0modp; '’ 0 = B < pl . Inthe case s = 1, p; = p, p~ 1i7 (including 7 = 0)
we add another direct factor (aP ) py-a where ¢ is the smallest natural number satisfying the conditions a =
Mgy P @M.

Proof of the Theorem. Let G be a finitely generated group which cannot be decomposed into a direct
product, and let it have a complementable cyclic commutator subgroup of order p¥” (v < 2 for p = 2). The de-~
fining relations (2) for this group have the form

g lag =a", gt=1(n<o), [g. gl=0" =1, 9)
i.e., G is completely determined by the set t, . . ., t;; of elements of the ring Z /sz Since gj “g1 = all is an
automorphism, p does not divide t;, and therefore there exist integers 7 such that {; = £’1, where ¢ is a gen-
erator of the cyclic multiplicative group of the ring Z /p¥Z, the order of € being equal to (p — L)p¥" L. Since
a== gi”"iag;‘i = at"ni = asti"‘i, we have
T, = 0mod (p — )p*™! (10)
(it is more convenient to simplify 7; and not tj}.

From the set of generators g,, . . ., gm. @ of G we can go to any other set §1, c s ém’ a by applying
the replacements I}-V) in Sec. 1, where in V) we must replace the condition 0 <o <p by 0 < & < p¥. It is easy
to see that the replacements IV}-V) do not alter 7, . . ., Ty, while under replacements I)~III) they transform
as follows:

I. 7iand Tj are interchanged (along with nj, nj).

1. The element 7; is multiplied by @ and the remaining 1) (k # i) are unchanged; (@, nj) =1, @ =—1

for n; = «
i .

I, We add 7 multiplied by a to 7j, the remaining 7y (k = i) being unchanged; here either p; = pj,pillj~uila

for vj = vi or else nj = =,

Let nj = njand 0 < 7j =< 75. We use transformation III to take a new 7; equal to the remainder obtained
upon dividing Tj by 1y :7j = Tia + 75, 0 < 73 < 7j; we then divide 7; by the new 7j: 7y = 738 + i, 0= 7i <7, ete.
Repeating this process 2 sufficient number of times, we get 7{ = 0 or 7§ = 0, which contradicts the mdecom-—
posability of G into a direct product.

Hence nj # nj for i = j. We introduce a double system of enumeration by grouping the n; = p1 Laccording
to the prime pj:

Vr1 Vr2 Vrk,
fy=p, g =D, "seco sy, =D, ! (r=l,...,$),

vr1>vr2>"'>vrh,-’ pr#prl for r#r"

We rewrite condition (10) m the form 'rrlprrl = 0mod (p — 1)p 1. Since rpj # 0 mod (p — 1)p¥~!, we have prllp—

DpY 1, ie., (p— Jp¥i= pr Tqy, where wyp = 1, pr does not divide q,. Then by (10) Ty = Tpjqy, where mp is

defined mod p{’T. Using transformation II we make 7y = pOTi, 0 < 6pj < wy.
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The 6, satisfy the inequalities

0<6r1<6r2<"-<6rk,<mr9 (11)
VyF0u>v,+6,>. .. > v + 04 >o.

i=0rj _

Indeed, if 6yj = Opj for i < j then we use transformation III to arrange that Tri = T~ Trjp‘f}” 0; if vpj +

Opj = vrj + Orj for i < j then Orj = Ori = vpj ~ vrj, and we arrange that T'rj =Trj = Tripgrj_éri = 0. This con-
tradicts the indecomposability of G. The inequality vypi + 0pj = wyr assures that condition (10) holds: pﬁ“ X

qrpﬁri = () mod pcrurqr. Clearly it is not possible to change 6. by a transformation III when (11) holds, i.e.,
the é,.j are invariants of the group.

Assume that some nj = «; then using transformation I we make ny, = . Since nj # nj for i # j, all nj <

for i <m, i.e., the 7,,..., T3y are already reduced and it remains to reduce 7,. Any set of transformations
II-III for T, can be written as a single formula: T'm =ET QT ..+ @y Ty + @ (P~ 1)p?Y~! [the sum~
mand o p, (p = 1)p¥~! can be added since Ty is defined mod (p — 1)p”~Y]. Let d be the greatest common divisor
Tys e« > Tmets ® = Dp”"L. Thend = (p?ﬂqi, ..., PgSigg, P—DPYH = (p- 1)p”'"1p?11'w1. . .pgsr“JS. Then

Ty = £Tm + @d; we can arrange that Ty, satisfies the condition

— _ 85—
0<t, < gd=g@—p A p" (12)

Then this 1., is an invariant of G.

We introduce some new notation: Ajj = wj = 0ij, Kij = ¥jj ~ Aij, T = T for ny = =, 7= 0 for ny < ~. Then
conditions (11), (12) can be written in the simpler form (8). To each class of sets (14, ..., Ty going into one
another under the transformations I-V (i.e., defining the same indecomposable group G) we have associated the
set (7) satisfying conditions (8). Hence (7) is a complete set of invariants of G. Rewriting relations (9) in the
new notation, we obtain the defining relations in Theorem 2. The theorem is proved.

The author thanks A. V. Roiter for suggesting to him the matrix methods used for classifying groups
with small commutator subgroups, and L. A. Kaluzhin for pointing out the paper [1].
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