ry e 1 K(my, m) .
<r Z 2,,.:1 mymd? Z 1 =0(rlog?r/d8) = O (r/d).

My=l J=1
The lemma is proved.

The proof of the estimate
-n.l,:—..—z 2,,11:1 Sm,m =0 (r/d)

is almost a verbatim repetition of the proof of Lemma 4.

Combining the results of the last three lemmas, we obtain the estimate

2 X S =0t ).

Consequently, if u & N,, then
R r r rlogr
l u! 0( d 62 d )‘

It is now easy to see that under the conditions of the theorem we have
| Ry | = o (n®r).

At the same time, aécording to Lemma 1,

r— N, | =o(n).
The theorem is proved.
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SYMMETRIC REPRESENTATIONS OF ALGEBRAS WITH INVOLUTION

V. V. Sergeichuk UDC 512.64

Suppose K is a field of characteristic #2 with involution k - k (possibly the identity
mapping) and A is an algebra over K with involution, i.e., a mapping u: A— A such that () +
wpt = A 4 pt (At = p, (kA = A, A = A for all b s Ak E K.

By a representation of the algebra A by operators of a vector space V over K we mean a
homeomorphism @: A — End (V). The representation is symmetric if to a conjugate element there
is assigned the conjugate linear operator relative to a fixed scalar product in V: ¢ (M) =
¢ (A). If we introduce in V the multiplicationX, F (v, w) = eF {w, v) we obtain an e-Hermitian
module defined as follows.

Definition. By an e-Hermitian module (M, F), (M’, F') we mean a pair (M, F), where M is
a module over A that is finite-dimensional over K, F(v, w) = e€F(w, v) is a nondegenerate ¢-
Hermitian form on the vector space gM of the module M, and

Fw,wy=F@w M), A& A, v, v EM. (1)

Two e-Hermitian modules (M, F), (M', F') are isomorphic if there exists a A-isomorphism ¢:
M = M’, preserving the forms:

F,w)=F (pv,ow), v, w=M. (2)

T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol.
50, No. 4, pp. 108-113, October, 1991. Original article submitted December 7, 1989.
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Examples. 1) A =K|z], 2 ==z The module M over A is the vector space gM with fixed
linear operator v » xv. The problem of classifying e~Hermitian modules is that of classifying
self-conjugate linear operators in a finite-dimensional vector space with a nondegenerate e-
Hermitian form.

2) A=Kz, 2, 2 =z'. The problem is to classify isometric operators in a space with
a nondegenerate c-Hermitian form.

3) A = KG is the group algebra of a group G with involution (D kg = Nk, The problem

is to classify representations of G by isometric operators in a space with a nondegenerate
e-Hermitian form.

4) K =C with a nonidentity involution. Then a 1-Hermitian module (M, F), where F is
a positive definite Hermitian form, defines a symmetric representation of the algebra A by
operators of the unitary space (¢M, F) (see [1, Chap. 2, Sec. 2.6]). In particular, if A =

CG with involution (D) ksg) = NEg? , then such a module defines a unitary representation of
G (see [1, Chap. 2, Sec. 2.8}).

We will show (see the theorem) that the classification of e-Hermitian modules reduces
to that of ordinary modules over A and Hermitian forms over a skew field. This follows from
[2, Chap. 7, Theorem 10.9], but we will use [3, 4] in order to obtain the reduction in a
more explicit form. We will apply the reduction to symmetric representations of algebras
with involution in pseudo-unitary and pseudo-Euclidean spaces (see Corollary 1) and in unitary,
Euclidean, and complex Euclidean spaces (see Corollary 2).

By the orthogonal sum of e-Hermitian modules we mean the e-Hermitian module (M, F) | (M,
FY=sMoM,FOF)

Suppose M is a module over A. We define the dual module M* over A as the module whose
vector space is the space of semilinear forms f: gM > K, with multiplication by elements
A= A defined by Af = fA. We also define the e-Hermitian module M® = (M & M*, F}, where

Foef, wde =g+ ¢ W (3)

(all sesquilinear forms are regarded as semilinear in the first argument and linear in the
second).

Let ind {A) be a fixed complete system of nonisomorphic modules over A that are indecom-
posable into a direct sum and finite-dimensional over K. Let ind§ (A) denote the set of all
N & ind (A), for which there exists an e-Hermitian module (N, F), and fix one such module (N,
Fy) [in this case N N* v~ Fy(?,v) ]. In the set ind} (A) we include all M & ind ()), M* ~
M & ind; (A), and one module from each pair {M, N} Cind (A), M s« M* ~N.

Suppose N = indg(A). In the algebra End (N) of endomorphisms we define an involution
¢ — ¢ , where 9' is the conjugate endomorphism relative to Fy:

Fy (pv, w) = Fn (v, o'w), v, we= N.

The algebra of endomorphisms of an indecomposable medule is local, hence the quotient algebra
by the radical, T(N) = End (N)/R, is a skew field with involution (¢ + R)* = ¢' + R. For each
O0x%=t=1t'T(N) we fix ¢, = s =t [we can takeq; = 1/2:(¢ 4 ¢*), where ¢ £1¢) and define an
e-Hermitian form Fy (v, w) = Fy (v, ¢; w) . For each Hermitian form ¢ (z) = zit,z; + ... + ztx, over
the skew field T (N)(0s4t; = tie= T (N)) we put

N* — (N, F%) | ... | (N,Ff).

THEOREM. Each e-Hermitian module over A is isomorphic to an orthogonal sum
o=

ME | ... MO NP | N

where M; & ind (A), N; & ind§ (A), Ny N for j # j'. This orthogonal sum is uniquely de-

. . Py(x) P (x
termined to within a rearrangement of the summands and the replacement of Ny’ by AS“”

where @; (z),V; () are equivalent Hermitian forms over the skew field T(Nj).

L}

Remarks. 1) Suppose M is a module over A and 4; (A& A) is the matrix of the linear
operator v+ A (v& M) in the basis e,,...,e, of the space kM. Then in the dual basis
e?,...,eﬁ of the space of the module M* the operator f— Af (f & M*) is defined by the matrix
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‘4; [for each matrix A = (a;;) we define the matrix A* = (@;)).. In the basis e;,...,eq,

e¥,... ,e;"‘i of the space of the module M® = (M @ M*, F) the linear operator w—Av WS M &
A)‘ 0 0 E

M%) and the e-Hermitian form F are defined by the matrices (0 A;) and(eE 0).

2) (See [2, Chap. 7, Theorem 4.5].) TFor each N* ~ N & ind (\\) there exists a l-Hermitian
or (=~1)-Hermitian module (N, F). Indeed, suppose ¢: N = N* N & ind (A).. Consider the dual
isomorphism @*: N = N** = N* v = v** = v**¢.  Since the algebra End (A) of endomorphisms is
local, the invertibility of 2¢ = (¢ + @*) + (¢ — ¢*) implies the invertibility of ¢ + ¢* or
¢ — ¢* . Consequently, there exists an isomorphism ¢ = ep*: N =~ N* ¢ & {1, —1}, hence the
module (N, F), F(v, w) = 9(w)(v) is e-Hermitian.

3) If X is a field with a nonidentity involution, then ind, (A) consists of all N &
ind (A), N = N*. It suffices to use the preceding remark and the fact that over the field
K each c-Hermitian form can be made Hermitian by multiplying it by 1 + € if € # =1, or by
k—k=+0(ke=K) if € = —-1.

Proof of the Theorem. It is only in proving the theorem that we will assume as known
the definitions and notation of [4].

We represent A as a quotient algebra of a free algebra with generators x;, X;,...:
A= K<fl’1,.’l'2, .. >/K <f1’f27 NN

where the fi(xl, x2,...)‘are certain noncommutative polynomials. Then the A; = x; + K<{f,,
f,,...> are generators of A. The involution in A is defined by certain relations
A= g5 (b Aoy ). (4)

Suppose (M, F) is an e-Hermitian module over A. Fix a basis of the vector space gM.
Let Aj be the matrix of the linear operator v ~— Av{ve M), and B = €B* the matrix
of the e-Hermitian form F. The set of matrices Aj must satisfy the relations satisfied by
the elements Aj of A, hence

fi (A11A21 .. -) =O (5)
It follows from these relations [1l, 4] that
Aj*B == Bg] (Alv A27 .« o )- (6)

Conversely, any set consisting of a nondegenerate e-Hermitian matrix B = ¢B* and square

matrices Aj of the same size satisfying relations (5) and (6) defines some e-Hermitian module
(M, F).

Consequently, an e-Hermitian module (M, F) defines a representation of a digraph with
relations (cf. [4, digraph (9)1)

Ay
Q &h Ti(}'1-7'2~---)=0.
s: = K p=Pg (b hgo.nd,
. Y p=sﬂ*‘ ?'3 =]u , py =la"' ,

and each such representation defines an e-Hermitian module.

The quiver with involution of the digraph S is

1 ,-‘L 7: fi(Ar;‘z""):D’
N y \
S: ;L,,QQH(/_-"LFOD.?TZ N R )
‘-.o. .Y '. ™% — -
‘\y*/ B=cep, yPp=1a. Py =le -

We do not include in (7) the conjugate relations, but they follow from the relations (7)
since the involution A+ A in A is compatible with addition and multiplication.
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Consider the quiver

defining modules over A. We extend each representation A& ind (@) to a representation of the
quiver § by putting Ap = Apx = A, = A = 1, Ax* = g; (4, , 43, ...), the resulting representa-
i

tions form a set ind (§). We can therefore identify ind (Q) and ind (S). Furthermore, the
dual module M* can be identified with the conjugate representation A°, the module M\®/ with
the representation A%, and the set ind} (A) with the set ind; (S), i = 0, 1. To prove the
theorem we need only use [4, Theorem 1].

COROLLARY 1. Suppose K is one of the following fields of characteristic #2:
a) an algebraically closed field with the identity involution;
b) an algebraically closed field with a nonidentity involution;

c) a maximal ordered field [i.e., 1 < (Kajg:K) < =, where Ky1g is an algebraic closure
of K, e.g., K = R);

d) a finite field.

Then each e-Hermitian module is isomorphic to a uniquely defined (to within a rearrange-
ment of the summands) orthogonal sum of e-Hermitian modules of the form (M < ind; (A), N =
indg (A)

a) M(e), (N, Fy);

b) M(€), (N, Fy), (N, -Fy);

c) M), (w, tFy), where t = 1 if T(N) is an algebraically closed field with the identity
involution or the skew field of quaternions with involution different from a + bi +
cj +dk »a—bi—cj—dk, and ¢t &= {—1,1} otherwise;

d) M(E), (N, tFy), where t = 1 for a nonidentity involution on the field T(N), t is equal
to 1 or a fixed nonsquare in T(N) for the identity involution, and for each N the
orthogonal sum contains at most one summand (N, tFy) with t # 1.

The proof follows from the theorem and [2, Theorem 2].

COROLLARY 2. Suppose (M, F), (M', F') are l-Hermitian modules in which (gM, F), (gM',
F') are Euclidean, or unitary, or complex Euclidean spaces (K = R, or K = C with a noniden-
tity involution, or K =C with the identity involution, respectively).

1Yy (M, F) = (M', F') if and only if M = M',

2) (M, F) is uniquely (to within isomorphism of summands) decomposable into an orthogonal
sum of orthogonally indecomposable 1-Hermitian modules.

3) If (M, F) is indecomposable into an orthogonal sum, then either M is indecomposable
into a direct sum, or (only in the case of a complex Euclidean space) M ~ N @& N*,
where N is indecomposable into a direct sum.

The proof follows easily from the law of inertia for Hermitian forms and Corollary 1.

LITERATURE CITED

1. M. A. Naimark, Theory of Group Representations [in Russian]}, Nauka, Moscow (1976).

W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin (1985).

3. A. V., Roiter, 'Boxes with involution," in: Representations and Quadratic Forms [in Rus-
sian], Inst. Mat., Akad. Nauk UkrSSR, Kiev (1979), pp. 124-126.

4, V. V. Sergeichuk, "Classification problems for systems of forms and linear mappings,"
Izv. Akad. Nauk SSSR, Ser. Mat., 51, No. 6, 1170-1190 (1987).

(3]

1061



