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The field K is always assumed to be algebraically closed and of characteristic 2. For 

a nondegenerate Jordan block ~ with eigenvalue I we denote by ~- a Jordan block of the same 

size with eigenvalue ~-i, by ~+ the matrix (~ ~I' by the cosquare root ~ of # we mean a 
\- 

fixed solution of the equation XXV=~, where Xv=(x~ -*, X T is the transposed matrix (we 

show in Lemma 1 that a solution exists only if ~ is of odd size with I = i, and we find the 

form of ~). By the direct sum we mean the matrix A O B-----(~ ;). 

THEOREM. In a finite-dimensional vector space over a field K, for each bilinear form 

one can find a basis in which its matrix has the form 

A =r174162174 9~|174 ~ G ~ |162 F,, ( l)  
where @t. ~/ are nondegenerate Jordan cells, @ i ~  for all i, j, F k is a nondegenerate 

Jordan cell. The matrix A is determined uniquely by the bilinear form up to permutation 

of the summands and replacement of ~i by ~i-" 

Under a new choice of basis the matrix A of the bilinear form is replaced by a congruent 

matrix SAS T (S being a nondegenerate matrix), so the theorem establishes the canonical form 

for a matrix with respect to congruences. We call a matrix congruently indecomposable if 

it is not congruent to a matrix of the form A ~ B, where A and B are square matrices. The 

matrices ~, ~/, F~ in the sum (i) are congruently indecomposable. 

The problem of classification of a bilinear form over an arbitrary field was considered 

in [I-3], over a field of characteristic =2 in [4-6]. If the field K in the formulation 

of the theorem is replaced by an algebraically closed field L of characteristic =2, then 

the phrase " ~i~j for all i and j" should be replaced by the phrase "there does not exist 

a ~i" (cf. [5, 6]). We note that over the field L each matrix is congruent to a direct 

sum of congruently indecomposable matrices, uniquely defined up to congruence of the direct 

summands. Over the field K even the number of summands of such a direct sum is not uniquely- 

determined: the matrices 0 @(I) and (I)O(I)~(I) are congruent, although the matrix 

(~ ~) is congruently indecomposable. 

To prove the theorem, we establish what form one can reduce a nondegenerate matrix A 

to by congruence transformations. Since its cosquare A =AA v can be reduced by similarity 

transformations SAS-I-~-(SA~r)(SAST) v, it can be reduced to Jordan normal form: 

(2) 

T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol. 
41, No. 6, pp. 781-788, June, 1987. Original article submitted December 25, 1985. 

0001-4346/87/4156-0441512.50 O 1987 Plenum Publishing Corporation 441 



where ~i is a nondegenerate Jordan block. We shall only make congruence transformations for 

the matrix A which do not change its cosquare (2) (an analogous method was used in [2]). 

We divided the matrix A into blocks Aij such that the sizes of the blocks Aii and ~i coin- 

cide; then A--~A r, 

We clarify the form of the block Aij. By Emn (m • n) we denote the matrix obtained 

from the identity of size n • n by crossing out its first (n -m) rows. We define the matrix 

~/n ----- (a~j) + of size n x n, where a~ I = 0 for i < n/2, ] < (n + I)/2 and for ~ -}- j > n -b i, a~1 = I 

for i + j = n + i, and the other atl are found from the condition 

a<,,~+, + a++,.~+, + ai,,.~ == 0. (4) 

We define the matrix Nn--I[,, for odd n, N n ffi FM n for even n, where F is a degenerate Jordan 

block. We always locate ones in a Jordan block over the eigenvalues. 

LEMMA i. Let ~), �9 be Jordan blocks of sizes m • m, n • n with eigenvalues %, ~. 

(A) If X----~XtF T, %~I, then X = 0. 

(B) If X-----(DXU~ T, ~-----~*=I, re<n, then X=[((D) EmnM ~(~(z)~K[x]), its elements 

z,m=z~,m-, . . . . .  xm,,za=0 for i + ] > m + { .  

(C) If X=(DX r, X-----I, then X=~(~-~-*)Nm, /(z)~K[x]. The cosquare root ~ exists 

only for X = 1 and odd m, and in this case one can take ~ = M m. 

Proof. (A) By the s-th diagonal of the matrix A = (at]) we mean the collection of ele- 

ments ai], i -~ ] = 8 -~ I. Let A = ~A~T; then a~j = %~=11 -~ %at,i+, -~ ~ai+,j -~ ai+t.j+~ (we assume 

a~.,~+l = am+l, 1-~- 0). If %~ ~= I, then am~= 0, and provided all diagonals below the s-th are 

zero, then the s-th diagonal is also zero, so A = 0. 

(B) Let X= R = I, ra G ~. Then (4) holds so the (s + l)-st diagonal and any element 

of the s-th diagonal determine the whole s-th diagonal. Since am+,.1 = .... am+,,n+ I = O, 

all the diagonals below the m-th are zero, the matrix A is completely determined by repre- 

sentatives of the let, 2nd, ..., m-th diagonals. Consequently, the set of matrices A = 

qDA~ T forms an m-dimensional space. The elements of the matrix Em,M~ satisfy (4) so 

it is a solution of the equation X = (DX~ ;r. The matrices f (~) Em~M~, where f (x) ~ K [xl, 

are all its solutions, since they form a space of dimension m. 

(C) For the elements of the matrix N m (4) holds and a~,j+, = aj, i+, (we assume 0 < ~ < m, 

, i < ] < m, setting ao,~+ * = an) , so .aL~+~ ----- a~+,,~-{- a~+~j+,, N~ ---Nm~ r. Consequently, NmT = 

q)Nm~)r, N/= f (~ q- ~)-*) N m =/(~) + ~-') ~N~,, --- r where / (z) ~ K [z]. 

Let m=2k--~, =~ {0, I}, g(x) ~ K[x] be a polynomial of degree k such that (x-~ I) ~= 

x~ (x qT. z-~) �9 Since (z-~ I) ~ is the characteristic polynomial of ~ and the matrix H m is non- 

degenerate, one has IV t = / (r -~- d~-~) (E -~- ~)~-~M m = 0 only if g(x) divides f(x). Hence the 

dimension of the space of matrices Nt = (DN~' is equal to k. On the other hand, if A = (DA r, 

then a~ = u~ -{- ai,,+,, ai.~+, = O, A ----- (DAdi) T, so the matrix A is completely determined by repre- 

sentatives of the let, 3rd .... , (2k - l)-st diagonals [point (B) of the proof], the dimen- 

sion of the space of such matrices does not exceed k. Consequently, A = Nf. 
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The matrix ~=(DOr_~_(D~(DT SO I = 1 [Lemma i (A)] and O=]((D-~(D-*)Nm. Since 

is nondegenerate, N m is also nondegenerate and m is odd. 

LEMMA 2. Let A be a congruently indecomposable nondegenerate matrix. Then A is congru- 

ent to ~ or #+, where ~ is a nondegenerate Jordan block. 

Proof. Let the cosquare A have the form (2), where ~i is a Jordan block of size ai x ni 

with eigenvalue I i. We can assume that ~__~ I. Assume that ~i .... lq ~= I, ~[~ =lq§ =.. = ~r, 

l,~= %i~=~[* for i > r. By (3) and Lemma 1 (A), Aij = 0 in the following four eases: 

/,]~{~ .... q); L]~_{q~-i ..... r}; i•r<]; L>r~/. Hence, in view of the nondegeneracy 

congruent indecomposability, A=-~(C B)0- ' where B and C are nondegenerate blocks. Taking and 
% 

S=R G (RvC-I) ...... we get a matrix A'~---SAS r with blocks B'=B(BCV) R-*, C'=E. Since A' 

is congruently indecomposable, we can make B' a Jordan block T; then A' = ~+. 

In .what follows we shall assume l, ..... At=l, nx ~n 2~, . . ~ nt. We set n=n,, (D= 

(Dl. Let us assume first that the block A1z is nondegenerate. In view of (3) and Lemma 1 

(b), A n =/i ((Di) E,~M~. We apply the transformation A' = SAS r with block matrix S, in 

which Sii = E,i, ~ (i < i ~< t), S,, =gi ((D~) E,~n (i ~ 2, gi (x)~K [x]), the remaining blocks being 

' [gi ((Di)]~ ((Di)+/i (@0] E,~=M,. In view of the nondegeneracy of the matrix zero. We get All ~--- 

~(q%~) one can choose gi((D~) so that A;,-----0 (~ ~ 2). By (3) and the congruent indecomposabil- 

ity, A = A11. 

In view of (3), Lemma 1 (C), and the nondegeneracy of A -~-/(N)~, where N=(D 4-(D-* 

is a nilpotent matrix, ~(z)~K[z] ~, ](0)~= 0. Let S=aE+H(E+(D), where a2 =/(0), H= 

b,E + b,N + b~N' Jr . . . S i n c e  ~P ~--- (D~(D r, one  h a s  SOS r -~- [aE q- H (E + 0)]  [aE + H (E 4- 0-1)] �9 ---- 

[a2E + aHN + H2N] ~ =  [a2E + (abo + b~) N + abxN2 + (ab~ + b~) N '  +.  . .] O. One can  c h o o s e  b0 ,  

b l . . . .  so  t h a t  Sff)S r = ] ( N ) O ,  so  ~ i s  c o n g r u e n t  t o  A .  

Let the block A~ be degenerate. The matrix A is nondegenerate so one can find a block 

Ai~ with nonzero last column. By virtue of the relations n~n (3), and Lemma 1 (B), such 

a block is nondegenerate. We shall assume i = 2. Then nx = n 2 -~-n, A~/-~-/~/((D~)En~,=~I, 

(j <- 2). We apply the transformation A = SAS r with block matrix S, in which S~ = En~n~ 

(I ~<. i < t), S~ = g~] (0~) E~n (i ~ 3, ] < 2, g~i (x) ~ K [z]), the remaining blocks being zero. 

We get i~/= [g~t ((D~) ],~ ((Di) + g~ {(D0 &i (@~) -~/~i {(D~)] E%~ M, (i ~ 3, ] ~< 2). The matrix (f=~ ((D~))~.s=~,~, 

is nondegenerate, so one can choose g~]((Di) so that A~t~-A~---~0(~3). By (3), Lemma 1 (C), 

and the congruent indecomposability, A -~- (Ail)~,/=,,~, A~ = [~ ((D-~ (D-t) Nn. By the transforma- 

tion SAS r, S = Enn GIll ((D)-I, we make A~L= Me, A~ = ~A~ -~- (DMn r. 

We show that by a congruence transformation one can make A, = Az, = 0. Let /, (x)~---a 0 ~- 

a~x + .... /~(x)=bo + b,x-~ .... an ..... at_ ,=O-7~a r (r~ 0). It suffices to prove that 

if the rank of A~ is not less than the rank of A22 (i.e., b o ..... br-,~---O ), then the 

rank of A~ can be lowered without changing A22. We apply the transformation i'= SAS r, S= 

( 0 E g (O)).E , we g e t  A ;, = A2, , A;,  = ]1 ((D + (D-I) N .  + (I)g ((l)-') M~n + g ((D) i a + g ((D)/,, ((D 4- (D-l) g ((I)-') N a. 

We i n t r o d u c e  n o t a t i o n :  h ( x )  = g ( x  + 1 ) ,  F i s  a d e g e n e r a t e  J o r d a n  b l o c k  G . = E + F + F 2 +  . . . .  

t h e n  O = E  + F, ( I t  a - - - G = ' E  + FG, �9 + ( D  - t = ~ a .  S i n c e  N.-.~FX-'aM,,, M,,-~-(D~M~V, w h e r e n - - - - - 2 k + a ,  
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~ {0, I} one has A~, ----- [/, (]mG) F *-~ + (E 4- F~*-~A (FG) "b h (F) + h (F) ]z (FzG) h (FG) F *~] M,,. 

Let ~K be such that a0+~ +~bo---~0; we take h(x):~ for r = 0 (then a = 0 due to the 

degeneracy of Azz), h(x) :a~z~'-~ for r > 0; we get An---(cxFZr+t+c~FS'+2+...)F*~M,~(ci~K), 

its rank is less than the rank of Azz. 

0 �9 Taking S -~. E @ hl~ ~, we get SAS r = O § The lemma is Thus ,  one can  make A ----- Mn 

proved. 

Proof of the Theorem. To classify bilinear forms, Gabriel [I] (cf. also [4-6]) proposed 

using the following result of Kronecker. The pair of matrices (A, B) of size nz X n is called 

equivalent to the pair (SAR, SBR), where S and R are nondegenerate matrices of sizes m >( m, 

n X n. By the direct sum one means the pair (A,B) ~ (C,D) =(A ,~ C, B~D). By Kronecker's 

theorem (the bundle of matrices problem; cf. [7, Chap. XII]) a pair of matrices of the same 

size is equivalent to a direct sum of pairs of the form ((D, E), (E, ],), (Gn, H,), (GI, HI) unique- 

ly determined up to permutation of the summands, where ~ is a Jordan block, Jn is a degenerate 

Jordan block of size n X n, G, and H n are gotten from the identity matrix of size n X n 

by crossing out the last and, respectively, first rows. 

It follows from the equivalence of the pairs (A, B) and (C, D) that the matrices (A, ~)+, 

(C,D) + are congruent, where (X, y)+_~_(O X 1 According to [i] a congruently indecomposable y r  �9 

degenerate matrix is congruent to (Jn, E) + _or (Gn, Hn) +. But S (J~, E)+S r ----- f~, R (G~, H~)*R r -~- 

J2n-1, where  S = ( s i i ) ,  R = (ro), s==-,,n+= ----- s2a,c~ . ~  rsc~-z, zn-a ----- r2s, n-.3 --~ t (~ < '~ .~< n,  1 < ~ < n - -  1), 

the other sij = rij-----0. It follows from this and Lemma 2 that each square matrix is congruent 

to a matrix of the form (i). One can impose the condition (1)i ~= ~i on its summands, since 

S (tp'+~ Cg) S r ~ ~ ' ~  CI-r,_. where S-~- 0 E 

E 

I t  f o l l o w s  f rom t h e  c o n g r u e n c e  o f  t h e  m a t r i c e s  A and B t h a t  t h e  p a i r s  (A, A t ) ,  (B, B r) 

a r e  e q u i v a l e n t  ( t h e  c o n v e r s e  i s  a l s o  t r u e  o v e r  an a l g e b r a i c a l l y  c l o s e d  f i e l d  o f  c h a r a c t e r -  

•  ~2; o f .  [ 4 ] ) .  The p a i r  (A, A r) f o r  t h e  m a t r i x  ( t )  i s  e q u i v a l e n t  t o  t h e  d i r e c t  sum 

of pairs (~,E) ~ (qb~,E), (~j,E), Pk, where Pk =(Jn'E)~ (E, J~) for F~=J,n,. P~=(G,,, H~) -: 

(G~, H~) for F~ =]~n-,. By Kronecker's theorem two direct sums of the form (i) can be congru- 

ent only if one is gotten from the other by replacing some summands of the form ~+ by (~-)+ 

or ~ ,9 ~ and some surranands of the form ~ ~ ~ by ~r§ ((l)= ~)-, provided ~ exists; cf. Lemma 

i (c)). 

Replacing ~+ by.(~)-) § ieads to a congruent direct sum, since S~+S r -~-(~-)+, where S -- (R, 

r § RfDvR-*= r We show that if q)~= ~i replacement of cD~ by ~ ~ ~ in the direct 

sum (I) leads to a noncongruent matrix. 

By contradiction, let SAST = B, where A ~--- Az ~ . . . ~ An, (n=p -~ q-~ r) is the matrix 

(i), B ~- ~ ~ ~ C, # being one of the matrices if)t, ..., ~9~. We divide the matrices S, S v into 

n vertical and two horizontal strips corresponding to the partitions of A and B, and let 

(St [ �9 �9 �9 I Sn), (~ [ �9 �9 �9 [ Rn) be the upper horizontal strips of the matrices S, R-----S v. Then 

s ~ , s ~  + . . .  + s ~ a ~ s l  = ,~. 
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We get a contradiction with the nondegeneracy of #, if we prove that the last row of 

all the matrices S~AiS[ is zero. Since SA --- BS v and SA T = BrS v we get SiA~ -~- ~H~ 

and $iA$ =~zRi. From this, S~Ai ~-~V$iA~ = ~)SiA~, $i~= qb$ i (where Ai = Ai Av ) for non- 

degenerate A i , 

If i ~ p, then Ai -~- (~)~, Ai ~- (Z)i ~ df~v. From Si~ t ----- (~S i it follows that P(~i = (~P, 

QcDv=~DQ, where S,=(P [Q). From thisCDQPT~r----QP T and by Lemm~a 1 (B), QpT=/(~)~. 

Hence .... 

p~qr  = eP& = @ (~D, 

the matrix 

SiAiS~ = P~iQ r + QpT ____. ([ (~-~) + ] (~)) 

h a s  l a s t  r o w  z e r o .  

If i-----p + ] ~<9) .... then Ai=~y , Ai~-~j. Since ~ j  for all i and j, one has 

~#~j. By Lermma 1 (C) the eigenvalues of the blocks ~, ~j are equal to I, so4) and ~j are 

of different sizes. Let the size of �9 be greater than the size of ~7; then since Si~j=~S~, 

the last row of the matrix S i, and hence also Si~jS~, is zero. Let the size of �9 be smaller 

than the size of ~1; then the last row of the matrices Si, ~j and the first row of the matrix 

sit have the forms, respectively, {0 ...0 a), (I 0 ... 0), (0 ... 0), so the last row of the matrix 

S,%ST is zero. 

If i=p+q +k ~r), then AI~-F~. It follows from the relation SiFk=~S~F$ that 

the colu4nns with even indices of the matrix S i are zero, so SiFkS[=O. The theorem is proved. 

i. 
2. 
3. 

4. 

5. 
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