CANONICAL FORM OF THE MATRIX OF A BILINEAR FORM
OVER AN ALGEBRAICALLY CLOSED FIELD OF CHARACTERISTIC 2

V. V. Sergeichuk

The field K is always assumed to be algebraically closed and of characteristic 2. For
a nondegenerate Jordan block ¢ with eigenvalue A we denote by ¢~ a Jordan block of the same
size with eigenvalue A~!, by ¢t the matrix (: ﬁ), by the cosquare root § of ¢ we mean a
fixed solution of the equation XXV = @, where XV = (XT)™, XT is the transposed matrix (we
show in Lemma 1 that a solution exists only if ¢ is of odd size with A = 1, and we find the

A 0
form of §). By the direct sum we mean the matrix A4 ® B = (0 B)‘

THEOREM. In a finite-dimensional vector space over a field K, for each bilinear form

one can find a basis in which its matrix has the form

A=0/3..00:0%6..- VD FD..DF, (1)
where @;, ¥; are nondegenerate Jordan cells, ®;+# ¥; for all i, j, Fx is a nondegenerate
Jordan cell. The matrix A is determined uniquely by the bilinear form up to permutation

of the summands and replacement of &; by ¢;~.

Under a new choice of basis the matrix A of the bilinear form is replaced by a congruent
matrix SAST (s being a nondegenerate matrix), so the theorem establishes the canonical form
for a matrix with respect to congruences. We call a matrix congruently indecomposable if
it is not congruent to a matrix of the form 4 @ B, where A and B are square matrices. The

matrices (D:,lﬁﬁ Fy in the sum (1) are congruently indecomposable.

The problem of classification of a bilinear form over an arbitrary field was considered
in [1-3], over a field of characteristic #2 in {4~6]. If the field K in the formulation
of the theorem is replaced by an algebraically closed field L of characteristic #2, then
the phrase " @; %= ¥; for all i and j" should be replaced by the phrase "there does not exist
a @©;" (cf. {5, 6]). We note that over the field L each matfix is congruent to a direct
sum of congruently indecomposable matrices, uniquely defined up to congruence of the direct
summands. Over the field K even the number of summands of such a direct sum is not uniquely
determined: the matrices (2 ;>55(1) and (1)& (1) ©{1) are congruent, although the matrix

(? ;\ is congruently indecomposable.

To prove the theorem, we establish what form one can reduce a nondegenerate matrix A
to by congruence transformations. Since its cosquare A = AAY can be reduced by similarity

transformations SAS™! = (SAST) (SAST)V, it can be reduced to Jordan normal form:

A=D,D... 2D, (2)
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where ¢; is a nondegenerate Jordan block. We shall only make congruence transformations for
the matrix A which do not change its cosquare (2) (an analogous method was used in [2]).

We divided the matrix A into blocks Ajj such that the sizes of the blocks Aj; and &; coin-
cide; then A = AAT,

Ay =Q:4f = D: 4,07 (3)

We clarify the form of the block Ajj. By E..{m < n) we denote the matrix obtained
from the identity of size n x n by crossing out its first (n — m) rows. We define the matrix
M, = (a;;) . of size n x n, where g;=0 for i< n/2, i<(r+1)/2 and for i+j>n+1, ay=1

for i + j =n+ 1, and the other a;; are found from the condition

@i, j11 F Bivg, ja1 + Gy, =20 (4)
We define the matrix N,= M, for odd n, N, = FM;, for even n, where F is a degenerate Jordan

block. We always locate ones in a Jordan block over the eigenvalues.
LEMMA 1. Let @, ¥ be Jordan blocks of sizes m X m, n X n with eigenvalues A, p.
(A) If X = OXVYT, Ap5 1, then X = 0.

(B) If X=0X¥YT, A=p=1, m<n, then X=f(D)E,.M,(f(z) = KI[z]), its elements

Tim =Tpme1 = =T, Ty =0 for i+j>m+1.

(C) If X=®XT,A =1, then X=f(® + O N, f(z) = K [z]. The cosquare root & exists

only for A = 1 and odd m, and in this case one can take & = M.

Proof. (A) By the s-th diagonal of the matrix 4 = (4;;) we mean the collection of ele-
ments 4;; i+ j=s4+ 1. Let A = DAYT; then a;; =Aua;; + Aa; js; + P8ii1; + Gis1.ja (We assume
@i 41 = Gmiy,3 == 0). If Ap =1, then @m;=0, and provided all diagonals below the s-th are

zero, then the s-th diagonal is also zero, so A = 0.

(B) Let A==p =1, m<n. Then (4) holds so the (s + 1)-st diagonal and any element
of the s-th diagonal determine the whole s-th diagonal. Since dpmi,1=...=api, i =0,
all the diagonals below the m-th are zero, the matrix A is completely determined by repre-
sentatives of the lst, 2nd, ..., m-th diagonals. Consequently, the set of matrices A =
®AYT forms an m-dimensional space. The elements of the matrix Em.M, satisfy (4) so
it is a solution of the equation X = ®X¥T. The matrices f(®) En M, where f(2) = X [z],

are all its solutions, since they form a space of dimension m.

(C) For the elements of the matrix Ny (4) holds and ;5 =4a;,;4 (we assume 0<i<m,

A <TKm, setting ay, iy =ay), SO @i = @iy, ;F Giinins NI =N,®T. Consequently, Npl =

DN ®T, Ny = (D + &) Ny =f (D + @) ON;, = ON], vhere f(2) = K [2].

Let m=2k—a, a=1{0,1}, g(z) = K[z] be a polynomial of degree k such that (z 4 1)* =
g (z + 7). Since (z + 1)" 1is the characteristic polynomial of ¢ and the matrix Mp is non-
degenerate, one has N;=f(® + @) (E + ®)*M,, =0 only if g(x) divides f(x). Hence the
dimension of the space of matrices N,= ®N] 1is equal to k. On the other hand, if 4= ®AT,
then a;; = a;; + @i, i+1» %101 = 0, 4 = PADT, so the matrix A is completely determined by repre-
sentatives of the 1lst, 3rd, ..., (2k = 1)-st diagonals [point (B) of the proof], the dimen-
sion of the space of such matrices does not exceed k. Consequently, A = Ng.
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The matrix @& — O®HT = OODPT, so A = 1 [Lemma 1 (A)] and (f)=f((D + ®YH N, Since &

is nondegenerate, N is also nondegenerate and m is odd.

LEMMA 2. Let A be a congruently indecomposable nondegenerate matrix. Then A is congru-

ent to & or ¢t, where ¢ is a nondegenerate Jordan block.

Proof. Let the cosquare A have the form (2)A, where &; is a Jordan block of size »; X n;

with eigenvalue Aj. We can assume that A;=1. Assumethat A, =..=}5%1, ' =k, =..=h,

M#=M#M" for i > r. By (3) and Lemma 1 (A), Ajj = 0 in the following four cases:

Lje{l,..., ¢h i.jes{q+1,...,.r} i<r<j; i>r>j Hence, in view of the nondegeneracy
0 B
and congruent indecomposability, 4= (C 0), where B and C are nondegenerate blocks. Taking
S=RS (RVC™),. .vwe get a matrix A’ = SAST with blocks B'=R (BCV) R, ¢"=E. Since A'
is congruently indecomposable, we can make B' a Jordan block ¥; then A' = v¥%,
In what follows we shall assume A =...=M=1,n>n>...>n. Wesetn=mn, ®=

®,. Let us assume first that the block A;; is nondegenerate. In view of (3) and Lemma 1

(b), A4;y =/f: (®;) E,.M,. We apply the transformation A4’= SAST with block matrix S, in
which Sy =Enn 1 <i< 8, Siy =g (®;)Enn (i>2, £ (x)SKI[zl), the remaining blocks being
zero. We get Aj;'=1lg (®)f, (@) + fi (P)] EnnM,.  In view of the nondegeneracy of the matrix
f i®:) one can choose £ (®:) so that 4i=0(i>2). By (3) and the congruent indecomposabil-
ity, A = A,,.

In view of (3), Lemma 1 (C), and the nondegeneracy of A =/(N)®, where N =0 + @7
is a nilpotent matrix, [@EKI[zl, f(0)s= 0. Let S =qE + H(E + @), where a* =/(0), H=

bE + b,N + b,N?* + ... Since = @DDT, one has SOPST =[aE + H(E + D) [aE+ H(E + d)] &=
[a?E & aHN + H?N] ® = (a*E + (ab, + b)) N + ab,N* + (ab, + b)) N*+...1®. One can choose b,,
by, ... so that SOST =f(N)®, so & is congruent to A.

Let the block A;; be degenerate. The matrix A is nondegenerate so one can find a block
Aj; with nonzero last column. By virtue of the relations n; <2 (3), and Lemma 1 (B), such
a block is nondegenerate. We shall assume i = 2. Then m=n,=n, A4;;=Ff; (D) EninMn
(j < 2). We apply the transformation 4 = §AST with block matrix S, in which Su = Enpn,
M<<i<Y, Sy=gu (@) Enn (23,72, gy @ Kz, the remaining blocks being zero.
We get Ay = lgu () fi; (D) + 2i2 (P) fo; (D) + £y, ((I)E)IEn‘n M. (i>37<2. The matrix {(fas(P:i))z.3=1.2
is nondegenerate, so one can choose & (®;) so that Ay=A45,=0(>3). By (3), Lemma 1 (C),
and the congruent indecomposability, 4 = (d;p)i, j=1.00 4 =f; (D+ DY N,. By the transforma-
tion SAST, S=E,, ©fu (D)), wve make A, = M,, A, = ®AL = OMT.

We show that by a congruence transformation one can make 4p = A4, =0. Let f; (zy=a, +
@+ .. L@ =8+ bz + ... 8 =...=a,=054a (> 0). It suffices to prove that
if the rank of A}, is not less than the rank of A,, (i.e., by=...=b,_,=0 ), then the
rank of A;; can be lowered without changing A;,. We apply the transformation 1’ = S4ST, S—=
(g g(;‘)) ; We get Ay = Ay, Ay = f (D + O YN, + Dg (D7) M7 + g(D) M, + g(D)f, (@ + DY) g (@) N,,.
We introduce notation: h(x) = g(x + 1), F is a degenerate Jordan block G=E+F+F L ..,
then ®=FK + F, @' =G =E + FG, ® + O ' = F'G. Since N,= F'°M,, M, = ®=M~ where n = 2k + e,
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@& {0,1} one has Ay = [fy (F36) F'= + (E + FY~h (FG) + h (F) + k (F) f, (F*G) h (FG) F*=] M,.

Let B K be such that a, +p -+ p’by=0; we take h(z)=Pp for r = 0 (then a = 0 due to the
degeneracy of A;;), h(2)=a2¥* for r > 0; we get Ay == (,F** 4 c, /2™ + ...} F'2M, (c; = K),
its rank is less than the rank of A;;.

0 oMl

Thus, one can make 4 = ( " 0

)- Taking § = E @ M;!, weget SAS" =@®*. The lemma is
proved. ’

Proof of the Theorem. To classify bilinear forms, Gabriel [1] (cf. also [4-6]) proposed

using the following result of Kronecker. The pair of matriées (A, B) of size m X n is called
equivalent to the pair (SAR, SBR), where S and R are nondegenerate matrices of sizes m X m,
n X n. By the direct sum one means the pair (4, B) P (C,D)=(4 B C, B D). By Kronecker's
theorem (the bundle of matrices problem; cf. [7, Chap. XII]) a pair of matrices of the same
size is equivalent to a direct sum of pairs of the form (@, E), (E, J,), (Gu, Hy), (G5, HT) unique-
ly determined up to permutation of the summands, where & is a Jordan block, J, is a degenerate
Jordan block of size n X n, G, and H, are gotten from the identity matrix of size n X n
by crossing out the last and, res'pectively, first rows.

It follows from the equivalence of the pairs (A_., B) and (C, D) that the matrices (4, B)*,
0- X

YT o
degenerate matrix is congruent to {J,, E)* _or (G,, H,)*. But S (J,, EVY*ST=J,,, R(G,, H) RT =

Jon-1v  where S =(s;;), R=1(rij)), Ssa~n.nta = Swma =Totma=T3=1 (1 a<<n 1<LPpCn~-1),

(C, D) are congruent, where (X, Y)+=( According to [1], a congruently indecomposable

the other s;=r;;=0. It follows from this and Lemma 2 that each square matrix is congruent

to a matrix of the form (1). One can impose the condition ®; % ¥; on its summands, since

E ¥ E
SHonsT=¥a ¥z ¥  vhere sz(s 0 -E).
: 0 v E,

It follows from the congruence of the matrices A and B that the pairs (4, A7), (B, BT)
are equivalent (the converse is also true over an algebraically closed field of character-
istic #2; cf. [4]). The pair (4, AT) for the matrix (1) is equivalent to the direct sum
of pairs (®,;, E) D (07, E), (¥, E), Py, where Py =(J,, E) S (E, J,) for Fr=J,,, Py= (G, H,) >
(GE, HY) for Fy=J,,.;. By Kronecker's theorem two direct sums of the form (1) can be congru-
ent only if one is gotten from the other by replacing some summands of the form ¢+ by (@)
or ® 5 ® and some summands of the form. Yo ¥ by ¥*(® = @, provided $ exists; cf. Lemma
1 (C)).

Replacing ¢ by (®°)* leads to a congruent direct sum, since S®*ST = (®)*, where S = (R,
OVR™Y, ROVR = @, We show that if ®;5 ¥; replacement of @ by ®, = ®; in the direct
sum (1) leads to a noncongruent matrix.

)

By contradiction, let SAST = PR, where A=A, 2 ... 2 4,, (r=p-+g¢g+7r) is the matrix

(L), B-——(f)@ C, % being one of the matrices @, ..., ®,. We divide the matrices S, SV into
n vertical and two horizontal strips corresponding to the partitions of A and B, and let
(S;!...18y), (B l...|R,) be the upper horizontal strips of the matrices §, R=SV. Then

84,87 + ...+ §,4,5 = ®.
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We get a contradiction with the nondegeneracy of $, if we prove that the last row of
all the matrices 5;4,ST is zero. Since SA4 = BSV and SAT = BTSV we get §:4; = OR,
and 5 A7 = ®"R,. From this, 854, =547 = ®5.:47, S A;=S, (where A;= A4;4Y) for non-

degenerate Aj.

If i s p, then 4; =@}, 4, =®,® ®’. From §;4, =®S; it follows that PD; = QP
QbY = ®Q, where S;= (P |(Q). From this ®QPT®T = QPT and by Lemma 1 (B), QPT=f(®)d.
Hence . . .
PG = OPQT = Pf (PT),

the matrix

5,487 = POQT + QPT = (f (@) + f (D))

has last row zero.

If i=p+j (< g),. then Ai=‘17,-, A; =V, Since ®:;# ¥Y; for all i and j, one has
@ £ ¥, By Lemma 1 (C) the eigenvalues of the blocks ®, ¥; are equal to 1, so® and ¥, are
of different sizes. Let the size of @ be greater than the size of ¥;; then since S ¥; = @§;,
the last row of the matrix Sj, and hence also S,-‘fij?, is zero. Let the size of ® be smaller
than the size of ¥, then the last row of the matrice§ Sy, ¥, and the first row of the matrix
SiT have the forms, respectively, (V...0a), {10...0), (0...0) so the last row ‘Of the matrix

*

& of .
SV, 8 is zero.

If i=p+q+k (<), then 4, =F,. It follows fromthe relation §,Fx = ®S,F¥ that

the columns with even indices of the matrix S; are zero, so S§;FST = 0. The theorem is proved.
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