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Physical law should have
mathematical beauty

P.-M. Dirac

PREFACE

The Dirac equation describing motion of an elementary particle with spin 1/2 (electron
or proton) is an inseparable part of the modern mathematical and theoretical physics.
Together with the Maxwell and Schrodinger equations it forms a basis of the quantum
mechanics, quantum electrodynamics and quantum field theory.

Following Dirac’s discovery of the linear equation of an electron there appeared
fundamental papers by D.D. Ivanenko, W. Heisenberg, R. Finkelstein with collabo-
rators and F. Gilirsey advocating the idea of nonlinear description of an elementary
particle with spin 1/2 which made it possible to take into account its self-interaction.
Furthermore, W. Heisenberg put forward the idea to use a nonlinear Dirac equation
as a possible basis model for a unified field theory. These ideas have contributed sub-
stantially to the modern view of an elementary particle as a complex dynamical sys-
tem described (modeled) by a nonlinear system of partial differential equations. The
general structure of such nonlinear equations is determined by the Lorentz-Poincaré-
Einstein or the Galilei relativity principle.

Till now there is no book devoted to a systematic study of nonlinear general-
izations of the classical Dirac equation. So it was our primary intention to write
a book devoted entirely to a comprehensive and detailed group-theoretical study of
first—order nonlinear spinor partial differential equations satisfying either the Lorentz—
Poincaré-Finstein or the Galilei relativity principle. These equations contain, as par-
ticular cases, the nonlinear spinor models suggested by D.D. Ivanenko, W. Heisenberg,
R. Finkelstein and F. Giirsey.

In the course of research we have discovered that the methods and techniques de-
veloped to study nonlinear Dirac equations can be successfully applied to a wide range
of Poincaré- and Galilei-invariant nonlinear multi-dimensional equations of modern
quantum field theory describing interactions of spinor, scalar and vector fields.

As a result, the book has a ‘two-level’ structure. At the first level, it may be
considered as a self-contained group-theoretical introduction to the theory of the
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first-order nonlinear spinor equations with a particular emphasis on a development
of efficient methods for constructing their exact (classical) solutions. At the sec-
ond level, we employ these methods to construct multi-parameter families of exact
solutions of nonlinear wave, Dirac-d’Alembert, Maxwell-Dirac, d’Alembert-eikonal,
SU(2) Yang-Mills, Lévy-Leblond, and some other partial differential equations. Fur-
thermore, the approach used enables us to give a systematic and unified treatment of
the related questions such as conditional symmetry of differential equations, separa-
tion of variables in linear systems of partial differential equations, and integrability
of some nonlinear systems of differential equations in two-independent variables.

It was our aim to write a book in a form accessible not only for ‘pure theoreticians’
but also for those who are interested in applications of group-theoretical/symmetry
methods to concrete nonlinear systems of partial differential equations. Every oppor-
tunity is taken to illustrate general statements by specific examples and to reduce to
a reasonable minimum the level of abstractness in the exposition.

The book is based on the authors’ results obtained at the Institute of Mathematics
of the National Academy of Sciences of Ukraine in 1984-1996 [139, 140, 146], [148]-
[171], [291]-[320]. It also accumulates a rich experience of other groups working
in the related areas of group-theoretical, algebraic-theoretical analysis of differential
equations. The bibliography is claimed to be the most comprehensive and complete
as far as symmetry and exact solutions of nonlinear spinor equations are concerned.
But it is not our intention to give the full list of references devoted to application
and development of group-theoretical methods in the mathematical and theoretical
physics. Only references used directly are cited.

When the book was at the last stage of preparation one of the authors (RZ)
was at the Arnold-Sommerfeld Institute for Mathematical Physics (Clausthal-Zeller-
feld, Germany) as an Alexander von Humboldt Fellow. He is indebted to Professor
H.-D. Doebner for an invitation and kind hospitality. His critical remarks as well as
stimulating discussions with participants of the Seminar at the Institute for Theoret-
ical Physics, V. Dobrev, J. Hennig, W. Liicke, P. Nattermann and W. Scherer, are
gratefully acknowledged. Authors would like to thank Soros Foundation for financial
support.

Our special thanks are addressed to W.M. Shtelen, I.A. Yehorchenko and P. Ba-
sarab-Horvath for critical reading the manuscript and and valuable suggestions.

We express deep gratitude to our colleagues at the Department of Applied Re-
search of the Institute of Mathematics of the National Academy of Sciences of Ukraine,
A.G. Nikitin, I.V. Revenko, V.I. Lahno, A.Yu. Andreitsev, for their fruitful cooper-
ation and also to G.A. Zhdanova for her kind help in preparing the manuscript for
publication.

Ukraine, Kyiv —
Germany, Clausthal-Zellerfeld

1996, June



INTRODUCTION

In 1913 the outstanding French mathematician Elie Cartan discovered spinors
[42, 45]. He made this discovery while investigating irreducible representations
of the group of rotations in the n-dimensional Euclidean space. He was the
first to find and to describe in full detail spinor representations of the group
of rotations.

The theory of spinors became an inseparable part of mathematical and
theoretical physics after Dirac’s discovery of the equation of motion for an
electron (1928) which bears his name [69, 71]. The four complex-valued func-
tions of four arguments contained in the Dirac equation are the components
of a spinor with respect to the Lorentz group.

It is interesting to note that the methods used by Cartan and Dirac to
discover spinors are essentially different. These methods lie at the basis of
algebraic-theoretical, group-theoretical investigations in modern quantum the-
ory.

Today spinors and spinor representations play a basic role in mathematical
and theoretical physics, since all elementary particles, classical and quantum
fields having half-integer spins (s = 1/2,3/2,5/2,...) are described with their
help. Moreover, using de Broglie’s heuristic idea of ”fusion” we can construct
particles (fields) having integer spins (s = 0,1,2,...) from a particle (field)
having the spin s = 1/2. That is why the theory of spinors and spinor analysis
as the principal analytical apparatus for investigation of spinor dynamical
systems are useful in solving problems from other fields of mathematics and
quantum physics.

The first paper devoted to a nonlinear generalization of the Dirac equation
was published by Ivanenko in 1938 [192]. Later Finkelstein with collaborators
in 1951 [80, 81] and Heisenberg in 1953 [180, 181] started analyzing various
nonlinear generalizations of the Dirac equation.

Heisenberg [181]-[184] put forward a vast program on the construction of a
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unified field theory of elementary particles. As a basis of this theory he chose
a self-interacting spinor field described by a nonlinear equation. According to
Heisenberg such a field is determined by the following Dirac-type nonlinear
equation:

Va0t + My (P ) = 0, (0.1)

where v is a four-component Dirac spinor and A is a parameter. We will call
system (0.1) the Dirac-Heisenberg equation.

The present book deals with the following two principal problems: the first
one is to describe systems of nonlinear spinor partial differential equations of
the first and second orders invariant under the Poincaré and the Galilei groups
and under their natural extensions; the second problem is the construction in
explicit form of exact solutions of the classical nonlinear spinor, vector and
scalar differential equations describing interaction of the Dirac, Maxwell and
Yukawa fields.

Unlike the majority of researchers we do not derive nonlinear equations
within the framework of the variational principle. We apply the symmetry
selection principle, namely, from the whole set of partial differential equations
(PDEs) of a given order we select those on whose sets of solutions some fixed
representation of the Poincaré or the Galilei group is realized. Such an ap-
proach to the derivation of motion equations seems to be more general than
the traditional method based on the Lagrange function [116, 119, 137].

The major part of the book is devoted to the development of efficient
methods designed to obtain exact solutions of nonlinear equations. All these
methods are based on the idea of reducing multi-dimensional partial differen-
tial equations to equations having smaller dimensions.

While reducing PDEs a key role is played by substitutions of the special
form [88, 89, 92, 137, 155]

U(z) = A(z)p(wi,way ..., wn), (0.2)
where p(w) is an unknown function-column and A(x) is a variable matrix of
corresponding dimensions; w, = wqe(x), @ = 1,...,n are real-valued scalar
functions.

Explicit forms of the functions A(x), ws(x) are obtained by requiring
that substitution of the expression (0.2) into the PDE under study reduces
it to an equation containing only ”"new” dependent (¢) and independent
(wi,ws,...,w,) variables. Of course, the availability of an effective proce-
dure of computing the matrix A(x) and the variables w,(z) providing the
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reduction of the initial equation is implied. Furthermore, the construction
described above will be called the Ansatz for field ¢ (x).

Provided the equation under study possesses nontrivial local symmetry,
there exists an effective algorithm for constructing Ansétze (suggested and
applied for the first time to some of the simplest PDEs by Sophus Lie). Ansétze
obtained in this way will be called Lie Ansétze.

In [91, 92] we suggested the generalization of the Lie method. The idea of
this generalization is based on the following observation: the Lie method of
constructing particular solutions, apart from its group-theoretical foundations,
can be considered as addition of some first-order PDE to a given equation.
Within the Lie approach this additional equation is a linear combination of
basis elements of the invariance algebra of the equation under investigation.
In view of this fact it was suggested to consider the coefficients of that linear
combination as arbitrary functions of w, ¥, ¥y,, ¥z,s,. In other words the
additional constraint on the set of solutions of the equation under investigation
is, generally speaking, a nonlinear first- or second-order PDE with variable
coeflicients. Such a generalization proved to be constructive. In many cases
it provided the possibility of obtaining broad classes of exact solutions of
nonlinear equations which could not be found within the framework of the
classical Lie approach [96, 97], [105]-[107], [120, 124, 108, 126, 127, 128, 137,
143], [154]-[160], [246, 303, 308].

With the use of nonlocal and conditional symmetry of linear and nonlin-
ear spinor equations (the notion of the conditional symmetry of differential
equations was introduced in [91, 116, 137]) we obtain wide classes of non-
Lie Ansétze, which reduce these equations to systems of ordinary differential
equations (ODEs).

Due to large symmetry of equations being considered systems of ODEs
obtained by reduction via Lie and non-Lie Ansétze are often integrable by
quadratures. Their exact solutions, after being substituted into the corre-
sponding Ansétze, give rise to particular solutions of the nonlinear spinor
equations under study.

As shown in Section 2.6, exact solutions of nonlinear spinor equations
make it possible to construct exact solutions of other Poincaré-invariant equa-
tions. In particular, we construct a number of exact solutions of the nonlinear
d’Alembert equation via solutions of the nonlinear Dirac equation.

More detailed information concerning the contents of the book is provided
by chapter and section titles.

For the reader’s convenience, we give a brief account of some facts, termi-
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nology and notations from group theory which are used in the book (for more
details, see [6, 33, 34, 41, 49, 76, 79, 190, 218, 233, 236]).

An r-parameter Lie transformation group G, is a set of transformations of
the space R™ x C™

xzl, = falz,u,0), a=0,...,n—1,

, (0.3)
uﬁ = gﬁ(xau7'9)7 ﬁZO,...,m—l,

6 € U, U is an open sphere in R", where f, and gg are real-analytical functions
of 0 satisfying the following relations:

1. fa(x,u,O) = Za, gg(x,u,O) = ug,

2. V{Ql,eg} C U, 393 = T(01,92) eU:
foz(f($)u791)7 g(l‘)u7 91)7 02) = fa($)u793)7
g,@(f(aj7u7 01)7 g(fL’,U701), 92) = gﬁ(xuua 03)

Here T': U x U — U is a vector-function whose components are real-
analytical functions satisfying the relations

1. T(6,0) = T(0,6) =6, V§eU,
2.9 cU, 9 eU: T(O,0°1)=T("",0) =0,
3. V{91,92,93} cU: T(T(el,eg),egg) = T(@l,T(QQ,(gg)).

The r-parameter Lie transformation group (0.3) is related to the r-dimensi-
onal vector space AG, whose basis elements are first-order differential opera-
tors

n—1 m—1
0 0
Qr = Zofm(%u)% + Z nT’B(x’u)ﬁTw’ (0.4)
a= B=0
the coefficients £;4, 173 being defined by the following formulae:
Ofa
gTOé(x7u) = 3577_ 9—0’
- (0.5)
ey = ]
710 =0

The vector space AG, is closed with respect to the operation

(X,Y) > Z=XY -YX =[X,Y]
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and, consequently, forms an r-dimensional Lie algebra. This algebra is called
the Lie algebra of the group G,.

Conversely, given the Lie algebra with basis elements (0.4), where &, and
n-3 are sufficiently smooth functions, then the r-parameter Lie transformation
group is obtained by solving the Lie equations

G = Galf0) falwu0) =z,

0
a%f = nTﬂ(fhg)? gﬁ(x,U,O):UB, 7—:1,...77‘

(0.6)

and by constructing the superposition of the resulting one-parameter Lie
groups.

Thus, there exists a one-to-one correspondence between a Lie transforma-
tion group G, and its Lie algebra AG,. To emphasize this correspondence
we say that operators () generate the group G,. These operators are called
infinitesimal operators (generators) of the group G, (as a rule, we omit the
word ”infinitesimal”).

We say that the differential equation

L(:c,u(a:)) =0 (0.7)

is invariant under the group of transformations G, (or: admits the group G, )
if the change of variables (0.3) transforms the set of solutions of equation (0.7)
into itself. The group G, is called invariance or symmetry group of equation
(0.7). A corresponding Lie algebra is called invariance or symmetry algebra
of the equation in question.

According to Lie [218] the differential equation (0.7) is invariant under the
group G, having generators (0.4) if and only if

QTL =0,
0.8
where [L] means the set of solutions of the equation L = 0 and Q) is the N-th
prolongation of the operator @, (N is the order of differential equation (0.7)).

The N-th prolongation of the operator

m—1

n—1
0 0
Q - az::oga(x,u)aixa + Bz_% nﬁ(xau)%
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is constructed as follows

- )
)

C,@al - Da177,8 - TjDalga7
o

where

9%u
CBayas = DayCpa, — ml)agé’m
8Nu5
C,Bal...aN = DaNCﬁal...aN,1 - axal o a$aN_la$a aN£a7
0, o’ 9 o+ )

D, =

0T 8xa ouP Z “ 0%, - .. 04,074 P < 0"ug )

0%q, .. .0%q,

(summation over repeated indices is implied).

The invariance criterion (0.8) gives rise to a linear system of PDEs (the
determining equations) for the functions &, 73, whose general solution deter-
mines the maximal (in Lie sense) invariance algebra of the equation considered.
The corresponding Lie group is called the maximal invariance (symmetry)
group of equation (0.7).

The procedure described above is just Lie method for investigating sym-
metries of differential equations. Application of this method to equations of
mathematical physics requires the performing of cumbersome computations
(this is especially the case for multi-component systems of PDEs). If we deal
with a system of linear PDEs

L(z)u(z) =0, u= (ug,u1,. ., Un_1), (0.9)

the computations can be substantially simplified. A symmetry operator acting
in the linear space of solutions of system (0.9) is seeked in the form

Q= ny —+n() (0.10)

where {,(x) are smooth real—valued scalar functions, n(x) is some (m x m)-
matrix. Within the Lie approach Operator (0.10) is represented in the form

0
X = Z falr) 5 — — Z 77[3152 UB, dun
Ta B1,02= P
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The invariance criterion for system of PDEs (0.9) reads (see, e.g., [115])

LQu(z) = 0.

Ll (0.11)

Condition (0.11) means that the operator () transforms the set of solutions of
(0.9) into itself.
Relation (0.11) is rewritten in the following equivalent form:

IL,Q] = R(z)L, (0.12)

where R(z) is some (m x m)-matrix. The above operator equality is to be
understood in the following way: operators on the left- and right-hand sides
of (0.12) give the same result when acting on an arbitrary solution of system
(0.9).

Let us emphasize that the invariance algebra obtained by solving relation
(0.11) or (0.12) is not the maximal one because any system of linear PDEs
admits the Lie transformation group

/
T, = Ty, w=0,....n—1,

uig = wug+0Oups(z), B=0,....,m—1,

where 6 is a real parameter, up(x) is an arbitrary solution of the system con-
sidered. But the above Lie group gives no essential information about the
structure of solutions of the equation under study and is not considered in the
present book.

For many symmetry groups of systems of PDEs of mathematical and the-
oretical physics, the matrix n(z) possesses very important algebraic proper-
ties which simplify substantially all manipulations with symmetry operators
(0.10). Moreover, in most of the problems considered in this book we use the
algebraic relations which are satisfied by n(z), but we do not use their explicit
form. That is why we will represent the infinitesimal symmetry operators in
the form (0.10) (if it is possible and does not lead to confusion).

In the approach based on the formulae (0.10), (0.11) the restrictions of Lie
method are quite evident since an operator transforming the set of solutions
of equation (0.9) into itself does not have to be of the form (0.10) (a symmetry
operator may belong to the class of differential operators of the order N > 1
or to the class of integro-differential operators [115, 116, 118]).

Below we give a list of notations and conventions used throughout the
book.
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A scalar product in the Minkowski space R(1,3) with the metric tensor

0, p#v,
Juv = 1, p=v=0,

1, p=v=123

is denoted by a - b = gua,b,, {a,b} C R(1,3).
A scalar product in the Euclidean space R(3) with the metric tensor 64, =
—gapb 1s written as follows

-1 = Ogp MaMp = NgMeg.-

Summation over repeated indices is used, indices being denoted by the
Greek letters «, 3, p, v with the values 0, 1, 2, 3 and indices being denoted by
the Latin letters a, b, ¢ with the values 1, 2, 3 (unless otherwise indicated).

By the symbol €4, the antisymmetric tensor of rank three

1, (a,b,c) =cycle(1,2,3),

Eabe = { -1, (a,b,c) =cycle(2,1,3),
0, in other cases

is designated.

All the functions considered in the book are supposed to be differentiable
as many times as is necessary. The derivative of a function of one variable f =
f(z) is denoted by a dot over the symbol f=df /dz. To distinguish a partial
derivative we use the symbol 0,, i.e. df/0z = 0, f, and the partial derivative
with respect to the p-th independent variable is denoted by 0, f = 0., .

Vector and tensor indices are written as subscripts (x,, Ay, Flu, etc.) and
spinor indices as superscripts (¢*). Lowering or raising of an index in the
Minkowski space R(1,3) is carried out by the metric tensor g,,,, for example,

Zo, /,LZO,

H— =
T ity {—xa,u:a:1,2,3.

Complex conjugation is denoted by the asterisk (z + iy)* = = — iy and
the matrix transposed with respect to a given matrix A is designated by A”.

The symbol Af stands for a complex conjugate of a transposed matrix, i.e.
(AT)* = AT,



CHAPTER 1

SYMMETRY
OF NONLINEAR
SPINOR EQUATIONS

The first chapter is of an introductory character. Here we present well-known
facts about different representations of the Dirac equation [115, 116, 118],
its local and nonlocal (non-Lorentz) symmetry and conservation laws for the
Dirac field. Detailed group-theoretical analysis of nonlinear generalizations
of the Dirac equation which are invariant under the Poincaré group P(1,3),
extended Poincaré group P(1,3) and conformal group C(1,3) is carried out.
Some second-order Poincaré- and conformally-invariant spinor equations are
considered. Wide classes of nonlinear PDEs for spinor, scalar and vector fields
invariant under the groups P(1,3), P(1,3), C(1,3) are described.

We establish correspondence between reducibility of PDEs and their con-
ditional symmetry (the results obtained play a crucial role when constructing
exact solutions of multi-dimensional partial differential equations).

1.1. Local and nonlocal symmetry of the Dirac equation

The Dirac equation is the system of four linear complex partial differential
equations
(198 — M) (a) = 0, (1.1.1)
where ¢ = ¥(xg,x1,x2,23) is the four-component, complex-valued functi-
on-column, m = const, v, are (4 x 4)-matrices satisfying the Clifford-Dirac
algebra
VYo + VY = 29w d,  p,v=0,...,3, (1.1.2)

where [ is the unit (4 x 4)-matrix.
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Under the massless Dirac equation we mean system (1.1.1) with m = 0.

Since on the set of solutions of the Dirac equation a spinor representation
of the Lorentz group is realized (see the Appendix 1), the function i (z) is
called the spinor field (or, for brevity, the spinor) and equation (1.1.1) as well
as its nonlinear generalizations are called spinor equations.

If we act with the operator iv,0, + m on the left-hand side of equality
(1.1.1) and use relations (1.1.2), then a system of four splitting wave equations
for the spinor ¥ (x)

(0,0" + m*)h(z) =0 (1.1.3)

is obtained.

It is worth noting that Dirac derived equation (1.1.1) by factorizing the
second-order differential operator 9,0 + m?, i.e., by representing it in the
form of the product of two first-order operators Q4+ = iv,0, £ m, whence it
followed that -, were matrices satisfying the algebra (1.1.2) [35, 69, 71].

1. Algebra of the Dirac matrices. We say that a representation of the
Clifford-Dirac algebra is given if there are four (4 x 4)-matrices satisfying rela-
tions (1.1.2). There exist infinitely many representations of the Clifford-Dirac
algebra. But all these representations are equivalent, namely, for each two

sets of matrices {’yl/i}, {'y#} satisfying (1.1.2) there exists such a nonsingular
(4 x 4)-matrix V that

'y;:V’yHV_l, w=0,...,3. (1.1.4)

If it is not indicated otherwise, we assume that the matrices 7, realize the
following representation of the algebra (1.1.2):

I 0 0 o,
70_(0 _I)7 ’Ya_<_o_a 0 >7 (115)

where I, 0 are the unit and zero (2 x 2)-matrices, o, are the Pauli matrices

2=(V0) m=(00) w=(0 %) 0w

In addition, we use the following representations of the Clifford-Dirac al-
gebra:
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(0 I [ —ios 0
=V o0 ) T 00 e )

(i 0 (0 —ir\
2=V i) BT\ i o0 )

0 I 0 o4 _
70—(1 0>, %—(_Ua ; ) a=1,2,3. (1.1.8)

Straightforward verification shows that the matrix v4 = v9y1y27y3 satisfies
relations of the form

(1.1.7)

W+ =0, Ai=-1 p=0,...3
Matrices v, Y1, Y2, 73, Y4 form the maximal set of generators of the
Clifford-Dirac algebra in the class of (4 x 4)-matrices.
The maximal set of generators of the Clifford-Dirac algebra in the class
of (8 x 8)-matrices is exhausted up to the equivalence relation (1.1.4) by the
following matrices:

oo Y 0 = 0

= 0 iy = v 0
A C Te= Cu=0,....3
> <—Z’Y4 0 ) 6 ( 0 - K

where 0 is the zero (4 x 4)-matrix.

It is known that all possible products of matrices 7, form a basis in the
linear space of (4 x 4)-matrices. The elements of this basis can be chosen as
follows

(1.1.9)

Iv fYM? 7#7V7 747,11,7 747 /'L< V? ILL,V:O,...,3. (1110)

Sixteen matrices (1.1.10) are linearly independent and, consequently, an
arbitrary (4 x 4)-matrix is represented as a linear combination of the basis
elements (1.1.10).

2. Various formulations of the Dirac equation. The four-component
function-row ¥ (z) = (¢(x))'o is called a Dirac-conjugate spinor. To obtain
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an equation for ¢(x) we apply a complex conjugation procedure to (1.1.1)
with subsequent transposition and multiply the obtained expression by v on

the right. Taking into account relations fy(]; =0, V) = —7a, we have
i0,1by, +map = 0. (1.1.11)

If we designate

b = im0, (1.1.12)

then equation (1.1.11) can be rewritten in the form

(19,0 —m)p = 0.

Hence it follows that system (1.1.1), (1.1.11) can be represented in the
form of the eight-component equation

(iT 0, — m)¥(z) =0, (1.1.13)

o= (i)

If we choose the matrices <, in the representation (1.1.7), we can rewrite
the Dirac equation (1.1.1) as a system of eight real PDEs

where

(iT,, —m)¥(z) = 0, (1.1.14)
where N Re(x)
5@ = (1))

On multiplying equation (1.1.1) by the matrix vy on the left we get the
Dirac equation in the Hamilton form

100y = HY = (—i70Va0a + m0)1.

Choosing the matrices 7, in the representation (1.1.8) and representing
the spinor ¥ (x) in the form

U(z) = (i;gg) , (1.1.15)

where ¢4 (z) are two-component functions, we rewrite the Dirac equation as
follows ( )
10y + 10404)p+ — mp_ = 0,
e (1.1.16)
(10p — 10404)p— — mep4+ = 0.
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Acting on the first equation of system (1.1.16) by the operator iJy — i040,
we have

(00" + m*)ps () = 0

and what is more ¢_(x) = m~1(i0y + i0,0,)¢+ (). Consequently, the system
of four first-order differential equations (1.1.1) is equivalent to the system of
two splitting wave equations.

From (1.1.16) it is clear that the massless Dirac equation

iv,0,0(x) =0 (1.1.17)

splits into two Weyl equations for two-component spinors ¢ (z).

Let us also note that the massless Dirac equation (1.1.17) can be rep-
resented in the form of the Maxwell equations with currents. To become
convinced of this fact we represent the four-component function ¢(x) in the
following equivalent form:

—E Es

| B e

e B ] B (1.1.18)
F H

where E,, H,, F, G are some smooth real-valued functions.
Substituting (1.1.18) into (1.1.17) and splitting with respect to i we get
the Maxwell equations with currents [138]

OE = rot H + 7, divE = Jo,

B N B (1.1.19)
OoH = —rot E+ k, divH = ko,
where j, = 0, F, k, = 0,G.

The above presented formulations of the Dirac equation are, of course,
equivalent but choosing an appropriate one we can substantially simplify com-
putations when solving the specific problem. In addition, these formulations
enable us to obtain principally different generalizations of equation (1.1.1) for
the fields with an arbitrary spin [115, 116].

3. Lie symmetry of the Dirac equation. We adduce the assertions
describing the maximal (in Lie sense) invariance groups admitted by the Dirac
equation.
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Theorem 1.1.1. The maximal local invariance group of the Dirac equation
(1.1.1) is the 14-parameter group G1 = P(1,3) ® V(4),! where P(1,3) is the
Poincaré group having the generators

Py=0" Ju =2,0" — 2,0" + Sy (1.1.20)

and V(4) is the 4-parameter group of transformations in the space (¢Y*,1)
generated by the operators

Qo = Y*0ya + P yra,

Q1 = 1W*Opa — i)™ *Oyra,

Q2 = {129 }*O0po — {7200} O,
Qs = {i72t" }*Ope + {7200} O

(1.1.21)

In formulae (1.1.20), (1.1.21) {¥}?* is the a-th component of the function
¥ and

1 1
S/w = Z['Y,ua')’V] = Z('Yu%/ - 'YV'Yu)a

Do = D)0V, Dy = 0)OY™.

Theorem 1.1.2. The mazimal local invariance group of the massless Dirac
equation (1.1.17) is the 23-parameter group Go = C(1,3) ® V(8),% where
C(1,3) is the conformal group having the generators

P,=0" Ju=x,0"—x,0'+ S,

D = 2,0, +3/2, (1.1.22)

K, =2x,(x,0, +3/2) —x - x0" + 2S 2"

and V(8) is the 8-parameter group of transformations in the space (¢V*, 1)

!Since equation (1.1.1) is linear, it admits an infinite-parameter group ' = ¢ + 0¥ (x),
where 6 is a group parameter and W is an arbitrary solution of system of PDEs (1.1.1). Such
a symmetry gives no essential information about the structure of solutions of the equation
under study and therefore is neglected.

2See the previous footnote.
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generated by the operators (1.1.21) and

Qu = {14} Oype — {740"} Oy,

Q5 = {ia}*0ye + {ina* }*Opea,

Q6 = {727} Opo + {72720} Oy,
Q7 = {iv27a* }*Opa — {iv2va1)}*Oppea.

The fact that the groups G1, G are the maximal invariance groups ad-
mitted by equation (1.1.1) is established by rather cumbersome computations
with the help of the Lie method [63, 188].

Straightforward verification shows that operators P,, J,,, D satisfy the
following commutation relations:

(1.1.23)

[Py, P)) =0, [Py, Japl = guaPs — gupla,
[Py,D]=P,, [Juw,D]=0,
[J;uh Jaﬁ] = guﬁjuoz + gVOcJ,LL,B - g,uonuﬁ - guﬁjua'
Consequently, the operators Py, Jy,, D form a basis of the 11-dimensional
Lie algebra which is called the extended Poincaré algebra AP(1,3). The cor-
responding Lie group is called the extended Poincaré group P(1,3).
Let us adduce explicit forms of transformation groups generated by opera-

tors (1.1.20)—(1.1.23) (corresponding formulae are obtained by solving the Lie
equations (0.6)).

1) the group of translations (X = 6*P,)

a, =x,+ 0, Y() =) (1.1.24)
2) the Lorentz group O(1,3)
a) the rotation group O(3) (X = %%b,ﬂanC)

x(, = w0,
7l = x4c080 — 07 sin 0 e gpbp e + 9*29a(1 — cos 0)0pxp, (1.1.25)
1
0'(0') = exp{ = 5urebaSie bl
b) the Lorentz transformations (X = Jy,)

x(, = x cosh Oy + x, sinh by,

x!, = x4 cosh Oy + xq sinh 6y,
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/
T, =xp, bF#a,

Y'(a) = exp{%)%%}w(fﬂ);

3) the group of scale transformations (X = D)

/_
.Z'M—e

gy, '(2)) = e (), with k= 3/2;

4) the group of special conformal transformations (X = 6, K*)

2, = (p — G )0 (),

Y'(2') = o(x) (1 —v- 0y 2)Y(x);

5) the group V(8)

X:Q()Z
X:Qli
X:QQZ
X:Q3
X =Q:
X:Q5Z
X =Qs:
X:Q7I

/

T, =Ty,
V(a') = e"p(a), () = vt (a);
¥, = 2,

Y(a') = ePp(a), o7 =T (a);
xL = I,,

Y (2") = ¢ (x) cosh Oy + y210*(z) sinh by,
¥ (2') = ¢*(x) cosh Oy — y21h(z) sinh bp;
), = Ty,

Y (z") = ¥(x) cosh Oy + iv09™ (x) sinh O,
Y (2") = *(x) cosh Oy + iva1)(z) sinh Op;

T, = Ty,

(1.1.26)

(1.1.27)

(1.1.28)

(1.1.29)

P'(2") = exp{ovatv(z), ¥™(2') = exp{—boya}y™(x);

I
T, =Ty,

V'(2') = exp{ifoyati(z), ¢7(a") = exp{ifora}y(2);

/ J—
T, = Ty,

V' (@) = () cos O + y2yat” (2) sin by,
P (2") = " (x) cos Oy + Yayav () sin Op;

I
T, = Ty,

(1.1.30)
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V' (2') = Y(x) cos O + ivay4y™ (x) sin by,
¥ (2') = ¢*(x) cos Oy — iy2yath(z) sin bp.

In the above formulae 6, € RY, © =0,...,3 are group parameters, § =
(0202)2, o(x) =1 —20-2+ (0 - 0)(x - ), by the symbol X we designate a
generator of the corresponding group.

The direct verification shows that the Dirac equation is invariant under
the Lie transformation groups (1.1.24)—(1.1.30). For example, if we make in
PDE (1.1.1) the change of variables (1.1.25), then the identity holds

(i’Yua;/z —m)y'(z') = eXP{;gabceaSbc}(i’Yuau —m)(x),

whence it follows that the set of solutions of equation (1.1.1) is invariant with
respect to the action of the group (1.1.25).

In addition, the Dirac equation admits discrete transformation groups
which cannot be obtained with the help of the Lie method. We adduce the
most important discrete symmetries of equation (1.1.1).

1) the spatial inversion

xH =T, Th=—Tq,
" o (1.1.31)
P(a’) =vv(z), ¥7(@) =9 (2);
2) the time reversal
TH = —xo, T, = Tq,
) o (1.1.32)

P'(@) = nyset(z), P7(a) = nysv(a);
3) the charge conjugation
@, =z,
P(@) = iv*(z), PY(2) = ivy(a).

Transformation groups (1.1.31), (1.1.32), (1.1.25), (1.1.26) form the full
Lorentz group (for more detail, see [118, 174]).

4. Non-Lie symmetry of the Dirac equation. In the previous subsection
we adduced theorems describing maximal local invariance groups of equations
(1.1.1), (1.1.17). Such a symmetry can be defined as invariance with respect
to a Lie algebra having basis elements of the form

X = &u(x, 0,00 + 0 (2,0, ") Oy + 0" (2,9, ™) Dpra, (1.1.33)
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where &, n%, n** are some scalar smooth functions.

As pointed out in the introduction, the above symmetry does not exhaust
all symmetry properties of the Dirac equation because there exist linear differ-
ential and integro-differential symmetry operators which cannot be represented
in the form (1.1.33) and, consequently, correspond to a non-Lie symmetry of
the Dirac equation.

Let M be a class of complex linear first-order differential operators with
variable matrix coefficients acting on the space of four-component functions,
ie.,

My ={Q = 4,0, + B},

where A, (z), B(x) are complex (4 x 4)-matrices. Evidently, the class M;
contains all Lie symmetry operators which can be obtained with the help of
formula (0.12).

Following [118] we adduce assertions describing all symmetry operators of
the Dirac equation belonging to the class Mj.

Theorem 1.1.3 [118, 196, 255]. Equation (1.1.1) has 26 linearly-independent
symmetry operators belonging to the class M1. The list of these operators is
exhausted by the generators of the Poincaré group (1.1.20) and by the following
operators:

I, B =iz, 0+ 3i/2 —my-x),

wuv = (i/2)(7,0” — 70") + mSp, (1.1.34)
pu = (1/2)71(i0" — my,),

Ry = 2w + wpr,

where I is the unit (4 x 4)-matriz.

Note 1.1.1. Set of operators (1.1.20), (1.1.34) is not closed with respect to
the algebraic operation

Q1,Q2 — Q3 = [Q1, Q2].

Consequently, it does not form a Lie algebra. Nevertheless, there exist such
subsets of the above set which are Lie algebras. An important example is
provided by the operators P,, J,, satisfying the commutation relations

PP =0, |P,,Josl=9uly — gualy,
[ Iz ] [ Iz B] iz H (1.1.35)
[J/u/y Jaﬂ} = g/,LBJl/a + guoaJ/,LB - guozt]l/ﬁ - gyﬂJua-
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This algebra is called the Lie algebra of the Poincaré group (or Poincaré
algebra) and is designated by the symbol AP(1,3).
Another interesting example is the eight-dimensional Lie algebra

Y =mSu + (i/2)(1 — iy4) (7,0” — 7,0"),
Yo = I, Y1 = my4 + (1 — i74)vuau

obtained in [115, 116].
Note 1.1.2. As the direct check shows the relations

B = —¢cuapJ" I, [P, Bl =2p,,
[pu, Bl = (1/2)(Py + mRy),
[Py, R = 2wy

hold true. Hence it follows that all symmetry operators of the Dirac equation
@ € M, belong to the enveloping algebra of the Poincaré algebra (i.e., to
the algebra whose basis elements are polynomials in P,, J,, with constant
coefficients). Furthermore, any linear N-th order partial differential operator
with matrix coefficients which is a symmetry operator of the Dirac equation
(1.1.1) under m # 0 belongs to the enveloping algebra of the Poincaré algebra
[118].

Theorem 1.1.4 [118, 230]. The massless Dirac equation (1.1.17) has 52
linearly-independent symmetry operators belonging to the class My. A basis
of the linear vector space of such operators can be chosen as follows

Pua J}U/v K;u D, I, f)u :i’Y4Pua

Juw =y, D=iuD, K,=iuk,,
F=iy, R,=(D-1/2)y,—v xP,, (1.1.36)

R, = iR, wu =Py — WPy,
QW = i([Ru,K,,] - [RWKMD'

Note 1.1.3. Operators R, Ru, Wuw, Qv are not contained in the enveloping
algebra of the local invariance algebra of equation (1.1.17). Consequently, they
are essentially new.

Until now when analyzing non-Lie symmetry of the Dirac equation we
considered only linear transformations of the set of its solutions. To investigate
symmetry of equation (1.1.1) in the class of operators generating both linear
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and anti-linear transformations (i.e., transformations of the form

W = Liv+ Loy,
¥ = Liv" + Ly,

where Li, Lo are some linear differential operators) we turn to the eight-
component form of the Dirac equation (1.1.13).
Let M be a class of complex first-order linear differential operators with
matrix coefficients
X = A, ()9, + B(x)

acting on the space of eight-component functions ¥ = ¥(x).

Theorem 1.1.5 [118]. The general form of a symmetry operator for equation
(1.1.13) belonging to the class Ma is given by the formula

Q= Qo —2@i7
Q1 —Qi2 )’

where Qo, Q1 are arbitrary linear combinations of the generators of the Poin-
caré group and of operators (1.1.34) with complex coefficients.

Theorem 1.1.6 [118]. The general form of a symmetry operator for equation
(1.1.13) with m = 0 belonging to the class My is given by the formula

Q= Qo —72Q172
Q1 —Qie )’

where Qo, Q1 are arbitrary linear combinations of the operators (1.1.36) with
complex coefficients.

A detailed account of symmetry properties of the linear Dirac equation in
the class of high-order differential and integro-differential operators is given in
the monographs [115, 116, 118, 119).

It is well-known that the maximal (in Lie sense) invariance group of the
Weyl equation

(100 + 1040q)p(x) =0 (1.1.37)

is the conformal group C(1,3) supplemented by the two-dimensional transfor-
mation group

/
T, =zu, p=0,...,3
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where {61,609} C RL.
The class M1 has no additional symmetry operators. The class My con-
tains 52 symmetry operators for the Weyl equation [230)].

5. Absolute time for the Dirac equation. All fundamental equations of
quantum field theory (Maxwell, Dirac, Klein-Gordon-Fock, d’Alembert etc.)
are invariant with respect to the Lorentz transformations. With these trans-
formations time changes after transfer from one inertial coordinate system to
another. In other words, the principal motion equations of the quantum field
theory are invariant with respect to the Lorentz group O(1,3) € P(1,3).

A question arises whether there exist invariance algebras admitted by the
Maxwell, Dirac and Klein-Gordon-Fock equations which generate transforma-
tions for the time variable 9 = ¢ and coordinates & = (x1,x2,x3) different
from the Lorentz and Galilei transformations. A positive answer to this ques-
tion was given in the papers [83]-[86].

Theorem 1.1.7 [83]-[86]. The Dirac equation (1.1.1) is invariant under the
Poincaré algebra having the following basis elements:

Pél) = H = —yo720, — im0, P = —0,,
I = 200, — YwaH + Hay), (1.1.38)
Jéll)) = .Z‘baa — xaﬁb + %'Ya'}’b,

where a,b=1,2,3, a <b.
Proof is carried out by direct check.

Note 1.1.4. The operators J(()Cll) generate non-Lorentz transformations of the
time variable zg = t and coordinates x,. Time does not change

t—t = exp{vaJé}l)}t exp{—vajéi)} =t (1.1.39)
and the coordinates transform as follows:
Tq — T, = exp{vbJO(;)}xa exp{—vbJé;)}

# exp{upJop}xq exp{—uvpJop} - (1.1.40)

Lorentz transformations

Here vy, are parameters which are interpreted as components of the velocity
of a moving inertial reference frame with respect to a fixed one.

Note 1.1.5. It follows from Theorem 1.1.7 that on the set of solutions of the
Dirac equation two inequivalent representations of the Poincaré algebra are
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(1)

realized. Operators Pél), 0(11 from (1.1.38) generate nonlocal transformations
of coordinates x, leaving the time variable o = ¢ invariant. Let us empha-
size that transformations (1.1.40) are different from the standard Galilei and
Lorentz transformations.

As the relations

()= (P2) (PV) = =,
(76", Joa)) = PV,
[Pb(l)v ‘](gclb)] _gabpo(l)

hold, the energy Po(l) and momentum chl) operators transform according to

the standard Lorentz law. But for the time variable xg = ¢ and coordinates
z, this is not the case and the interval s2 = 1:% — X4%, 1S not invariant with
respect to the transformations (1.1.39), (1.1.40).

Thus, the Dirac equation as well as the Maxwell and the Klein-Gordon-
Fock equations [83]-[86] have dual symmetry (Lorentz and non-Lorentz).

The dual symmetry of the Dirac equation is a consequence of the fact that
the spectrum of the operator H has a lacuna in the interval (—m,m) and the
spectrum of the operator Pél) is continuous on the real axis [83]-[86].

In conclusion we briefly consider symmetry properties of the equation

(1 = iv4)u0u1 = 0, (1.1.41)

which is obtained from the massless Dirac equation (1.1.17) by multiplying it
by the singular matrix 1 — iy4. This equation is distinguished by the fact that
two inequivalent representations of the conformal group C(1, 3) are realized on
the set of its solutions. The first one is given by formulae (1.1.24)—(1.1.28). In
addition, equation (1.1.41) admits the group C(1,3) with generators P,, J,,
of the form (1.1.20) and

D = —z,0, = 3/2+ M (iva — 1),

(1.1.42)
K, =2x,D —x- 20" — 25,2 + Xa(i7a — 1)y,
where A1, Ao are non-zero constants.

From [221] it follows that formulae (1.1.42) determine the most general
form of generators of groups of scale and special conformal transformations
from the group C(1,3) if the generators of the group P(1,3) are given in
covariant form (1.1.20).
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It will be shown in Section 2.2 that the representation (1.1.42) plays an
important role when constructing conformally-invariant solutions of spinor
equations.

1.2. Nonlinear spinor equations

This section is devoted to symmetry analysis of quasi-linear systems of PDEs
for the spinor field of the form

VOt — F(¢,4) =0, (1.2.1)

where F = (FO, F', F?2, F3)T  Fr e CcY(C8,Ch).

It is clear that an arbitrary equation of the type (1.2.1) cannot be taken
as a true nonlinear generalization of the Dirac equation. A natural restric-
tion on the choice of functions F* is the condition of invariance under the
Poincaré group. This condition provides independence of the choice of iner-
tial reference frame for physical processes described by equation (1.2.1) (i.e.,
nonlinear PDE (1.2.1) has to satisfy the Lorentz—Poincaré—Einstein relativity
principle). Mathematical expression of the above principle is a condition of
invariance under the group P(1,3) with generators (1.1.20). In addition, it
is of interest to select subclasses of Poincaré-invariant equations of the form
(1.2.1) admitting wider symmetry groups — the extended Poincaré group and
the conformal group.

Theorem 1.2.1 [152, 155]. System of nonlinear PDEs (1.2.1) is invariant
under the Poincaré group P(1,3) iff

F(, ) = {f1(¥¥, v1a) + fa(brp, byap)vateb, (1.2.2)

where {f1, fo} C C'(R% C') are arbitrary functions.

Proof.  Without loss of generality equation (1.2.1) can be rewritten in the
following form:

{17u0 + ®(0,9)} =0, (1.2.3)

where ®(1,1)) is a (4 x 4)-matrix.

It is evident that equation (1.2.3) with an arbitrary matrix function @ is
invariant under the 4-parameter group of translations (1.1.24). Consequently,
to prove the theorem it is enough to describe all ® such that PDE (1.2.3)
admits the Lorentz transformations (1.1.26), whence due to the commutation
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relations of the algebra AO(1,3) it follows that PDE in question is invariant
under the Poincaré group.

Acting with the first prolongation of the operator Jy, on equation (1.2.3)
and passing to the set of its solutions we obtain a system of PDEs for an
unknown matrix function ® (v, )

Qoa® + (1/2)((1)’70'7% - '70'7(1(1)) = 0. (1'2'4)

Let us expand the matrix ® in the complete system of the Dirac matrices
I, Vs Suua Va4V, V4
o = AW, ¥) + B, )1+ C* (4, 4) S

7 3 (1.2.5)
+DH (Y, ) vavu + E(, )4

Substituting expression (1.2.5) into (1.2.4) and taking into account the
identities

[Y4,7%0%) = 0, [7u:70Ya] = 2(9u0Ya — Guao),
[Yuvs Y0Yal = 2(90YaYy — Jua¥0Ve + 9v0VuYa — GraYuY0)s

where g, is the metric tensor of the Minkowski space R(1,3), with a subse-
quent equating to zero of coefficients of linearly independent matrices I, -,

..., 74 one gets an over-determined system of PDEs for functions A, B*,...  E
QoaA =0, QouE =0, (1.2.6)
QoaBy + B*(9a09pa — Gaaguo) =0, (1.2.7)
QoaDy + D*(ga0gpa — JaaYuo) = 0, (1.2.8)
Qo CM + (1/2)C’aﬁ(gaa5% + 950040
~9a005, — 9padng) = 0. (1.2.9)

In formulae (1.2.6)—(1.2.9) we use the following notations:

Quv = (1/2){nump}*Ope — (1/2{07u 1w} g, 1 < v,
5§E = 0uadvg — 048000, a=1,2,3, p,v,a,8=0,1,2,3.

Since [Qoa, Qop] = Qap, functions A(),v), B(y),) satisfy the system of
PDEs

Quvf(, ) =0, p<uv. (1.2.10)
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According to [61], the general solution of this system is an arbitrary smooth
function of a complete set of its first integrals w.

If we denote by r the rank of the (6 x 8)-matrix of coefficients of the
operators @,

S T T T T U
LA T TN T TN T T 1
LA VAN A UL VR T U 1
VA N U UL AN VA
S R -t R W R 4

RETEIES E  AE U TARE T 1

(the representation of y-matrices is given by formulae (1.1.5)), then a maximal
set of functionally-independent first integrals of system (1.2.10) consists of 8—r
integrals [61]. In the case considered r = 6, whence it follows that the general
solution is represented as an arbitrary smooth function of two functionally-
independent first integrals. As a rule, they are chosen in the form 1), ¢y4).
Thus, the general solution of system (1.2.6) is given by the formulae

A=A, puy), E=E@W, Ypyuy), (1.2.11)

where {4, E} ¢ C*(R?,C') are arbitrary functions.
We expand the four-component function with components B, in the system
of four linearly independent vectors ej, es, es3, e4 having the components

VY, Y1y Y vov2 s YT v0ve eyt

B, = Ri(¢, jﬁ)zﬁwﬁ + Ry (¢, w)@'m_ww
+Rs (¥, V)T vov2vu + Ra(h, )0 v0v2747,3)-

Let us prove that the functions B, = Bu(lﬁ, V), p=0,...,3 satisfy system
of PDEs (1.2.7) iff the conditions

Ri = Ez(r‘z)wa’&’)%w% BZ € CI(R25 (Cl)v 1= ]-a cee 74

hold.
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Indeed, if we designate by V,,(1,1)) the components of one of the vectors
e;, then V), satisfy the equalities of the form

QoaVo=Va, a=1,2,3 (1.2.12)

(the above fact is established by straightforward computation). Consequently,
we have

QoaBo = (QoaR1)¥0v + (QoaR2)¥yav0¥ + (QuaR3)
x T 072700 + (QoaRa)Y T Yoy2v4v0% + Ritpyath (1.2.13)
+Rotpvavat + Rsp 07270 + Rap T v0v274%0t)-

Setting = 0 in (1.2.7) we find
QoaBo = Ba. (1.2.14)
Comparing (1.2.13) and (1.2.14) yields the following equality:

(QoaR1)VY0% + (QoaR2)Vya70v + (QoaR3) T voy270¢

. (1.2.15)
+(QoaRRa)Y" Y0727470% = 0.
In the same way we obtain equalities of the form
(Qoa RV WY + (QoaRa2) b yavh + QoaR3)YT 02760 (1.2.16)

+(QoaRa) VT yov2747Y = 0,

where a,b =1, 2, 3.

Since four-vectors with components 1/717,‘1/1, . ,1/1T707274'mw are linearly-
independent, from (1.2.15), (1.2.16) it follows that Qo,R; = 0, a = 1,2,3,
i=1,...,40r Ry = Bi(dt), 0yat), i = 1,... 4.

Taking into account that system of PDEs (1.2.8) coincides with system
(1.2.7) it is easy to write down its general solution

D) = 3 Dr(d, bya) + Pranup Do, bwy)
+ T Y027, D3 (Y1), Yyah) + T o247, Da (P, Pyath),

where D; € C1(R',C'), i =1,...,4 are arbitrary functions.
Integration of equations (1.2.9) is carried out in the same way, as a result
we have

Cow(,0) = PyumCh + vyayypCo
T Y0727, 0 Cs + VT Yoy 14y, Ca,
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where C; = CN'Z-(@@D, Yy4rh), i =1,...,4 are arbitrary smooth functions.

Thus, we have proved that equation (1.2.1) is invariant under the Poincaré
group iff

F,9) = @4,

{Ar+ Biv,(970) + Bau(drr*w)
+Byu (47 10727"4) + Bavu (¥ v0727474))
+C1Su (YS* ) + Co8 (Y12 5" ) (1.2.17)
+C38 (¥ 10728 ¥) + CaSpu (¥ 10712745 )
+D1747u (VYY) + Dayayu (')

+ Dayaryu (W v0v274) + Daryary (0T o274 e) + E’M}ﬂ}-

Here A, By, ..., E are arbitrary smooth functions of 9, ).
Let us show that formula (1.2.17) without loss of generality can be rewrit-
ten in the form (1.2.2). To this end, we need the following identity:

(1) b = (Vreha) 2 + (1yathe) a2, (1.2.18)

where 11, 1o are arbitrary four-component functions.
The validity of (1.2.18) is checked by direct computation. Choosing ~-
matrices in the representation (1.1.5) we have

Yo = (¥9, ¥3, —v3, —3)T,

Yie = (V3, 3, —v3, —3)T,

Yothe = (i3, —iv3, —inhy, ipg)”,

vathy = (¥3, =5, =¥, 4hy)7,

Pryovhe = Y003 + iy — Yivs — s,
Pry1tpe = PP3 + Pls — iy — DS,
Pryahs = i(P005 — P13 — Py + ),
Pry3ie = PPps — Pl — P + Dy,
Prihy = PP + Piapy + D3 + s,
P14t = — (P95 + P1vd + PTed + Piy),

whence it follows

(V17 2) 7" 2 = (08 + Diepy + DTs + i)



30 Chapter 1. SYMMETRY OF NONLINEAR SPINOR EQUATIONS

9 ¥3
v | o9 713, 720, 731y | U3
X 2 (V103 + b1y + Y1y + i) 0
V3 3
= {12 + (V1yatb2)ya o

On making in (1.2.18) the change of variables ¥; — 1174 we arrive at the
identity - B B
(V172 Yo = {174th2 — (Y1th2)ya}iba. (1.2.19)

Similarly, we obtain from (1.2.18) two other identities

(1?174%1#2)747“% = {("&1’14@&2)74 4:1/311&2}1&2, (1.2.20)
(V18u2) S 2 = (1/2){h1tb2 — (V1vathe)yatrba. (1.2.21)
In (1.2.19)—(1.2.21) 11,19 are arbitrary four-component functions.

Choosing in (1.2.18), (1.2.19)—(1.2.21) functions %, 1 in an appropriate
way we arrive at the following relations:

(V) VY = {Y + (Yya)1a e,
(Vyavu )V b = {yap — (Y)vato,

(T 072707 0)7" ¢ = {0729 + (W v0v2748) 14} = 0,

whence the existence of such smooth functions F W, Yya),  f2(P,
Yya1p) that @(, )Y = (fi + faya)y follows. The theorem is proved. >

Note ];.2.1.~If we choose in (1.2.17) Dy=\= const, A=B =...=D, =
Ds = Dy = E = 0, then equation (1.2.1) coincides with the nonlinear spinor
equation (0.1) suggested by Heisenberg.

Note 1.2.2. From formulae (1.2.18)—(1.2.21) the well-known Pauli-Fierz iden-
tities follow [62, 274, 275]

vt = $2 4+ p?, wywh = s? 4+ p?, oot = (1/2)(52 —pz),
where

s = &17/}7 b= 7;74’(#, vy = &Wlﬂﬂ,
w,u = 1#747}”#7 U/J,l/ = ¢S,LLV¢7 M,V = O, ceey 3.
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Further we will select subclasses of equations of the form (1.2.1) which in
addition to the group P(1,3) admit the one-parameter group of scale trans-
formations (1.1.27) with arbitrary non-zero k € R! and the 4-parameter group
of special conformal transformations.

Theorem 1.2.2 [152, 155]. Equation (1.2.1) is invariant under the extended
Poincaré group, iff the function F(i,1) has the form (1.2.2), where

fi = @) (G (ray) ), i = 1,2 (1.2.22)

Proof. The necessity. Since PDE (1.2.1) is invariant under the group P(1,3),
it admits the group P(1,3) C P(1,3). Applying Theorem 1.2.1 we conclude
that it is necessary to describe all functions fi (1, ¥y4v), fa(¢1), Py41) such
that equation (1.2.1) with F of the form (1.2.2) is invariant under the group of
transformations (1.1.27). Acting by the first prolongation of the infinitesimal
generator of the group (1.1.27)

D = 2,80, — K 00® — kipaOga

on equation (1.2.1) with F' of the form (1.2.2) and passing to the set of its
solutions yield determining equations for f, fo

(w10uy +wnl, — (2K) 1) fi =0, i = 1,2, (1.2.23)

where w1 = Y1), we = Pay.

The general solutions of the above equations are given by formulae (1.2.22).
The necessity is proved.

The sufficiency. Let us introduce a notation

G(1h,¥) = iv,0ut) — (f1 + foya) (b)) 2ep. (1.2.24)
The direct computation yields the following identity:
G v) =G4, 9), 6eR,

where 1)/ is given by formulae (1.1.27).

In other words, the group of scale transformations leaves the set of solutions
of equation G = 0 invariant. Hence it follows that equation (1.2.1), where
the function F(v,1)) is determined by (1.2.2), (1.2.22), admits the extended
Poincaré group. Theorem is proved. >
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Theorem 1.2.3 [152, 155]. Equation (1.2.1) is invariant under the conformal
group C(1,3) iff ) ) o
F(,9) = (@) P (fi + fayva)y, (1.2.25)

where f1, fo are arbitrary smooth functions of Y (Yrysp) L.

Proof.  The necessity. Since the group C(1, 3) contains the extended Poincaré
group, the function F' (1), ) has the form (1.2.2), (1.2.22), the conformal degree
k being equal to 3/2.

The sufficiency is established by direct verification. Making the change
of variables (1.1.28) in equation G = 0, where G is given by (1.2.24) under
k = 3/2, we get the identity

G(d—},a 1/)’) - 0'2(.’11)(1 -7 97 ' .’L‘)G(’(/_J, w)a

whence it follows that equation G = 0 admits the 4-parameter group of special
conformal transformations. The theorem is proved. >

Note 1.2.3. If we choose in (1.2.25) fi = A = const, fo = 0, then the
conformally-invariant spinor equation suggested by Giirsey [176]

{170, — A@Y) Py =0 (1.2.26)

is obtained. In addition, by using formulae (1.2.18)—(1.2.21) it is not difficult
to become convinced of that the conformally-invariant spinor equation

{70 — MW127:0) Wy )] 3 () a1 = 0

suggested in [139, 140] is also included into the class of nonlinear PDEs (1.2.1),
(1.2.25).

Note 1.2.4. Applying the Lie method we can establish that Poincaré-invariant
equations (1.2.1), (1.2.2) admit the three-parameter Pauli-Giirsey group hav-
ing generators @1, @2, Qs (1.1.21) iff the functions fi, fo are real-valued
ones.

It should be noted that there exist nonlinear spinor equations which admit
infinite-parameter symmetry groups. As an example, we give the following
P(1,3)-invariant spinor equation:

(YY) 0 = 0 (1.2.27)

which is obtained from (1.1.17) by a formal change 7, — 9y,%. The maxi-
mal symmetry group of the above equation is generated by the infinitesimal
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operator [155, 160]

X = €u($,1!3,¢)au + Ua(ﬂfﬂ/;ﬂﬁ)aw + ﬁa(x,qz),qﬁ)a&a,

where
gu = f,u(wa 1;[77 w) —_*— %ZVu@Z}f_(x) J}v 1/}_) + QZ)’Y : l'd}
X (Rt + Yy R () (")},
= Rw,v), -
w = {z, (V) (DY) — (byud) (y - z) ),
f, fu, R are arbitrary smooth functions and p,v,a =0,...,3.

1.3. Systems of nonlinear second-order equations

for the spinor field

As a rule, the spinor field is described by the first-order system of PDEs. Such
description is considered to be the most adequate to the nature of the spinor
field. But there exists another approach based on the second-order equations
[89, 91, 241, 242].
Each component of the Dirac spinor satisfies the second-order wave equa-
tion (see Section 1.1)
(0,0" +m?)ih(z) = 0. (1.3.1)

The above equations form a system of splitting wave equations for four
functions 9%, !, ¥?, ¥3. That is why they can be used to describe particles
with different spins s = 0,1/2,1,3/2,.... For system (1.3.1) to describe a field
(particle) with the spin s = 1/2 it is necessary to impose an additional con-
straint (equation) on the function ¢ (x). Possible Poincaré-invariant additional
conditions

Au(yut) = Mbt) + Aohyath + A3 (1.3.2)

and
(i — m)h = My + Aoyat) + A, (1.3.3)

where A1, A2, A3 are constants, have been suggested in [91].
Nonlinear conditions (1.3.2), (1.3.3) select from the set of solutions of equa-
tion (1.3.1) the ones which correspond to a particle with the spin s = 1/2. On
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the set of solutions of the system of PDEs (1.3.1), (1.3.2) the spinor represen-
tation of the Poincaré group having the generators (1.1.20) is realized.

It is interesting to note that the system of nonlinear equations (1.3.1),
(1.3.2) with \; = A2 = A3 = 0 admits the group of nonlocal transformations

l‘;i = Ty, ¢/($/) = 1/1(1') + 9’}/4(1'7“8“ - m)w(l‘)u

where 6 € R! is a group parameter.
Another possibility of describing fields with spin s = 1/2 by the use of
second-order equations is to consider a nonlinear equation of the form

(00" +m*)h = R(1), o, v, v), (1.3.4)

where ¢ = {Gwa/&c#, a,u=0,... ,3}, R is a four-component function.
1

The complete group-theoretical analysis of the above system can be carried
out in the same way as it is done in Section 1.2. We will investigate symmetry
properties of the important subclass of equations of the form (1.3.4)

0 +m*p = {F(0,(00), 9u(Pav), v, D)

B (1.3.5)
XYy + Fa(0,00) o).

In (1.3.5) Fy, F» are variable (4 x 4)-matrices, m = const.

Theorem 1.3.1. System of PDE (1.3.5) is invariant under the Poincaré group
with the generators (1.1.20) iff

Fi = gi+gva+(g93+gava)y-v
+(g5 + geva)y - w + gry - VYW, (1.3.6)
Fo= fi+ foy,

where

g1 = g, vy, v-v,v-w, wew), 1=1,...,7,
vy = 0u(VY), wu = 0u(Yva), p=0,...,3,
and g;, f; are arbitrary smooth functions.

The proof is carried out with the help of the Lie method. First of all we
note that system (1.3.5) admits the 4-parameter group of translations (1.1.24).
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To obtain constraints on Fj, Fy providing invariance of system (1.3.5) under
the Lorentz group O(1,3) C P(1,3) we act with the first prolongation of the
operator Jy, given in (1.1.20) on the equation in question and pass to the set
of its solutions. This procedure yields a system of determining equations for
the matrix functions Fy, Fs. The system of PDEs for F5 coincides with system
(1.2.4) whose general solution is represented in the form (1.3.7).

On introducing the notations

QOa = 'U()ava + Uaavo + woawa + waawm Uy = 8;1(&@@7 wy = 3#(%11741#)

we rewrite the system of determining equations for Fj in the form (1.2.4).
Expanding the (4 x 4)-matrix F; in the complete system of the Dirac
matrices
Fy = A+ B! + CuwS" + Dyyay! 4+ Ev (1.3.8)

and substituting the expression obtained into (1.2.4) we arrive at the system
of PDEs for the functions A, B,,, ..., E of the type (1.2.6)—(1.2.9). Its general
solution is given by the following formulae:

A=gq, E=gy, By=gsv,+gswy,
: ! ! (1.3.9)
Du = g4V + geWy, Cuu = 97(Uuw1/ - Uu'wu)7

where g1, go,...,g7 are arbitrary smooth functions of the invariants of the

group 0(1? 3) 772)7/}, w%ﬂ/}, v-v, VW, W-w.
Substitution of (1.3.9) into (1.3.8) gives rise to formula (1.3.6). The theo-
rem is proved. >

Theorem 1.3.2. System of PDEs (1.3.5) is invariant under the conformal
group C(1,3) with generators (1.1.22) iff

Fio= (1/3)y o) + (h + hoya) {7 - v() !

—y - w($yat) T+ (@) P (kg + hara), (1.3.10)
By = @)*2(fr+ fava), m=0.
In (1.3.10) hq, ..., hg are arbitrary smooth complex-valued functions of the

invariants of the group C(1, 3) @1/1)&@741/}%% {(1/;1/1)2w-w—2v‘w(1ﬁ1p)(1ﬁfy%z/})
+(@13741/J)20 v} ()13 and fy, fo are arbitrary smooth functions of (1))

X (yap) 1.
Proof.  According to Theorem 1.3.1, the necessary and sufficient conditions
for equation (1.3.5) to be invariant under the group P(1,3) C C(1,3) are given
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by equalities (1.3.6), (1.3.7). Acting by the first prolongation of the generator
of the group of special conformal transformations 6, K*, 6, = const on system
of PDEs (1.3.5) with Fi, F, of the form (1.3.6), (1.3.7) and passing to the set
of its solutions we obtain the system of PDEs for A, Bi,...,E, fi1, f2

Lig1 =2g1, Lag1 = L3g1 =0,

Ligs = 2g2, Laga = L3gs =0,

Lig; = —6g;, Logj = Lsgj =0, j=3,...,6, (1.3.11)
2193 + 2295 = 1/3, 2194+ 2296 =0, g7 =0,

(Zlazl + 228z2 — 2/3)]‘.1' =0,:=1,2.

Here

L, = 6(2‘18Z1 + ZQ@ZQ) + 16(23323 + 248Z4 + Z58Z5),
Ly = 21825 + 2226z4, Ly = ZQ@ZS + 2218z3,
21:157% 22:1/;741#7 23 =0V, 24 =0V W, 25 =W - wW.

System of the first-order PDEs (1.3.11) is integrated in a standard way, its
general solution having the form

g1 = Zi/ghi’n g2 = 211/3h47 g3 = (1/3)Zf1 + hlZfl,
g5 =—2y 'h1, ga=z 'ha, gs=—2 ha,
h=2"Ra/z), f=24"f)2),
where hy, hg are arbitrary smooth complex-valued functions of 225 1 (2225
+2323 — 2zlz224)zf14/3; fi e CYR!, CY.
Substitution of the above results into (1.3.6), (1.3.7) yields (1.3.10). The
theorem is proved. >

Consequence 1.3.1. System of PDFEs
{0,0" — F(,9) 14 = 0, (1.3.12)

where F' is a variable (4 x 4)-matriz, is not invariant with respect to the group
C(1,3).

The proof follows from the fact that the class of conformally-invariant
equations (1.3.5), (1.3.10) does not contain equations of the form (1.3.12).

If we put in (1.3.10) hy = hy = hg = hy = 0, fi = —A? = const, fo = 0,
then the conformally-invariant second-order PDE

{0,0" — (1/3) () (30 () ) 0y + X222} =0 (13.13)
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suggested in [155] is obtained. The direct verification shows that any solution
of the Dirac-Giirsey equation satisfies PDE (1.3.13). That is why equation
(1.3.13) as well as the Dirac-Giirsey equation can be used in conformally-
invariant quantum field theories to describe a massless particle with the spin
s=1/2.

1.4. Symmetry of systems of nonlinear equations

for spinor, vector and scalar fields

It is well-known (see, for example, [142]) that the classical electrodynamics

equations
17,0, — ey, AP)p = 0,
(0 = e AT) ) (1.4.1)
O otA, — 0V0, A, = —ey),

where A, (z) is the vector-potential of electro-magnetic field, e = const, p,v =
0,...,3, are invariant under the conformal group C(1, 3) having the following
generators:

Py=0", Ju=2,P —2,Py+ A0 — Aydau
— (1/2) {119} 0ye + (1/2) {990} 0gas 11 # v,
D = 2,8, — (3/2) (4" Dyer + 0°0) — Auda

(1.4.2)

(1.4.3)

W
K, =2z,D — (z-x)0" — x,(A,04, — Y*Opo — @a@;a)
— {7y 2} O — {ary - mu}aa@a +2A4,x,04, (1.4.4)
—2A- .TaAu.
In formulae (1.4.2)~(1.4.4) 9a, = 0/0A,, Opa = 0/OY", Oja = 0/
{U}* means the a-th component of the spinor ¥; u,v,a=0,...,3.

Let us note that the operators K, (1.4.4) generate a 4-parameter group of
special conformal transformations

oy = (54— - 7)o (2,
(@) = o(z)(L =707 - 2)¢(x),
Al (2') = {o(z) g + 2(xu0, — 2,0, + 20 - 20,7,

—x-20,0, —0-0zx,x,)} A (),

(1.4.5)
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where o(z) =1—-20-2+4 (0-6)(z - z).
In [133, 142] another conformally-invariant system of PDEs for spinor and
vector fields .
(1700 — ey Ar)ip(x) =0,
0,0t A, — V0, A, = AA (A A)

was suggested. A conjecture arises that there exist more general systems of
nonlinear equations

(1.4.6)

Z.f)/,ua/ﬂ/} - F(sza 1/}7 A) = 07

] (1.4.7)
8M8“AV — ayauAu - Ry(fl/}? 1/}7 A)

invariant under the conformal group.

In the present section we solve the problem of group-theoretical classifi-
cation of systems of PDEs (1.4.7). Namely, we describe all functions F =
(F°, F', F?, F3)T, R, such that system (1.4.7) is invariant with respect to

the groups P(1,3), P(1,3), C(1,3).
In addition, symmetry analysis of systems of nonlinear equations for spinor
and scalar fields 5 ( B )
l’y w_FU*’uawawZOa
e ; (1.4.8)
00"y — H(u*, u, 1, ¥) = 0;
vector and scalar fields
0,0Mu — H(u*, u, A) =0,
g ( ) (1.4.9)
0,0t A, —0V0, A, = Ry (u*, u, A)

is carried out.
In (1.4.8), (1.4.9) F = (F°, F!, F?, F3)T; Fr, H, R, are some smooth
functions; u(z) € C%(R*, Ch).

Theorem 1.4.1. System (1.4.8) is invariant under
1) the Poincaré group iff

F=(fi+ fou)y, H=h(u*, u, ¥, vya)), (1.4.10)

where fi, fa are arbitrary smooth complex-valued functions of u*, u, i,
Pyath;

2) the extended Poincaré group P(1,3) = P(1,3)&D(1), where D(1) is the
one-parameter group of scale transformations

— xuee, W =ue 0 ¢ =ye ¥ 0 ki, ko= const, (1.4.11)
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iff F, H are given by (1.4.10) with

fi = @)V fi(wn, wa, ws), b= (wru)Rub(wy, wy, ws),
wi =ufut, wy = U (PY) T wy = WP ()T, (14.12)
{fi, ®}ccl(c,c), i=1,2

3) the conformal group C(1,3) = P(1,3)& D(1)& K (1, 3), where D(1) is given

by (1.4.11) with k1 = 3/2, ko = 1 and the j-parameter group of special con-
formal transformations K(1,3) has the form

2, = (2, — bz - 2)0 (@),

n
(@) = o) (1 — - 07 - 2)(a), (14.13)
W (a) = o(a)ulz),

iff F, H are given by formulae (1.4.10), (1.4.12) with ky = 3/2, ko = 1;

4) the group C(1,3) @ U(1), where U(1) is the one-parameter group of gauge
transformations

ol =, Y(z)=eP(x), u(x)=eu(z), R,
iff
F = (@O)Y3{fi(21, 22) + afa(21, 22) 10,
H = |ufuh(z1, 22), {fi, o, B} C CLR2,CY),  (1.4.14)
21 =PYlu| 7, 20 = Yyuplul P,

The proof is carried out with the help of the Lie method. Acting on
system of PDEs (1.4.8) by the first prolongation of the operator Jy, (1.1.20)
and passing to the set of its solutions we get necessary and sufficient conditions
of Lorentz invariance of system (1.4.8) in the form

Qoa® — (1/2)[®, v07a] =0, QouH =0, a=1,2,3, (1.4.15)

where Qoo = —(1/2){707a%}*Ope + (1/2){¥07a}*Oga, ® = O(u*, u, ¢, ) is
a (4 x 4)-matrix (we have represented the four-component function F' in the
form ®).

Since the first equation of system (1.4.15) coincides with (1.2.4) and the
second one with (1.2.6), we can write down their general solutions using the
results obtained in Section 1.2. According to (1.2.2), (1.2.11) the general so-
lution of system of PDEs (1.4.15) has the form (1.4.10). Taking into account
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the fact that system (1.4.8) is invariant under the 4-parameter group of trans-
lations (1.1.24) we arrive at the assertion 1 of Theorem 1.4.1.

Acting on system of PDEs (1.4.8), (1.4.10) by the first prolongation of the
generator of the group of scale transformations

D= x,ﬁu — kﬂ/}"‘@wa — kﬂ;aa@a — kguau — kgu*au*

and passing to the set of its solutions we get the following system of PDEs for

Ji, fo, I

ka(p1fipr + p2fios) + 2k1(p3fips + pafips) =1, i =1,2,
kQ(plhm + thpz) + 2k1(/03hp3 + P4hp4) =2,
Jion = Ofi/0pn, hp, = Oh/Opn, n=1,...,4,

where p; = u*, py = u, p3 = Y, py = Y4 is a complete system of
functionally-independent invariants of the group P(1,3). General solution of
the above system is given by the formulae (1.4.12), w;, we, ws being a com-
plete system of functionally-independent invariants of the extended Poincaré
group. Since the conformal group contains the group ]5(1, 3), the requirement
of C(1,3)-invariance of system of PDEs (1.4.8) leads to formulae (1.4.10),
(1.4.12) under k; = 3/2, k = 1. The sufficiency of assertion 3 is established
by direct verification.

To select from the class of conformally-invariant equations of the form
(1.4.8) the equations which admit the group U(1) we act with the first pro-
longation of the generator of this group on system (1.4.8) and pass to the set
of its solutions. As a result, we have

2w1fm1 + 3w2ﬁw2 + 3w3:ﬁw3 =0, i=1,2,
2wihy, + 3wahy, + 3wshy, = 0.
General solution of the above equations is represented in the form
f; = fi(w‘;’/Qw;l, wi’/zwgl), h = B(w?ﬂw;l, w?ﬂwgl).
Putting
wi = u(u) ™, wy =P (PY) 7, wy = uP(Puy)

yields formulae (1.4.14). The theorem is proved. >
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Note 1.4.1. In [90] a model for description of interaction of spinor and real-
valued scalar fields based on the relativistic Hamilton equation

i’Y#a}L¢ - F(’U,, 7;, w) = Oa
(0uw)(0#u) = H(u, ¥, ¥)

was suggested. Using the Lie method we can prove that system of PDEs
(1.4.16) admits the Poincaré group iff

F = {fi(u, ¥, ¥yab) + vafo(u, ¥, vya)}o,
H = h(u, P, Pyap)).

(1.4.16)

(1.4.17)

Provided
fi = ()Y fi(wr, wa), b= w?F DRy wy), = 1,2,

where wy = w2k (Yap) 7R wy = uk1(Yyup) k2, system of PDEs (1.4.16) is
invariant with respect to the extended Poincaré group.
The next two theorems are given without proof.

Theorem 1.4.2. System of nonlinear equations (1.4.7) is invariant under

1) the Poincaré group with generators (1.4.2) iff

F(, ¢, A) ={y- Af1 + 747 Afa+ f3 +vafa}v),

_ _ _ (1.4.18)
R,(, ¥, A) = Augr + ¥y,092 + Vyavutbgs + T vov2,tbga,

where f; are arbitrary complez-valued functions and h; are arbitrary real-valued
functions of

b, Py, Py-AY, Py AY, PTyemey - Ap, AL A
2) the extended Poincaré group P(1,3) with generators (1.4.2) and
D = 2,0, — k1¥a0yp, — k1%aOy, — k2AuOa,, {ki,ka} CR!
iff functions F', R, are given by formulae (1.4.18), where

fi=(A- AUTRRRE =12,
fi= @)Y f §=34, g =(A AV, (14.19)
gi = ()2t g, i =234,
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fl, ey f4, g1, ---,Ga being arbitrary smooth functions of

GO G) " A AR, gy Ag) 2,
(P0) 82 (ywy - Ap) 2, ()R (T 099 - Ag) T
3) the group C(1,3) with generators (1.4.2)-(1.4.4) iff the functions F, R,
are given by (1.4.18), (1.4.19) under ky = 3/2, ko = 1;
4) the group C(1,3) @ U(1), where U(1) is the group of gauge transformations

= 4 = e

(1.4.20)
A, = A, +0"(x), O(x) € C3(R*,RY),

F(y, 9, A) = {Ay - A+ [i(@p (@) ™) + nafa (b (dya) ™)},
Ry, ¥, A) = b g (D (yap) ™1) + rayutbga (Vi ($yap) ),
(1.4.21)
where f; € CYRY,CY), g; € CYRY,RY), i =1,2, A = const.
Consequence 1.4.1. On the set of solutions of system of PDEs (1.4.7),
(1.4.21) an infinite-dimensional representation of the Lie algebra AC(1,3) is
realized, basis elements of the algebra having the form

_ﬁ,u = P,Un j;“/ = QJMV7 _5 =D + 2)\(#)0‘371,11 - 1[)‘181[)0(),

N : (1.4.22)
KN = KN + aAH + iA$u(¢aawa — ¢a8,¢_}a)7
where the operators Py, J,.,, D, K, are given by (1.4.4).
The proof is reduced to verification of the commutation relations of the
algebra AC(1,3) if we note that the operators

Q1 = iIAY Dy — D),

, v (1.4.23)
QQ# = ZA$#(¢aa¢a — 1,[)‘181/;&) + GA#, w=0,...,3

generate transformation groups of the form (1.4.20). >

Thus, system (1.4.7), (1.4.21) possesses a dual conformal symmetry. To
fix a definite representation of AC(1,3) it is necessary to impose an additional
constraint on the vector field A, (z). In [82] the nonlinear equation

Bu(ALA-A) =0 (1.4.24)
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invariant under the algebra (1.4.4) was suggested. Since PDE (1.4.24) is not
invariant under transformation groups generated by the operators ()2, from
(1.4.23), it does not admit the 4-parameter group with generators K, u from
(1.4.22). Consequently, system of PDEs (1.4.7), (1.4.21), (1.4.24) is invariant
under the conformal algebra (1.4.22).

Analogously, using results obtained in the paper [142] we conclude that
system (1.4.7), (1.4.21) supplemented by the additional condition

OuA, —2A-A=0 (1.4.25)
is invariant under the conformal algebra (1.4.22) and is not invariant under
the algebra (1.4.4).

Theorem 1.4.3. System of nonlinear PDEs (1.4.9) is invariant under
1) the Poincaré group iff

H=nh(u*, u, A-A), R,=A,g9(u", u, A-A),

where h € C1(C?* x R, CY), g e CY(C?% xR, RY);
2) the extended Poincaré group P(1,3) = P(1,3)& D(1), where D(1) is a one-
parameter group of scale transformations

/I 0 /I —k10
r, =xzue", A, =Ae ,

u = ue k20 = yre R0 g Rl, (1.4.26)

H = ]u\z/’”uh(u*u*l, lu|=2F1 (A - A)’“?>7
(1.4.27)
Ry = (A A g (ura™, ful (4 A)) Ay

3) the conformal group C(1,3) = P(1,3)& D(1)& K (1,3), where D(1) is the
group (1.4.26) with ky = 1, ks = 1 and K(1,3) is the 4-parameter group of
special conformal transformations

‘T,,LL = (:CN - 9#‘% . .TE)O'_I(:E), u, = U(q;)u’
Al = {o(2) g + 2(xub, — 2,0, + 20 - 26,2, (1.4.28)
—x - 20,0, — 0 0x,x,)}AY,

where s(x) =1—-20-24+60-0x-x, 0, =const, u=0,...,3, iff H, R, are of
the form (1.4.27) under k1 = ko = 1;
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4) the group C(1,3) @ U(1), where U(1) is the group of gauge transformations
x; =z, A;L =A, = ue, 0 eR,
f
H = uPuh(ul A+ A), R, = A,A- Ag(lul2A- ),
heC'®R,CH, geC'RLRY.

Thus, using the symmetry selection principle we narrow substantially clas-
ses of physically admissible nonlinear generalizations of the Maxwell-Dirac,
Dirac-d’Alembert and Maxwell-d’Alembert equations.

1.5. Conditional symmetry and reduction of partial

differential equations

Analyzing already known methods of construction of exact solutions of non-
linear partial differential equations we come to conclusion that a majority of
them is based on the idea of narrowing the set of solutions, i.e., selecting from
the whole set of solutions specific subsets which admit analytic description.
To implement this idea we have to impose some additional constraints (equa-
tions) on the set of solutions of the equation under consideration selecting
such subsets. Clearly, additional equations are supposed to be simpler than
the initial one. Supplementing the initial equation with additional conditions
we come, as a rule, to an over-determined system of PDEs. So there arises a
problem of investigating the matter of its compatibility.
To clarify the above points we will consider an instructive example. Let

U(z1, u, u, gt) =0 (1.5.1)

be a second-order PDE with two independent variables xg, x1 which does not
depend explicitly on zg.

Since coefficients of PDE (1.5.1) do not contain the variable xq, substitu-
tion of the expression

u=p(x1) (1.5.2)

into (1.5.1) results in a differential equation containing z1, ¢, ¢, ¢ only, i.e.,

Uz, ¢, ¢, ¢) = 0. (1.5.3)
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Consequently, using the fact that PDE (1.5.1) does not contain the variable
xg we reduce it to an ODE assuming that a particular solution also does not
depend on zg.

But from the group-theoretical point of view the independence of PDE
(1.5.1) of xp means that it is invariant under the one-parameter translation
group with respect to the variable zg

ro=mz9+0, 2y=21, v =u, O¢ R! (1.5.4)

having the generator X = 0,,. And what is more, formula (1.5.2) defines the
most general manifold in the three-dimensional space of variables xg, 1, u
which is invariant with respect to the above group. Expression (1.5.2) is called
a solution (an Ansatz) invariant under the one-parameter group (1.5.4).

The above said can be summarized in the form of the following state-
ment: a solution invariant under the group of translations (1.5.4) reduces
PDE admitting the same group to ODE. When generalized to the case of an
arbitrary admissible one-parameter group, this statement plays a key role in
applications of Lie transformation groups to construction of exact solutions of
mathematical physics equations.

The way for obtaining an invariant solution is entirely algorithmic. Since
we are looking for a manifold u = f(xg,x1) which does not contain explicitly
the variable zg (is invariant with respect to the group (1.5.4)) we should require
that 0f/0zo = 0. Consequently, to find a solution of PDE (1.5.1) invariant
under the group (1.5.4) it is necessary to solve an over-determined system of
PDEs

U(x1, u, u, Z2L) =0, wug =0.

We have paid so much attention to a very simple example, since it gives
an adequate illustration to ideas of the symmetry reduction method pioneered
by Sophus Lie. Moreover, a general case of PDE

U(zo, x1, u, u, QQL) =0 (1.5.5)
invariant under a one-parameter transformation group having a generator X =
&o(z, u) gy +&1(x, u) Oy +m(x, u)0, is reduced to the particular case considered
above. Indeed, it is known from the general theory of PDEs that there is a

change of variables

o = Fo(z,u), 71 =F(r,u), @=G(z,u)



46 Chapter 1. SYMMETRY OF NONLINEAR SPINOR EQUATIONS

transforming the operator X to the form X' = 9;,. Consequently, PDE
(1.5.5) after being rewritten in the variables , @ is invariant under the one-
parameter transformation group with the generator X’ = 05, i.e., under the
group (1.5.4). According to the above proved a substitution & = ¢(#1) reduces
the equation transformed to ODE for a function . Hence, we conclude that
the substitution Fy(z,u) = go(Fl (x, u)) reduces the initial equation to ODE.

Thus, given a one-parameter transformation group admitted by partial
differential equation (1.5.5), we can reduce it to an ODE by means of a sub-
stitution of a special form (invariant solution or Ansatz)

u = f(x, (p(u)(:ﬂ,u))), (1.5.6)

where f, w are some functions determined by the form of the generator of
the group. A natural question arises: do invariant solutions exhaust the set
of substitutions (1.5.6) reducing given PDE to an ODE? A negative answer
to this question has led us to the notion of conditional symmetry of partial
differential equations.

The notion and terminology of conditional symmetry of PDEs was intro-
duced for the first time in [91, 92, 116] and developed in a series of papers
and monographs [96, 97], [105]-[107], [120, 124, 108, 126, 127, 128, 137, 143],
[154]-[160], [246, 303, 308] (see also [32, 52, 211, 234]). The principal idea of
conditional symmetry of PDE is illustrated by the following example. The
equation

U(:Ill, u, ?7 ZZL) + V(x07 Ty, U, 11% g)uxo = 07 8‘//al’o 7é 0

is not invariant under the translations with respect to xg. Nevertheless, Ansatz
(1.5.2) invariant under the translation group (1.5.4) reduces it to an ODE. An
explanation for this phenomenon is quite simple. The matter is that the second
“non-invariant” term of the equation in question vanishes on the manifold
(1.5.2). Saying it in another way, the system of two PDEs

U(x1, u, u, QQL) + V(xo, x1, u, u, g)uxo =0, uz =0 (1.5.7)

is invariant under the group (1.5.4).

Consequently, from the point of view of reducibility of PDE (1.5.5) by
means of the Ansatz invariant under the one-parameter transformation group
with the generator X = &o(z,u)0z, + &1(z,w)0z, + n(x,u)0, it is enough to
require the invariance of a constrained system of PDEs

U(l‘(), X1, U, ’LlL, g) =0, 60(‘757“)“960 + fl(xvu)um - T](x,u) = 0.
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This is a source of the term conditional symmetry. Equation (1.5.5) is
non-invariant with respect to the group having the generator X but being
taken together with a condition Xu = 0 it admits the mentioned group. Con-

sequently, it is conditionally-invariant under the Lie group with the generator
X.

1. Reduction of PDEs. Consider an over-determined system of PDEs of
the form

UA(az,u,tlt,...,u):O, A=1,..., M, (1.5.8)
.fw(x,u)ugu —ng(r,u) =0, a=1,...,N, (1.5.9)
where x = (z0,21,...,Tn-1), u= (u’,u', ... u™1),

V;L:{@Sua/ﬁmm...@:cus, 0<a<m-1,0<pu <n-1},

Ua, &aps m™ are smooth enough functions, N < n — 1. In the following, we
suppose that the condition

rank ”fau(l‘? u)| ivzlz;(l) =N (1.5.10)
holds.
Definition 1.5.1. Set of the first-order differential operators
Qo = gau(m,u)axu +773($,U)8u&, (1.5.11)

where £, 1§ are smooth functions, is called involutive if there exist such
smooth functions f$ (x,u) that

[Qa, Qb) = f3Qc, a,byc=1,...,N. (1.5.12)

The simplest example of an involutive set of operators is given by first-
order differential operators forming a Lie algebra. In such a case fJ, = const,
a,b,c=1,..., N are called structure constants of the Lie algebra.

It is common knowledge that conditions (1.5.12) are necessary and suffi-
cient for the system of PDEs (1.5.9) to be compatible (the Frobenius theorem
[250]). Its general solution can be represented in the form

F*wy, wa, -y Wptm-nN) =0, a=0,...,m—1, (1.5.13)

where F® € C1(C"*™~N C!) are arbitrary functions, w; = w;(z,u) are func-
tionally-independent first integrals of system of PDEs (1.5.9).
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Due to condition (1.5.10) we can choose m first integrals wj,, ..., w;,, sat-
isfying the condition det ||0w;,/ awnyilg@;ol # 0, since otherwise integrals wy,

W2, ..., Wntm—nN would be functionally-dependent.

Changing, if necessary, numeration we can put j; = ¢ and thus get m first
integrals wq,...,w,, of the system of PDEs (1.5.9) satisfying the following
condition:

det||8wi/8ua||?;1g1:’01 £ 0. (1.5.14)
Resolving relations (1.5.13) with respect to wy, . ..,w, we have
Wi = ©i(Wmt1s- -y Wnbm—N), (1.5.15)
where p; € C1(C" N, C'), i =1,...,m are arbitrary functions.

Definition 1.5.2. Expression (1.5.15) is called an Ansatz for the field u® =
u®(x) invariant under the set of operators (1.5.11) provided (1.5.14) holds.
Formulae (1.5.15) take an especially simple and clear form provided

bop = Eaplz), nE =A%)’ a=1,...,N, a=0,...,m—1. (1.5.16)

Given the condition (1.5.16) operators (1.5.11) are rewritten in a non-Lie
form

Qa = &ap()0z, +na(z), a=1,...,N, (1.5.17)
where 1, = || — A2 (z)| Zgio are (m x m)-matrices and system (1.5.9) is
rewritten as a system of linear PDEs

Sap (), +Na(z)u =0, a=1,...,N. (1.5.18)

Here u = (u®, ..., um™ 1T,

Lemma 1.5.1. Assume that conditions (1.5.10), (1.5.16) hold. Then, a set
of functionally-independent first integrals of system of PDEs (1.5.9) can be
chosen as follows

and besides det |b$ () ||, 7! # 0.
Proof.  Consider the following system of matrix PDEs:

Eap(2) Fy,, = Fo(2), (1.5.19)
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where F = || 28 ()||5L, is an (m x m)-matrix and &, na = || — A2 (@)]|752,
are coeflicients of the operators Q,. Since the operators ), form an involutive
set, the above system is compatible and its general solution has the form

F(z) = ©B(x),

where O is an (m x m)-matrix whose elements are arbitrary functions of a
complete set of functionally-independent first integrals of the system

Oy =0, a=1,...,N (1.5.20)

and B(z) = ||b%(z)| Zla_:lo is a particular solution of (1.5.19) with det B(x) # 0.

It is straightforward to check that from the involutivity of the set of op-
erators (), it follows that the operators Q) = &,,0, form an involutive set.
Consequently, system (1.5.20) is compatible and what is more due to the condi-
tion (1.5.10) the number of its functionally-independent first integrals is equal
to n — N. We denote these as: wp11(x), wm+t2(T),. . .wntm—n(T).

As det ||bf‘(x)||ra;10 # 0, the expressions b (z)u®, ..., b (z)u®, wmii(x),
<+ vy Wm4n—n(x) are functionally-independent. If we prove that the functions
b (z)u®, i =1,...,m are first integrals, the proof of the lemma will be com-
pleted.

Acting by the operators @), on the functions b (z)u® one has

(fa;ﬁu + Agﬁ(x)uﬁauw) (b?(m)u“) = ({a“é?ubf(x) + bf‘(x)Agﬁ(x))uﬂ =0

m—1

(we have taken into account that the matrix B(z) = [|bf'(x)]],=, satisfies

(1.5.19)) the same which is required. The lemma is proved. >
Due to Lemma 1.5.1 we can resolve formulae (1.5.15) with respect to u®
and thus transform an Ansatz invariant under operators (1.5.17) to the form

u® = a®?(2) e’ (Wit - Wimin-N)
or (in the matrix notation)
u=A(z)p(Wmt1,- -, Wmtn—N), (1.5.21)

where A(z) = ||aqg(2)] Zi/gio is the inverse of the matrix B.
Since the matrix function B(z) satisfies the system of PDEs (1.5.19), the
following equalities hold
LapOuA(r) = fa,uauB_l(x) = _B_l(x) (fa,ua,uB(x))B_l(x)
= —B_l(x)B(x)naB_l(x) = —n.A(7).
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Consequently, we have established that the Ansatz invariant under the
involutive set of operators (1.5.17) satisfying condition (1.5.10) is represented
in the form (1.5.21), where A(x) is a nonsingular (m x m)-matrix satisfying
the system of PDEs

EapnOuA(x) +n,A(x) =0, a=1,...,N (1.5.22)

and functions wy,+1(x),...,wn+n—n(x) form a complete set of functionally-
independent first integrals of the system of PDEs (1.5.20).

We say that Ansatz (1.5.15) reduces system of PDEs (1.5.8) if the substi-
tution of formulae (1.5.15) into (1.5.8) gives rise to a system of PDEs which
is equivalent to one containing "new” independent w41, Wm+t2, - -+, Wmtn—N
and dependent ¢", o', ..., ™! variables only.

Let us recall the classical theorem about reduction of PDEs by means of
group-invariant solutions: a solution invariant under the N-dimensional Lie
algebra with basis elements (1.5.11) satisfying the condition (1.5.10), which
1 a subalgebra of the symmetry algebra of PDE under study, reduces it to an
(n — N)-dimensional PDE [34, 190, 234, 235].

We will prove that for a given PDE to be reducible by means of the Ansatz
(1.5.15) it is enough to require conditional invariance with respect to the corre-
sponding involutive set of differential operators. Such a condition is essentially
weaker than a requirement of invariance in the Lie sense and makes it pos-
sible to obtain principally new reductions of PDEs as compared with those
obtainable within the framework of the classical Lie approach.

Definition 1.5.3. We say that the system of PDEs (1.5.8) is conditionally-
invariant under the involutive set of differential operators (1.5.11) if the system
of PDEs

UA(x,u,IIL,...,u):O, A=1,..., M,

fau(x,u)ugu —n¥(z,u) =0, a=1,...,N,
D(Eau(x,u)ug‘u —n%(x,u) = 0), a=1,...,N, (1.5.23)

DT*1<£au(x,u)u§u —ng(z,u) = 0), a=1,...,N,

where the symbol D*(L = 0) denotes a set of all differential consequences of
the equation L = 0 of order s, is invariant in the Lie sense under the one-
parameter transformation groups having the generators Q,, a=1,...,N.

Before formulating the reduction theorem we will prove two auxiliary as-
sertions.
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Lemma 1.5.2. Let us suppose that operators (1.5.11) form an involutive set.
Then the set of differential operators

Q= Aap(2)Qp,  det [ Agp(2)]| Ny #0 (1.5.24)

18 also involutive.

Proof. The lemma is proved by direct computation. Indeed,

Qe Q) = [PMacQcs MaQa) = Nac(Qerva) Qd — Moa(Qadac) Qe
FhacAuaf g Qay = fQc = Janhed Q-
where A/ are elements of the matrix inverse to the matrix H)\ab(w)fo po1- >
Lemma 1.5.3. Let system of PDEs (1.5.8) be conditionally-invariant under

the involutive set of differential operators (1.5.11). Then, it is conditionally-
invariant under the involutive set (1.5.24) with arbitrary smooth functions Agp.

Proof. To prove the lemma we need the following identity for coefficients of
the s-th prolongation of the operator &,0,, + n®0ya:

Ciroopts = Dpa -+ Dy (0™ = §uug,) — gﬂugﬂuln,%, i=1,2,...,s, (1.5.25)
where

8 0 L N8 g
I 9
Ta 9B — Taq - Tap Ta 8(uﬁ

Dy =0,, +u

is a total differentiation operator with respect to the variable x,. The above
identity is proved by the method of mathematical induction. First, we will
prove it under ¢ = 1. From the prolongation formulae given in the introduction
we have

G = Dun®™ — UggDugﬁ = Du(n® - 55“33) - éﬁugﬁxu’

whence it follows that the identity (1.5.25) holds for ¢« = 1. Consequently, the
base of induction is established.
Let us suppose now that the identity (1.5.25) holds for all ¢ < k — 1. We

will prove that hence its validity for ¢ = k follows.
Indeed,

a _ a _
Cm.uuk - D“kC,U«lu-,U«kfl uxp.1~~~x,uk71xﬁDu‘k£/B

= Dﬂk (DMI ce DHk—l(na - guugu) - gﬂuxuxul---xuk_l)

—Ugm...xuk_laxﬂDukgﬂ = Dm S D,uk (77& - guugu) - g“uguxm---xuk’
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the same which is required.

Due to the identity proved above the r-th prolongation of the operator @,
being restricted to the set of solutions of system of PDEs (1.5.23) takes the
form

0

Qo = Qu+ Dy ... Dy (0 — ffwugu)ﬁ
g Oy
0
~EanUs iy, oty e )
Zpy - Zur
Substituting the formulae 7" = Aapnf', &, = Aap€py into the above equality
and taking into account that the relations
Dy, ...Dy(ng —&uu®) =0, i=1,2,...,r—1

a

hold on the set of solutions of system (1.5.23) we get Q) = Agp (2, 1) Qp.
If we denote by the symbol L? one of the equations of system (1.5.23) and
by the symbol [L] the set of its solutions, then the following equalities hold

Q,L = Aap(z, u)QpL! = Aap(z,u)(QLI | ) =0,
(L] L] L]

whence it follows that the system of PDEs (1.5.8) is conditionally-invariant
under the involutive set of operators (1.5.24). The lemma is proved. >

Theorem1.5.1. Let the system of PDEs (1.5.8) be conditionally-invariant
under the involutive set of differential operators (1.5.11) satisfying condition
(1.5.10). Then, the Ansatz (1.5.15) invariant under the involutive set (1.5.11)
reduces system of PDEs (1.5.8).

Proof.  Due to condition (1.5.10) there exists such a nonsingular (N x N)-
matrix [[Agp(z, u) Hi\’[b:l that

n—1
Q= Aap(Gopupy — ) =ug, 4+ > &us, =0, a=1,...,N
u=N

and what is more the operators @/, form the involutive set (Lemma 1.5.1)
such that system of PDEs (1.5.8) is conditionally-invariant with respect to it
(Lemma 1.5.2).

Since the set of operators @, a =1,..., N is involutive, there exist such
functions f(x,u) that

Q., Q) = f5,Q., a,b=1,...,N. (1.5.26)
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Computing commutators on the left-hand sides of the above equalities and
equating coefficients of the linearly independent differential operators 0, 0z, ,
..y Opy_, we have f& =0, a,b,c = 1,...,N. Consequently, operators Q/,
form a commutative Lie algebra.
Furthermore, systems of PDEs Q,w(z,u) =0, a =1,..., N and Ag(z,u)
X Qpw(z,u) =0, a =1,...,N with det ||)\ab(:z:,u)||£b:1 # 0 have the same
set of functionally-independent first integrals. Hence we conclude that the
involutive sets of operators @, and @/, give rise to the same Ansatz (1.5.15).
From the definition of the conditional invariance it follows that the system
of PDEs

UA(:U,u,tlt,...,u)zo, A=1,...,M,

ud Sl ue —n*=0, a=1,...,N,

Ta1 p=N Saplz, ~
D(ug,_, + XN Eug, — it =0), a=1,...,N, (1.5.27)

D’”_l(uo‘ + b e 1720‘:0), a=1,...,N

Ta—1 p=N SapWz, —

is invariant in Lie sense under the one-parameter groups generated by the mu-
tually commuting operators @/,. Consequently, the above system is invariant
in Lie sense under the commutative Lie algebra (Q}, Q5, ..., Q).

Now we can apply the classical theorem about symmetry (group-theore-
tical) reduction of PDEs and conclude that the Ansatz invariant under the
involutive set of operators (1.5.11) (or, which is the same, under the commu-
tative Lie algebra (@}, @5, ..., @.,)) reduces system of PDEs (1.5.27). But
by construction all equations from the system (1.5.27) with the exception of
the first m equations (which form the initial system of PDEs (1.5.8)) vanish
identically on the manifold (1.5.11). Consequently, the Ansatz (1.5.11) reduces
system (1.5.8). The theorem is proved. >

Note 1.5.1. There exists a deep relation between reducibility of PDE (1.5.8)
conditionally-invariant under the involutive set of operators (1.5.11) and com-
patibility of the over-determined system of PDEs (1.5.8), (1.5.9). But as is
shown below from conditional invariance of PDE (1.5.8) with respect to the
involutive set of operators (1.5.11) it does not follow a compatibility of system
(1.5.8), (1.5.9) and wvise versa.

The equation

($a$a)(uﬂcbuxb) - (l'auxa)Q = m2, m # 0,

where a,b = 1,2, 3, is invariant with respect to the rotation group O(3) having
the generators Jop = 240z, — 40z,, a < b, a,b=1,2,3. However, the system
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of PDEs
{ (xaxa)(uxbuxb) - (mauxa)Q = m2, m # 0,
Jopu =0, a,b=1,2,3
is incompatible, because substitution of the general solution of the last three
equations u = ¢ (z42,) into the first one yields an inconsistent equality 0 =
m2.
On the other hand, system of PDEs

uzx+uyy_u+y(ux_u):0a
uy =0

is compatible (it has a solution v = Ce®, C' = const) but the equation u,, +
Uyy — U + Y(uy —u) = 0 is not conditionally-invariant under the operator
Q = 0y.

Note 1.5.2. We have proved Theorem 1.5.1 under assumption that the condi-
tion (1.5.10) holds. It is not difficult to prove that Theorem 1.5.1 is still valid,
provided

vank €, [N 7h = rank ol AT = N < N (15.28)

Indeed, using transformation (1.5.24) we can reduce involutive set of op-
erators (1.5.11) satisfying (1.5.28) to the form Qf, ..., Qn/, Qni41 =0, ...,
QNn = 0. Now, we can apply Theorem 1.5.1 with N = N’. Consequently,
if the system of PDEs (1.5.8) is conditionally-invariant under the involutive
set of operators (1.5.11) satisfying (1.5.28), then the Ansatz (1.5.15) invariant
under the involutive set (1.5.11) reduces it to (n — N’)-dimensional PDE.

In the case when the condition (1.5.28) is not satisfied, so-called partially-
invariant solutions (the term was introduced by Ovsjannikov [236]) are ob-
tained. Reduction of PDEs conditionally-invariant under the involutive set of
differential operators (1.5.11) not obeying the condition (1.5.28) is studied in
detail in our paper [159].

2. Symmetry and compatibility of over-determined systems of linear
PDEs. This subsection is devoted to the investigation of the following systems
of PDEs:

B (x)0z, + By(z)u(x) =0, p=0,...,n—1, (1.5.29)
T
where x = (29, 1,...,Tp-1), u(z) = (uo(x), ul(x), ...,um_l(ﬂs)) , Buv, By
are variable (m x m)-matrices satisfying the condition

rank || By, ()| Z;,l:o =nXm. (1.5.30)
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The problem of investigating compatibility of an over-determined system of the
form (1.5.30) is closely connected with the problem of separation of variables
in systems of linear PDEs (see [149, 227, 256] and Chapter 5).

Theorem 1.5.2. System of PDEs (1.5.29) is compatible iff
[Bm,ay + BM’ Bagag + Ba] = Ruag(Bﬁyay + Bﬁ), (1.5.31)

where R,o3 are some linear first-order differential operators with matriz coef-
ficients, u,a=0,...,n—1.

Proof.  The necessity. Let system (1.5.30) be compatible. We will show that

hence it follows that (1.5.31) holds. Due to (1.5.30) the block (nm x nm)-

matrix HBWHZ;}:O is invertible. That is why there exists such a block (nm x

nm)-matrix ||C,,| Z,;l:o that
Cw(2)Bya(z) = By (2)Coa(x) = 0pal, (1.5.32)

where [ is the unit (m x m)-matrix.
Let us rewrite (1.5.29) in the equivalent form

Opu = Fy(z)u, (1.5.33)

where F), = —C,nBq.
It is well-known (see, for example, [43, 61, 261]) that the necessary and
sufficient compatibility conditions of system of PDEs (1.5.33) read

ouF, —0,F,+[F,,F,)=0, pv=0,...,n—1 (1.5.34)
Introducing notations @, = 0, — F,(x) we rewrite (1.5.34) in the form

[Q,ua Qu] =0.

Representing the operators B, 0, + B, in the form B, 0, + B, = B,,,Q,
we compute the commutator

[B/U/QVJ BaﬁQﬂ] = [B,uuaBa,B]QuQﬁ + BMV[QV? Baﬁ]@,@
—BaplQu, ByuslQp-

Finally, substituting formulae Q, = Cun(Bay0, + By) into the equality
obtained we arrive at (1.5.31) and besides

R/wéﬁ = {[Buw Baﬁl]QV + Bul’[QlN Baﬁ1] - BOW[QW Bﬂﬁl]}cﬁlﬁ'
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The sufficiency. Given (1.5.30), we will prove that there exist such linear
first-order operators R, 3 that the equality

[Q/u Ql/] = Euuﬁ@ﬁ (1535)

holds.
Indeed,

[Qua Qa] = [C,um(Bawaz/ + Bal)» Caﬁ(BﬁV13V1 + Bﬁ)]
= Cua, [Bayv0y + Ba,, Capl(Bgu, 0y, + Bpg)
+Cla, CaplBayv0y + Bay, By, 0y, + Bgl
+[Crars Capl(Bp 0y + Bga, ) (Baw, 0y + Ba)
+Cos[Chais Bgu 0wy + Bgl(Ba,v0y + Ba,)
= Puap(Bpu0y + Bg) = PuapBpyQu-

Choosing P,n3B3, = EWV we arrive at (1.5.35).
Computing the commutator on the left-hand side of (1.5.35) and equating
coeflicients of linearly independent operators d,, we get the equalities

Ryap = 0.

Consequently, operators @, commute, i.e., conditions (1.5.34) hold iden-
tically. Hence it follows that system (1.5.33) is compatible. Since equations
(1.5.33) are equivalent to the initial system of PDEs (1.5.29), the sufficiency
is proved. >

Note 1.5.3. In the theory of non-Abelian gauge fields (Yang-Mills fields) con-
ditions (1.5.34) are called the zero curvature equations. The general solution
of the system of matrix PDEs (1.5.34) has the form

F, =V, V7', n=0,...,3, (1.5.36)

where V(z) is an arbitrary nonsingular (m x m)-matrix which elements are
smooth functions of z. Formula (1.5.36) establishes an one-to-one correspon-
dence between over-determined systems (1.5.29) and solutions of the equation

Bou(2)0z, + Bo(x)u(x) = 0 (1.5.37)

of the form
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where V(z) is a nonsingular (m x m)-matrix, x = (x°, x, x%, x*).

Thus, to construct particular solutions of the system of PDEs (1.5.37) it
is necessary to classify algebraic objects of the type (1.5.29), (1.5.31). Up to
now this problem is solved for a number of the Lie algebras and some simplest
superalgebras [9, 10], [14]-[17], [100, 237, 238].

The most simple is the case where in (1.5.31) R,ng = 0 i.e., the op-
erators ¥, = B,,0, + B, commute. For many fundamental mathemati-
cal and theoretical physics equations (in particular, for the Dirac equation
[198, 256]) it is possible to obtain complete description of commuting opera-
tors X, p=0,...,n — 1, where X9 = 0 is the equation under investigation,
and to construct solutions with separated variables. In this respect, we will
consider the following particular case of system (1.5.29):

Syt = (B (#)9, + Bu(@) Ju = Ayu, p=0,...,n 1, (1.5.38)

where (Ao, A1,..., Ap—1) € A C R", matrices By, (x), B, (x) being independent
of A\,.

When proving the principal assertion we will essentially use the following
lemma.

Lemma 1.5.4. If one of the systems of algebraic equations

PuoBug + PusBua =0, (1.5.39)
Pa#CMg + PgMCHQ =0, (1.5.40)

where || By, ()] 2;1:0 is a nonsingular block (nm x nm)-matriz, |C,,(z)| Z;,lzo

is its inverse and P, are some variable (m x m)-matrices, holds true, then
P, =0.

Proof.  We prove the lemma under assumption that (1.5.39) holds. Let us
rewrite equalities (1.5.39) in the equivalent form

Pﬂulc’#ﬂ/le,uozﬁ =0. (1541)

Here Tulua,@ = BylaBuﬁ + BVIBBHQ.
Since the identities

CwCruinTvvap = (5u1a5uﬁ + 5ulﬁ5ua)l

hold, the block matrix |7}, 43| is invertible. Consequently, equation (1.5.41)
is equivalent to the relation
PuaClay = 0. (1.5.42)
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Multiplying (1.5.42) by B, and summing over v we have
Pp=0, puB=0,....,n—1

In the case, where (1.5.40) holds, the proof is analogous. >

Theorem 1.5.3. Provided (1.5.30) holds the system of PDFEs (1.5.38) is com-
patible iff

[BuwOy + By, Bagds + Bo] =0, p,a=0,...,n—1. (1.5.43)

Proof.  According to Theorem 1.5.2; the compatibility criterion for the sys-
tem of PDEs (1.5.38) reads

B0, + B, — Ay, BoagOg + Ba — Ao
[ o M H BYB ] (1.5.44)
= (R,u,aﬁllal/ + Ruaﬂ)(BﬁlﬂaVl + Bﬁ - )‘ﬁ)'

Computing the commutator in the left-hand side and equating coefficients
of the linearly independent operators 9,03, 03, I we get the system of PDEs
for matrix functions B, B, Ruagys Ruas

[Buw Baﬁ] + [Buﬁv Bav] = RuamvBmﬁ + RuamﬂBmw (1-5'45)

B0y Bog — Baw0u By + [Bug, Bal — [Bag, Byl (15.46)

= RuauanBmﬁ + R#amﬁ(Bm - )‘m) + Ry By,

B0y Bo — Bay0y By, + [By, Byl = Ruauy 0y By, (1.5.47)
+R,uau1 (B/M - )‘Nl)'

Differentiating (1.5.45) with respect to \,, we arrive at the relations

8Ruamv aRuamﬁ
— "B, g+ ———"B,., =0,
) W
whence due to Lemma 1.5.4 it follows that
OR a8y
=0 =0,...,n—1.
8)\u1 ) M?aaﬁayaul ) ,

Differentiation of equality (1.5.46) with respect to A\, yields

OR
e,

Bu,p — Ruaap = 0.
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Multiplying the above equality by Cgg, and summing over 3 we have

OR s
8#11 = RyaosCap,

or
RMO&B1 = )‘a1Ruao¢1/BC/Bﬂ1 + Ruaﬁl, (1.5.48)

and besides 8}~2W51/0)\a1 =0, a1 =0,...,n—1.
Substituting (1.5.48) into (1.5.47) and equating coefficients of A, Ay, Aa,
we come to the following relations:

Rj0018C8p, + RuapisCpar = 0,

Ry0a18C88 B, — Ruaa, = 0. (1.5.49)

According to Lemma 1.5.4 R,nq,3 = 0, whence it follows that E,Mml =0.

Thus, the necessary and sufficient compatibility conditions for system
(1.5.38) are given by relations (1.5.44) with R,n3, = Ruas = 0 or, which
is the same, by relations (1.5.43). The theorem is proved. >

Results obtained in the present section are applied in a sequel to reduce
multi-dimensional nonlinear partial differential equations to ODEs and to con-
struct their exact solutions in explicit form. In addition, Theorems 1.5.2, 1.5.3
form a basis of our approach to separation of variables in systems of linear
PDEs (see Chapter 5).

1.6. Conservation laws

One of the important properties of equations admitting a nontrivial symmetry
group is the existence of constants of motion (by a constant of motion we mean
some combination of solutions of the equation considered which preserves its
value in time). The well-known examples of constants of motion are the energy,
the momentum and the angular momentum.

Within the framework of the traditional approach to the problem of con-
struction of constants of motion, going back to Noether’s works, we have to
investigate symmetry of the Lagrangian of the equation in question and to con-
struct conservation laws with the help of the Noether theorem [35, 190]. This
theorem establishes correspondence between one-parameter subgroups of the
symmetry group of the Lagrangian and conservation laws. However the above
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approach has restricted applicability since there exist mathematical physics
equations which can not be derived via the Lagrange function. In addition,
there are examples of conservation laws which cannot be obtained with the
help of the Noether theorem even for equations derived in the framework of
the variational principle [115, 116, 118, 190, 280].

That is why we apply a method of construction of constants of motion
for the Dirac equation based on the direct calculation of a conserved quan-
tity as a zero component of the four-vector of current with components j, =
Julz, U, ...), p=0,...,3 which satisfies the continuity condition

1 1

Oy =0 (1.6.1)
for each solution ¥ = 1(z) of the Dirac equation.
Lemma 1.6.1. Let us suppose that there exists the four-vector of current
satisfying the relation (1.6.1) and besides conditions

Jjo— 0, a=1,2,3 under |Z|— 400

hold true. Then, the quantity

I= /j0d3x (1.6.2)
RB
is conserved in time, i.e., 01 /0xy = 0.

Proof.  Differentiating (1.6.2) with respect to x¢ yields

1 Oy — / (0o 00) dx,
R3
whence it follows
I 0y = — / (Ouja) e
RS

Applying the Gauss-Ostrogradski theorem we get I /0xg = 0. The lemma
is proved. >

For brevity we will call the four-vector of current satisfying relation (1.6.1)
on the set of solutions of the Dirac equation the conservation law.

Up to now there is no effective algorithm making it possible to obtain all
conservation laws admitted by an arbitrary PDE. We will construct conserva-
tion laws for the Dirac equation following an approach suggested in [115, 116]
which utilizes its Lie and non-Lie symmetry.
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Lemma 1.6.2. Let Q be a symmetry operator of the Dirac equation (1.1.1).
Then, the four-vector with components

Ju = P1uQY, (1.6.3)

where ¥ = P (x) is an arbitrary solution of PDE (1.1.1) vanishing under |Z| —
400, 1s a conservation law.
The proof is carried out by direct verification

8uju = 8u(w7qu) = (8;11/}'}%)@7!) + w')/uaqu = imypQy
—imypQy =0
(we use the fact that any symmetry operator @) transforms the set of solutions
of PDE (1.1.1) into itself, i.e., i7,0,Q¢ = mQ). >
Let us find explicit expressions of conservation laws corresponding to the
symmetry operators of the Dirac equation which belong to the class M;
(see Section 1.1). Substituting the basis elements of the Poincaré algebra

AP(1,3) P, Ju into (1.6.3) we get the well-known expressions of the energy-
momentum and angular-momentum tensors

T;W = &’maﬂ% Qua,@ = &VMJO@@@Z} (164)

satisfying continuity equation (1.6.1) on the index p.
A trivial identity operator I gives rise to the current of a probability density

T, = Yy (1.6.5)

Substitution of zero components of currents (1.6.4), (1.6.5) into formula
(1.6.2) yields the following conserved quantities:

a) the energy
E= [ viogda
RS

b) the momentum

¢) the angular momentum

was = [ 01 (200 = 250° ~ (12 7035) 0 d*5. 0 £ B
RS
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d) the probability
= [vlods
RS

Constants of motion corresponding to the non-Lie symmetry operators of
the Dirac equation (1.1.34) are obtained in the same way.

In the case of the massless Dirac equation (1.1.17) there arise additional
conserved quantities (for more detail see [118]). We restrict ourselves to ad-
ducing constants of motion which correspond to symmetry operators of equa-

tion (1.1.17) not belonging to an enveloping algebra of the conformal algebra
AC(1,3)

D= [0 —nowdte, 1h= [viawds,

R® R’
2, = / O (K, A~ (K, 4] )od%s, T2 = / WiuA,pdds,
R? R?

where A, = v,2,0, — 2"7,0" — 27,, p,v=0,...,3.



CHAPTER 2

EXACT
SOLUTIONS

The present chapter is devoted to exact solutions of Poincaré-invariant
systems of nonlinear PDEs for spinor, vector and scalar fields. We estab-
lish the necessary and sufficient compatibility conditions and construct the
general solution of the system of nonlinear PDEs which consists of the nonlin-
ear d’Alembert and Hamilton equations. With the use of subgroup structure
of the groups P(1,3), P(1,3),C(1,3) we construct Ansiitze reducing multi-
dimensional spinor and vector equations to PDEs of lower dimension. These
Ansédtze enable us to obtain multi-parameter families of exact solutions of
the nonlinear Dirac, Maxwell-Dirac and Dirac-d’Alembert equations, some of
the families containing arbitrary functions. In particular, the exact solutions
of the nonlinear Dirac equation expressed via the Bessel, Weierstrass, Gauss
and Chebyshev-Hermite functions are constructed. In addition, a method of
constructing exact solutions of PDEs for scalar, vector and tensor fields via
solutions of a nonlinear spinor equation is suggested.

2.1. On compatibility and general solution

of the d’Alembert—Hamilton system

As shown in [123, 156, 165] the substitution

w(z) = p(ulx)), ¢ < CHR,RY) (2.1.1)
reduces the n-dimensional nonlinear d’Alembert equation
2
Sw= 2% A w = Fo(w) (2.1.2)

2
oxj
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to ODE for a function ¢(u) iff the scalar function u = u(xg,x1,...,Tp—1)
satisfies the nonlinear d’Alembert and Hamilton equations

Opu = Fy(u), (2.1.3)
(04u)(0%) = Fy(u),

simultaneously.

In the above formulae Fy, F, are arbitrary smooth functions depending
on u only. Hereafter in the present section we suppose that indices denoted
by A, B, C take the values 0,...,n — 1 and besides the summation con-
vention in the pseudo-Euclidean space M(1,n — 1) with the metric tensor
gap = diag (1,—1,...,—1) is implied.

Thus, to obtain all Ansétze of the form (2.1.1) reducing equation (2.1.2) to
an ODE one has to construct the general solution of system (2.1.3), (2.1.4). Let
us emphasize that such an approach to the problem of reduction of equation
(2.1.2) does not require the knowledge of a subgroup structure of the invariance
group.

Following [154, 156] we call the system of PDEs (2.1.3), (2.1.4) the d’Alem-
bert-Hamilton system.

The d’Alembert-Hamilton system plays an important role in the theory of
Poincaré-invariant equations for the scalar [137, 154, 156, 171], spinor [151,
155] and vector fields. In particular, any second-order P(1,n — 1)-invariant
scalar equation can be reduced to ODE with the use of solutions of system
(2.1.3), (2.1.4) (without applying the symmetry reduction technique).

The three-dimensional elliptic analogue of system of PDEs (2.1.3), (2.1.4)

2 2 2
Ug ) + Uzpzy + Uzzay = 0, Uz =+ Ug,, + Ugpy = 0

with a complex-valued function u(Z) was studied by Jacobi [25], who con-
structed the following class of its exact solutions

Co(u) + C4 (u)xl + CQ(U).TQ + Cg(u)l‘g =0, (2.1.5)

where Cy(u),...,Cs(u) are arbitrary smooth complex-valued functions satis-
fying the equality
C1(u)? + Cy(u)? + C3(u)? = 0. (2.1.6)

Later on, Smirnov and Sobolev [263, 264] proved that the formulae (2.1.5),
(2.1.6) give the general solution of the above over-determined system of PDEs.
Some classes of exact solutions of the system of PDEs (2.1.3), (2.1.4) were
obtained by Bateman [27], Cartan [44] and Erugin [77].
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Recently, Collins [55] has obtained the general solution of the three-dimen-
sional d’Alembert-Hamilton system using the methods of differential geometry.
However approach cannot be applied to systems of PDEs (2.1.3), (2.1.4) having
n > 3 independent variables.

In the present section we will establish the necessary compatibility condi-
tions of system (2.1.3), (2.1.4) for arbitrary n € N and obtain its compatibility
criterion in the case n = 4. Next, we will construct the general solution of the
four-dimensional d’Alembert-Hamilton system.

1. Compatibility of over-determined system of PDEs (2.1.3), (2.1.4).
We study the matter of compatibility of the d’Alembert-Hamilton system un-
der assumption that u(z) is a complex-valued function of n complex variables
xo, 1,...,Tn—1. Provided F5(u) # 0, we can transform system (2.1.3), (2.1.4)
by means of changing the dependent variable

u

u—»d:i/@ﬁhniu%r (2.1.7)

as follows
O,u' = F(u'), (94u')(0%) = 1.

Consequently, the problem of investigating compatibility of the d’Alem-
bert-Hamilton system is reduced to studying compatibility of the system of
PDEs

Opu = F(u), (04u)(0%u) = A, (2.1.8)

where ) is a discrete parameter taking the values 0, 1.
To solve the above problem we will need the following auxilliary results.

Lemma 2.1.1[171]. Solutions of the system (2.1.8) satisfy the identities

Uapu® = —AF(u),
BBy, A A2 5
Uap U g, = Hri(u), (2.1.9)
ey Cm
uABluBlB2 e e e uBmA — %F(m)(u)7 m 2 17

where u,p = 0,0pu, v = ggctca, A,B,C =0,...,n—1, Fim) — d™F/du™.

Proof.  We prove the assertion by means of the mathematical induction
method by m. Differentiating the second equation of system (2.1.8) with
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respect to x5, T we have
Uapcu™ + uspul = 0. (2.1.10)
Convoluting (2.1.10) with the metric tensor g, we arrive at the equality
uapu™® +u0,u, = 0.

Since O,uy = O4F(u) = usF(u), the above expression is rewritten in the
form
uspu™® + AF(u) = 0.

Consequently, the base of induction is ensured. Let us assume that the
assertion holds for m = £ € N. We will prove that it holds for m = k£ + 1 as
well.

Convoluting (2.1.10) with the tensor

BB B, C
u 2U3233"“‘Uk,
gives
BB B,C, A
uABu QUBQBg.....u k uc (21 11)
A BB B,C _ o
Fu UspcU” PUp, gyt u”RS = 0.

Since, according to the assumption of the induction, the equalities

UMt gy, - uPEC = (k4 1) i,
X (uscu332u3233 ----- uP ) = (k+1)"'u0,
< () N O () = — (4 1)) (A D ()
hold, from (2.1.11) it follows that
Uam PPt = (k1)1 (AT EE (),

The lemma, is proved. >

Lemma 2.1.2[171]. Solutions of the system of PDEs (2.1.8) satisfy the n-di-
mensional Monge-Ampére equation

det ||tz ap |2 5o = 0. (2.1.12)

Proof.  The assertion follows from the fact that (2.1.12) is a criterion of
functional dependence of functions wu,,, ug,,. .., Ug, ,. >
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Theorem 2.1.1. Let the d’Alembert-Hamilton system (2.1.8) be compatible.

Then
Flu) = Af(u) £~ (u), (2.1.13)
and what is more o f )
" f(u
. 0. (2.1.14)

Proof. The cases A =1 and A\ = 0 have to be considered separately.
The case A = 1. Due to the Hamilton-Cayley theorem [173] an arbitrary
(n X n)-matrix W = HWABHZ;;:O satisfies the following identity:

nf(—l)kz(Mk) tr (W"F) + (=1)"n det W = 0, (2.1.15)
k=0

n—1
where tr [|[Waz||" o = 3. Wee is the trace of a matrix W.
’ c=0

In (2.1.15) we designate the sum of k-th order principal minors of the
matrix M by the symbol X(Mj). This sum is determined by the recurrent
formula

S(My) = k~H(=1)! {kil(—l)lE(Mz) tr (W’H)} , k> 1,

1=0 (2.1.16)
(M) ¥ 1.
We choose the matrix elements W,z as follows
Wap = 0,0%u(x), A,B=0,...,n—1,
whence due to Lemmas 2.1.1, 2.1.2 we conclude that
tr (WF) = T _1 1)!F(k_1), det W = 0. (2.1.17)

Substitution of the above formulae into (2.1.15) gives rise to an ODE for
F(u). Let us prove that this ODE is transformed to the form (2.1.14) by
means of a nonlocal change of the dependent variable (2.1.13).

Introducing the notation

Yy = i(—l)kE(Mk)tr (WN=k+L
k=0



68 Chapter 2. EXACT SOLUTIONS

we rewrite formula (2.1.16) as follows

S(My) = (_1)k_1yk_1, k>1,
whence
Y = tr (WNH) - g:l %Yk_ltr (W) = (_j\lf?N <;>(N)
+é%ﬁ—1 <§>(N_k), N>1, (2.1.18)
-

Using the mathematical induction method we will prove the equalities
(_1)N f(N+1)
N! f

Let us prove that (2.1.19) holds under N = 1. Due to (2.1.17) an expression
for Y7 can be rewritten in the following way:

Yy =tr (W?) = S(M)tr W = —F — F2.

YN =

N >1. (2.1.19)

Substitution of F = f /f into the above equality yields Y7 = — f /f. The
base of induction is established.

Let us assume that (2.1.19) holds for all m < N — 1. We will prove that
(2.1.19) holds for m = N as well.

Indeed,

ENCILNTARE i AR
wo-Srll) Ewee(s) @l
G A AR N G VN O A i
T <f> *ka a(7)  (7)

Z C’f <f>(N k) f(k) _ (_1)N f(N+1)‘

N'f NIf f

Consequently, relation (2.1.19) holds for all N € N. Putting N =n —1
yields
1)1 fn)
yo e
(n—=1! f
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On the other hand, using (2.1.15), (2.1.17) we come to the following rela-
tion:
Y, 1= (=1)""ndet W = 0,
whence (™ (u) = 0.
The case A\ = (. Taking into account Lemmas 2.1.1, 2.1.2 yields

det W =0, tr(WF)=0, k=2,...,n—1.
Due to these equalities formulae (2.1.15), (2.1.16) take the form
(1) F% (M, 1) =0, (2.1.20)

S(My) =1, S(My) = L5

T E(M1). (2.1.21)

Resolving the recurrent relations (2.1.21) with respect to X(Mj) we get

k

F
S(My) = 7, k=1

-1
Inserting ¥(M,_1) = ((n - 1)!) F"1into (2.1.20) we have

(-

LSt n—
(n—1)! ’

whence F' = 0. The theorem is proved. >
Consequence 2.1.1. The over-determined system of PDEs

O,u = F(u), (94u)(0*u) =0 (2.1.22)

is compatible iff F(u) = 0.

Proof. The necessity is a direct consequence of Theorem 2.1.1. To prove
the sufficiency we will show that system (2.1.19) with F(u) = 0 possesses
nontrivial solutions. It is straightforward to check that the function u(z) =
C1(zo+x3)+Cs, where C1, Co are constants, satisfies equations (2.1.19) under
F(u) = 0, the same as what was to be proved. >

Let us note that the compatibility criterion for the system of PDEs (2.1.19)
with a real-valued function u = u(x) has been established in [51].

Let us say a few words about geometrical interpretation of the d’Alembert-
Hamilton system. If we designate by Pj(u) a k-th order polynomial, then the
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necessary compatibility conditions (2.1.13), (2.1.14) can be represented in the
form

d
F(u) :)\d—lnPk(u), 0<k<n-1
u

Let a1, ag,...,ax be the roots of the polynomial Py (u). Then, the above
relations read

oo
F(u):)\;ujLai, 1<k<n-—1 (2.1.23)
or
F(u)=0, k=0. (2.1.24)
According to [51, 165, 270] the parameters
v = ()7, i=1,...,k,
% = 0, j=k+1,....n—1

can be interpreted as the principal curvatures of the level surface of the so-
lution of system (2.1.8), (2.1.23) under A = 1. Consequently, solutions of the
d’Alembert-Hamilton system have the remarkable geometrical property: their
level surfaces have all principal curvatures constant (for the first time this fact
was established by Cartan [44]).

Now we adduce an assertion giving the compatibility criterion of the non-
linear d’Alembert-Hamilton system (2.1.3), (2.1.4) in the case n =4

Ou = Fi(u), (0uu)(0%u) = Fa(u). (2.1.25)

Here u = u(zg, z1, z2,3) € C*(C*, CY, {F, F,} c C(CH, CY).
Theorem 2.1.2. System of PDEs (2.1.25) is compatible iff the functions
Fy, Fs have the form

1) Fi(u) = F3(u) =0, or
2) Fi(uw)=N(fH" =N Fa(u)=()7? (2.1.26)
where f = f(u) € C%(CY, CY) is an arbitrary function satisfying the condition

f#£0, N is a discrete parameter taking the values 0,1,2,3.
The proof can be found in [165].

Note 2.1.1. System of PDEs (2.1.25) with Fj, Fy given by formulae (2.1.26)
is transformed to the form

Ou = Nu™', (9,u)(@u) =1 (2.1.27)
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by means of the change of the dependent variable
u—u' = f(u). (2.1.28)

Theorem 2.1.3. Let u = u(z) be a real-valued function of four real variables
xo, x1, T2, x3. Then, system (2.1.25) is compatible iff the functions Fy, Fj
have the form

1) Fi(u) = Fa(u) =0, or
2) Fi(w) = eN(ff) - ef(f) Faw) =e(f) % (2.129)

where f = f(u) € C%(RY,RY) is an arbitrary function satisfying the condition
f £ 0; N is a discrete parameter taking the values 0,1,2,3; ¢ = £1.

Note 2.1.2. System of PDEs (2.1.25) with Fij, F5 given by formulae (2.1.29)
is transformed to the form

Ou=eNu™t, (u)(0u) =¢ (2.1.30)

by means of the change of the dependent variable (2.1.28).

Note 2.1.3. It follows from Theorem 2.1.3 that the nonlinear differential
operator eu0 defined on the set of solutions of the PDE (9,u)(0"u) = € has
a discrete spectrum, i.e.,

eu?0u= Nu, N=0,1,2,3 (2.1.31)

and what is more, the spectrum is determined by the dimension of the space of
independent variables only. Consequently, the nonlinear additional constraint
(Ouu)(0*u) = € plays the same role as the boundary conditions in the Sturm-
Liouville problem [61].

It is natural to expect that an additional constraint changes the symme-
try properties of the d’Alembert equation. This conjecture is confirmed by
comparison of results given in the Tables 2.1.1, 2.1.2.

Table 2.1.1. Symmetry of the nonlinear d’Alembert
equation (2.1.1) with n =4

N Invariance group F(u)

1. | the Poincaré group P(1,3) arbitrary smooth function
the extended Poincaré group | Cy(u + Co)F,
P(1,3) [123, 137] Cy exp{ku}

3. | the conformal group Cy(u+ Cq)3
C(1,3) [123, 189]
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Here C'1, Cy, k are arbitrary constants.

Table 2.1.2. Symmetry of the system
Ou = F(u), (8uu)(@"u) =X

N Invariance group F(u) A

1. | the Poincaré group arbitrary smooth function | A € R!
P(1,3)

2. | the extended Poincaré Ch(u+ Cy)™1 AeR!
group P(1,3) [137]

3. | the conformal group 3w+ Cp)7t AeR!
C(1,3) [154, 156]

4. | the generalized Poincaré | 0 A>0
group P(1,4)

5. | the generalized Poincaré | 0 A <0
group P(2,3)

6. | infinite-dimensional 0 0
group

Here C'1, Cy are arbitrary constants.

Comparing Tables 2.1.1, 2.1.2 we come to the conclusion that the con-
formally non-invariant nonlinear d’Alembert equation Ou = 3u~! after being
restricted to the set of solutions of the Hamilton equation (9,u)(0u) = 1
admits the conformal group C(1,3). Consequently, an additional constraint
(Opu)(0*u) = 1 “selects” a subset of solutions which is invariant under the
group C(1,3). In other words, the nonlinear d’Alembert equation Ou = 3u~1
is conditionally-invariant with respect to the conformal group.

Such a definition of conditional invariance is much more general than that
introduced in Chapter 1. Indeed, when defining in Section 1.5 a conditional
invariance of a given PDE we restricted ourselves to considering additional
constraints which were first-order quasi-linear PDEs. It is straightforward
to verify that the nonlinear d’Alembert equation mentioned in the previous
paragraph is not conditionally-invariant with respect to conformal group in
the sense of Definition 1.5.3. Nevertheless, its generalized conditional invari-
ance can be used effectively to construct exact solutions. The peculiarity is
that Anséatze invariant under three-dimensional subalgebras of the conformal
algebra not belonging to the Lie algebra of the extended Poincaré group reduce
the equation Ou = 3u~! to two ODEs.

But we are not going to apply the symmetry reduction procedure to con-
structing solutions of the d’Alembert-Hamilton system, since we have devel-
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oped a method enabling us to construct its general solution.

2. Integration of the d’Alembert-Hamilton system. It follows from
Theorem 2.1.2 that the compatible system of PDEs (2.1.3), (2.1.4) is equivalent
either to (2.1.27) or to the following system:

Ou =0, (Ouu)(0"u)=0. (2.1.32)

General solutions of systems of PDEs (2.1.27), (2.1.32) are given by the
following assertions.

Theorem 2.1.4. The general solution of system of PDEs (2.1.27) is given by
one of the following formulae:
1) N =0,

u=A,(T)z" + Ri(7),

where T = 7(x) is determined in implicit way
Bu(1)x" + Ra(1) =0

and A, (1), B,(7), Ri(7), Ra(T) are arbitrary smooth complez-valued func-
tions satisfying the conditions

A AP =1, A,B*=0, A,B*=0, B,B"=0;

2) N =1,
u? = (auxt + G1)2 — (bt + G'2)27

where G; = G;(0,3") € C*(C',C") are arbitrary functions, a,, by, 6, are
arbitrary complex parameters satisfying the conditions

ayal = =b,bt =1, a, b =a,0" =0,0" =0,0" =0;
3) N =2,
2
0) u? = (2t Au(7)) (8 + A () + { Bu(r) (¥ + Ak (7)) }, where 7 = 7(x)
1s determined in implicit way

(2 + Au(r)) B (7) = 0,

A,(1), Bu(t) are arbitrary smooth complez-valued functions satisfying the
conditions
B,B"=-1, B,B"=0, A,=R(r)B,
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with arbitrary R(t) € C1(C, C);
b) u? = (xu + Au(r)> (:U“ + A”(T)) + {bu(x“ + A“(T))}2, where T = 7(x) is

determined in implicit way
(a:u + AM(T))A”(T) + <=’1’7u + AM(T))beVAV(T) =0,
A, () are arbitrary smooth complez-valued functions satisfying the condition
Aydt + (b2 — 0
b, are arbitrary complex constants satisfying the condition b,b* = —1;

HN=3,
u? = (IL‘# + A”(T)) (a:“ + A“(T)), (2.1.33)

where T = T(x) is determined in implicit way
(2 + Au(r)) B (r) = 0, (2.1.34)

Au(T), Bu(T) are arbitrary smooth complex-valued functions satisfying the
conditions

A,B* =0, B,B"=0. (2.1.35)

Proof. We will give a detailed proof of the theorem for the case N = 3. In
the remaining cases only the schemes of the proofs will be outlined.

Our approach for integration of the d’Alembert-Hamilton system is based
on the generalization of the nonlocal transformation method [145, 146] to a
case of multi-dimensional PDEs suggested in [165]-[167].

By a nonlocal transformation of the order r we mean the transformation

z, = fulz, u, u, ... u),
" D (2.1.36)
ul = f(éL'7 u’ rl]il/7 A 71];[/)7

where {f,, f} C C"(C",C'), the symbol u denotes the set of second-order

derivatives of the function u = u(z).

A principal idea of the mentioned method is to linearize a PDE under
study by means of the proper nonlocal transformation (2.1.36). If we succeed
in constructing a solution of the linear equation (general or particular), then a
solution of the initial equation is obtained by inverting transformation (2.1.36).
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Especially important are the contact transformations (first-order nonlocal
transformations)

T, = fu(z, u, 111)7 u = f(z, u, 111)7 ugu = gu(z, u, 7{), (2.1.37)

which preserve the first-order tangency condition
du — ug,dx, = 0= du' — uf,c;tdx:l =0.

This fact is explained by that any two first-order PDEs can be transformed
one into another by means of a proper contact transformation [190, 218].

According to Lemma 2.1.2 det [|ug,q, |1} ,—o = 0. Consequently, the rank
of the matrix U = ||tg,q, [|2 ,—o = 0 takes the values 1,2,3. Each case listed
has to be considered separately.

Case 1. rankU = 3. With such a condition there is a non-vanishing third-
order minor of the matrix U. Making, if necessary, changes xg — ix,, T, —
izo or Ty — Ty, Tp — X which leave system (2.1.27) invariant we can choose

det [|tz,ay || 51 # O (2.1.38)
Performing the generalized Euler-Ampere transformation [165]:

Yo = Zo, Yo = Ugy,, H(y) = Talyg, — U,
Hy, = —ugz,, Hy, =z, a=123,

Hyp = — U2 u23 A’l, Hy = U2  U23 Afla
U3 u33 U23  U33

Hyy = — Uiz U2 A"l Hyy = Uiy U3 AL
u13  u23 u13  u33

Hog = — [ W10 M0N0 gy = |10 MI2IA-1 (97 3)
u1z  u23 U2 U22

Upr  uo2 U3
Hyp = —|u12 upe wugg| A,
U1z  U23  U33
ull U1z U13
Hoo = —|up1 wo2 uos| AT,
U1z U3  U33

Uil U2 U3
1
Hyz = — w12 uga ugg|A™7,

Upr  uo2 U3

HOO = —A_ldet ||U'u,1/||l?;7y:07
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where uu, = Ugz,q,, Hu = Hy,y,, [W| = det ||W], A = det||uabH27b:1, in
(2.1.27) we get

det || Hy,y, lI.—0 + S2(H) + 3[T'(H)] " det [ Hy,y, [l -1 =0,

2.1.40
Hyo = _(1 + yaya)l/Q' ( )

Hereafter T'(H) = yoHy, — H, ¥2(H) is the sum of the second-order prin-
cipal minors of the matrix HHyuyqu,u:O'
Thus, instead of the nonlinear Hamilton equation, we have a simple linear

PDE which is easily integrated

H = —yo(1 + yaya)'* — B(y1,92,93), (2.1.41)

where B € C?(C3,C) is an arbitrary function.
Inserting (2.1.41) into the first equation from (2.1.40) and multiplying by
T(H) we note that the equation obtained is rewritten in the following way:

aryy + azyo + az = 0, (2.1.42)
where
ar = D3B+yayp By, + 3T (B),
az = EQ(B) + yabeyuybASB - yabeyayCBycyb - 3[T(B)]2,
a3 = (1+ yaya)det | By,y, a1 + [T(B)]*.

Since aj, ag, as are independent of yg, from (2.1.42) it follows that a; =
as = a3z = 0.

Thus, we reduce d’Alembert-Hamilton system (2.1.27) with rank U = 3 to
the system of three nonlinear PDEs with three independent variables

1) As3B+ Ya¥bByay, = —3T(B),
2)  Xo(B) + Ya¥sByay, 3B — Ya¥s Byay. Byeys = 3[T(B)]?, (2.1.43)
3) det ||By,y,lla p—1 = —[T(B)*(1 + yaya) "

The above system is simplified substantially by means of the following
change of variables:

2o = Ya(1 + yoyp) "2,

» (2.1.44)
P(z1,22,23) = (1 + Yava) " Y*B(y1,y2,y3)-
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In the new variables z, P(z) system (2.1.43) reads

1) AgP - ZaZbPzazb = O,
2) EQ(P) — zaszzaszfiP + Zaszzachzczb =0, (2145)
3) det [Pz, l5 =1 = 0.

Since det P = det HPzaZbHib:1 = 0, the rank of the (3 x 3)-matrix P is
equal either to 1 or to 2.

Subcase 1.1. rank P = 1. Hence, according to the theorem about an implicit
function, it follows that there are such functions { Ry, Ry} € C%(C!,C) that

P, = Rp(P,), k=1,2. (2.1.46)

Substitution of (2.1.46) into the second equation of system (2.1.45) shows
that its left-hand side vanishes under arbitrary R;, Ro. The first equation
takes the form o .

(1 + Ry Ry — (2 Ry + 23)2)P2323 =0,

whence
PZ3Z3 =0 (2147)
Or . . .
1+ RgRy — (zx Ry + 23) =0, (2.1.48)

where Ry, = dRy, /dP,,, k =1,2. Hereafter in this section, the summation over
the repeated indices denoted by the letters k, [, n from 1 to 2 is understood.

Let the equality (2.1.47) hold true. Then, differentiating (2.1.46) with
respect to z3 we have P, ,, = P,,., = 0. Next, differentiating (2.1.46) with
respect to z1, zz we conclude that P, ., =0, a,b=1,2,3, whence

P =Cyuz,+ Cy, C, €C. (2.1.49)

Now we turn to the case P,,., # 0. Hence it follows that the equality
(2.1.48) holds. To integrate system of the first-order PDEs (2.1.46), (2.1.48)
we make the contact transformation

tk:'zk)a t3:P23) G(t17t27t3):Z3P2’3_P’
Gy, = —F,,., Gy =23, k=1,2.
As a result, we get

Gt, = —Ryi(t3), k=1,2,
. . 2 (2.1.50)
L+ Ry(ts) Ri(ts) — (teRe(ts) + Gy ) = 0.
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Integration of the first two equations of system (2.1.50) yields
G = —tiRi(t3) + Q(t3), (2.1.51)

where Q € C%(C!,C') is an arbitrary function.
Substituting the result obtained into the third equation of system (2.1.50)
we have

1+ Ry Ry — (thk — LRy + Q) =1+ RLRy — Q2 =0. (2.1.52)

Thus, formulae (2.1.51), (2.1.52) determine the general solution of system
of PDEs (2.1.50). Returning to the initial variables z, P(z) we obtain the
general solution of system (2.1.46), (2.1.48)

P = z,Ry(t3) + t3zs — Q(t3), 1+ RpRyp—Q° =0, (2.1.53)
where t3 = t3(z) is determined by the relation Gy, = z3, whence
2k Ry (t3) 4 23 — Q(t3) = 0. (2.1.54)

To represent formulae (2.1.53), (2.1.54) in a manifestly O(3)-invariant form
we re-determine the parametric function to be t3(z) = R (T(z)) and designate

Ry(r) = Bi(Ra(r), Q(r) = =Q(Ra(r)), k=1.2.
With such notations formulae (2.1.53), (2.1.54) read
P = 2aRa(r) + O(1), RaRe— 02 =0, (2.1.55)
where 7 = 7(2) is a smooth function defined by the relation
2aRa(T) + Q(r) = 0. (2.1.56)

Thus, the general solution of system of PDEs (2.1.45) is given by one of
formulae (2.1.49) or (2.1.55), (2.1.56). Making the change of variables (2.1.44)
we obtain the general solution of the system of nonlinear PDEs (2.1.43)

B(y) = Caya+ Co(l+yaya)'/?, (2.1.57)
B(y) = YaRa(r) + Q)1+ vava)?, RoR.—Q%*=0, (2.1.58)
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where 7 = 7(y) is a smooth function determined in implicit way

YaBa(7) + O (1 + yaya) /2 = 0, (2.1.59)

Evidently, the solution (2.1.57) is contained in the class (2.1.58), (2.1.59).
Inserting the expression for the function B(y) from (2.1.58) into (2.1.41) we
have

H(y) = (1 +yaya)"/* (30 + Q7)) = yaFRa(7),

where the function 7 = 7(y) is determined by (2.1.59).

At last, rewriting the expression obtained in the initial variables z, u(z)
we arrive at the following class of solutions of the d’Alembert-Hamilton system
(2.1.27):

u(:c) = TalYa — H = (xa + ﬁaa(T))ya + (1 + yaya)1/2 (x() -+ @(T)), (2.1.60)
where y, = y,(z) are determined by the equalities

To = Hy, = —Ra(7) — ya(l + ybyb)fl/Z(xo + @(7))7 a=1,23.

Resolving the above equalities with respect to y, we get

Yo = —(Ta + Ea)((mo + Q)% — (ap + Ro) (ay + Eb))im'

Substitution of the expressions obtained into (2.1.60) yields

u@) = (w0 + Q) = (e + Ro) @y + ),

where 7 = 7(x) is a smooth function determined by the equality

yaFa(7) + Q(r) (1 + yaya) /2 = (0 + Q(1))Q(7) — (w0 + Ra(7)) Ra(r) = 0

~ ~ Lox 22
and @, R, are arbitrary smooth functions satisfying the relation R, R, —@Q =

0. Introducing the notations Ay = Q, A, = R, we obtain formulae (2.1.33)—
(2.1.35) under B, = A, p=0,...,3.

Subcase 1.2. rank P = 2. Without loss of generality, we can assume that

lezl Pz122

det H
PZ12’2 PZQZQ

£0.
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Consequently, there is such a function R € C3(C?,C') that the relation
P., = R(P,,, P,,) holds. With account of this fact system (2.1.45) is rewritten
in the following way:

Peyz + (2 + 23R) (20 + 23Rp) Pryz,, = 0,
(1 — zpzr — 23)(1 4+ ReRy) + (23 — z1.Ry)? = 0, (2.1.61)
Py = R(P.,, P,).
Here Ry, = OR/O(P,,), k =1,2.
Let us perform in (2.1.61) the following contact transformation:
th =Py, t3=23, G(l1,t213) =2 P — P,
Gy, =z, Gy =—-P,, k=1,2,
Guty =06 Py, Gray =—0 "Paypsy,
Gioty =0 ' Pupzy, Gy = =07 'det || Poys, |12 41,
Grty = 0 (Poyzg Pryzy — P2y Parza)
Gtoty = 0 (Poyzg Payzy — Pryzy Pryzy),

where § = P, ., Ps,., — P2, #0.
Being rewritten in the new variables t, G(t) system (2.1.61) takes the form

1) (1 + R}, — (Giy + t3Rt2)2)Gt1t1 - 2(Rt1Rt2 —(Gt, +t3Ry,)
X (G, + t3R1,) )Gyt + (14 BE = (Giy +13R1,)?) Gty = 0,
2) (1—t3— Gy Gy)(1+ Ry Ry,) + (t3 — Ry, Gy, )* = 0, (2.1.62)
3) G, = R(t1,t2).
Integrating equation 3 from (2.1.62) we have
G = —t3R(t1, ta) +iQ(t1, t2), (2.1.63)

where Q € C3(C?,C") is an arbitrary function.

Substituting the expression (2.1.63) into the equations 1,2 from (2.1.62)
and splitting with respect to the variable t3 we arrive at the two-dimensional
system of PDEs for the functions R(t1,t2), Q(t1,t2):

1) (14 Qi Q)1+ Ry, Re,) — (Qu Ry, )* =0, (2.1.64)
2) (14 QuQr + Ry Ry, )02Q — (Qr,Qt,, + Re Re, ) Qtyt,, = 0,
3) (1 + th th + Rthtk)AQR - (thQtn + Rthtn)Rtktn = 07
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where Ay = 0F + 03,

We have succeeded in integrating the over-determined system (2.1.64).
Making use of formulae (2.1.41), (2.1.44), (2.1.63), we rewrite its general so-
lution in the initial variables z, u(z). After representing the result obtained
in a manifestly covariant form we arrive at formulae (2.1.33)-(2.1.35).

Case 2. rankU < 3. When studying the compatibility of the d’Alembert-
Hamilton system, we have established that system of PDEs (2.1.27) with N =
3 is incompatible provided rank ||tz [|2 ,—o < 3 [165].

Consequently, any solution of system (2.1.27) can be reduced by means of
one of the transformations g — ix,, T4 — X9 Or Ty — Tp, Tp — Tg to the
form (2.1.33)—(2.1.35). Since the class of functions u(x) determined by for-
mulae (2.1.33)—(2.1.35) is invariant with respect to the above transformations,
hence it follows that any solution of the d’Alembert-Hamilton system (2.1.27)
with IV = 3 is contained in it. To complete the proof for the case N = 3 it suf-
fices to check that any function u(z) determined by (2.1.33)—(2.1.35) satisfies
the d’Alembert-Hamilton system (2.1.27). The check is performed by direct
computation. Differentiating the equalities (2.1.33), (2.1.34) with respect to
r,, and excluding from the equalities obtained 7., we get

s, = (@ + 4) (" + AV))’”2 (a4 + 4" —p(A-z+ A-A)B"), (2.1.65)

where A -z = A,a* p=(B-2+ B-A)~.
Since
, L1 . .
Guv g, Uz, = ((a:,, +A)(z"+ A )) (3:“ +A,—pA-z+ A A)Bu>
x(x“—i—A“—p(A-a:—i—A-A)B“) =1
(we have used the equalities (2.1.35)), the Hamilton equation is identically

satisfied.
Next, differentiating (2.1.65) with respect to x, and excluding 7, we get

o, = —((va+A)@® +4%) " (@ 4 A"~ p(A -2+ A 4)BY)

X (m” + A —p(A-z+A- A)B”) ((xa + Ay) (2% + Aa))il/z

% (g — p(A"B” + ABY) + pP[A o+ A- A+ A4
+(A- 24+ A-A)(B-z+B-A+B-A)]B"B”
+p*(A-x+ A A)(B"B” + B'B")).
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Convoluting ug,;, with the metric tensor g, and taking into account the
equalities (2.1.34) we come to the following relation:

o o) —1/2 .
Ou = ((wa + Aa) (@ + A%) " (Guvgu — 1) = 3u™",

the same as what was to be proved.

Further, we will outline the scheme of the proof of the theorem provided
N =0,1,2in (2.1.27).

According to [165] system of PDEs (2.1.27) with N = 2 is compatible if
and only if rank ||U:UHIVH2,V:0 = 2. Consequently, without loss of generality,
we can suppose that the condition

u u
5 — 171 T1T2 # O
Ugize Uzoxo
holds.
Since rank [|ug,q, |3 ,—9 = 2 and § # 0, there exists such a function

S € C?(C*,Ch) that solutions of the d’Alembert-Hamilton equation (2.1.27)
with N = 2 satisfy an additional constraint S(uz,, Uz, , Uzy, Uzs) = 0. Con-
sequently, in the case involved we have to solve the following over-determined
system of PDEs:

Uu = 2U'_17 (a,uu)(auu) =1, S(u:roa Ugyy Uz, u:rg) = 0.

Due to the condition § # 0 we can resolve the last two equations with
respect to ug,, Uy, and rewrite the above system as follows

) 1/2
Uzy = (1 + Uz Uy, + W (tgy um)) ’ (2.1.66)

Upy = W (g, Ugy), DOu=2u"l.
Let us apply to the system of PDEs (2.1.66) the contact transformation

To = Yo, Tk = Hyka r3 = Y3,

u=yyH, — H,
Upy = —Hyy, Uz =Yk,  Uzy = —Hys,
1 -1 -1
Hyp =u6 ", Hig=—upd ", Hyp=und -,
Upr U12| ¢—1 U1 U13| o1
H01 = — 1) y H23 = - 0 )
Up2 U2 U2 U223
U U _ U U _
Hys=—| 18 20571 g, =" Hob)5-1 (2.1.67)
U23 U2 U2 U2
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Up1r Uo2 U3
Uil U2 U113
U2 U222 U223

Upo U0l U2

—1 ~1
Hoo = —|up1 wir wig|0 ~, Hog=— o,

Up2 U122 U2

Uil U2 U3
—1
H33 = —|uia uge u23|d .

U3 U223  U33

Here H,,, = 0*H/0y,,0y,, uu = 0*u/dx,0x,, p,v=0,...,3.
The first two equations of system (2.1.67) are linearized by the transfor-
mation (2.1.67)

1/2
Hyy = —(1+ ey + W)

Hyy = —W(y1,92)

Integrating the above system, inserting the obtained expression for H(y)

1/2
H = —yo(1+yige + W2y,10)) = 13W(yn,32) = Byr,p2),  (2.1.68)

where B € C?(C?,C!) is an arbitrary function, into the last equation of system
(2.1.66) and splitting with respect to yo, y3 we come to the over-determined
system of five PDEs for two functions B(y1,vy2), W (y1,y2)

D) (DWW + gy Wy, ) (14 Wy Wy, +T2(W))
—(TW)y + Wy, ) (TOV )y + Wy, ) Wiy,
= —20(W)(1+ W, Wy, + T*(W)),

2) et Wy |2 0ms = T2(W) (14 W, Wy, + T2(W))
X (14 yrye + W27,

3) (D2B + ykynBy,y,) (1 + Wy Wy, + T2(W))
—(TW)ys + Wy ) (TOV )y + Wy, ) By
= =27 (B) (14 Wy, Wy, + TX(W)),

4) det||Byy, [F0m1 = T2(B)(1+ Wy Wy, + T*(W))

x (1 + gy + W)L,
5) (L2W)(L2B) — Byy, Wy, = T(W)T(B)

X (14 Wy Wy + T2(W)) (1 + e + W)~
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Here the notations T'(F') = yiFy, — F, NoF = Fy,,, are used.

Integrating the above system and returning to the initial variables x, u(x)
according to the formulae (2.1.67) we get the general solution of the d’Alem-
bert-Hamilton system (2.1.27) with N = 2 which is contained in the class of
functions u(x) determined by the formulae 3 from the statement of Theorem
2.1.4.

According to [165] system of PDEs (2.1.27) with N = 1 is compatible only
in the following cases
a) rank ||U’-T‘uxu ||2,1/:0 = 2;

b) rank Huxu%Hi,V:O =1.

In the case a, we apply to the system under study the contact transforma-
tion (2.1.67). The general solution of the Hamilton equation being written in
the variables y, H(y) takes the form (2.1.68) with arbitrary smooth functions
B(y1,y2), W(y1,y2). Inserting (2.1.68) into the d’Alembert equation written
in the variables y, H(y) and splitting the equality obtained with respect to
Yo, Y3 we arrive at the following system of four PDEs:

1) 1+ W, W, +T*W) =0,
2)  det ||Wy,y, i,n:l =0,
3) (14 ykyr + W?)det || Byy, [§0z1 = T(B)
X (T(W)yk + Wyk) (T(W)yn + Wyn)Bykyn,
1) (U gy + W2 ((22W)(22B) = By, Wy, )
= T(W)(TOW )y + Wy, ) (T(OW )y + Wy, ) By,

Integrating these equations and returning to the initial variables z, u(z)
yield the general solution of system (2.1.27) with N = 1 provided the condition
a holds.

Let us turn now to the case b. Since rank [|uz,z, ||

such functions W, = Wy (ug,) € C1(C!,Cl) that

3 —

nw=0 = 1, there exist

Uz, = Wo(ta,), a=1,2,3.
With this remark system (2.1.27) is rewritten in the form
Ou=u"", up, = Wa(us), (2.1.69)

where W, (7) are arbitrary smooth functions satisfying the equality 72 — W, (7)
x Wy (r) = 1.
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Make in (2.1.69) the following contact transformation:

Yo = Uy, Ya = Za, H = ToUgy — U,

H,, =z, Hy, =—uy,,
T o (2.1.70)
Hyo = Ugg » Hy, = —UQaUq »

—1
Hap = (UoqUop — Uo0Uab) Uy -

Here wyy = ug,2,, Hyuw = Hy,y,, a,b=1,2,3.
The last three equations from (2.1.69) are linearized

Hy, = —Ws(y), a=1,2,3.
Inserting the general solution of the above system
H = yaWa(yO) - B(y0)7 (2171)

where B € C?(C!,C') is an arbitrary function, into the first equation of the
system of PDEs (2.1.69) and splitting with respect to yo we come to the system
of ODEs for the functions W,, B

1) W, =(1—WWy)(yoWs —W,), a=1,2,3,

2) B=(1-W,W,)(yB - B)

and what is more W, W, = yg — 1.

Integrating the system of ODEs obtained and returning to the initial vari-
ables z, u(z) we obtain a particular case of the formulae 2 from the statement
of Theorem 2.1.4.

Provided N = 0, the general solution of system of PDEs (2.1.27) splits
into two classes satisfying one of the conditions: rank [|ug,,q, [|2 ,—o = 1, 2.

If rank Huxum,jHi’V:O = 2, then we can apply the contact transformation
(2.1.67). The general solution of the d’Alembert-Hamilton system is given by
the formula (2.1.68), where B(y1,v2), W (y1,y2) are solutions of the system of
two PDEs

) 1+ Wy Wy, + (yeW,, —W)2 =0,
2) (yk(ynwyn -W)+ Wyk) (yl(ynwyn -W)+ Wyz>Bykyz =0.

Integrating it and returning to the initial variables x, u(z) we arrive at
the formulae 1 from the statement of Theorem 2.1.4.
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Provided solutions of the d’Alembert-Hamilton system (2.1.27) with N =
0 satisfy the condition rank||uz#xu|’,3¢,1,:0 = 1, we can perform the contact
transformation (2.1.70). The general solution of the system obtained is of the
form (2.1.71), where Wy (yo), B(yo) are solutions of the system of two ODEs
W W, =1, WoW, = 43 — 1. Rewriting (2.1.71) in the initial variables z, u(z)
according to the formulae (2.1.70) yields the formulae 1 from the statement of
Theorem 2.1.4 with B, = AH, Ry = Rl.

Thus, we have established that the general solutions of the system of PDEs
(2.1.27) with N =0, 1,2 are contained in the classes of functions given by the
formulae 1-3 from the statement of Theorem 2.1.4. To complete the proof we
have to check that the function u(z) determined by these formulae satisfies the
d’Alembert-Hamilton system. This check is carried out by direct computation.
The theorem is proved. >

Theorem 2.1.5. The general solution of system of PDEs (2.1.32) has the
form

Ay(u, )zt + A(u, 7) =0, (2.1.72)
where T = T(x,u) is determined in implicit way

Bu(u, )" + B(u, 7) =0 (2.1.73)

and A,(u, 7), Bu(u, 7), A(u, 7), B(u, 7) are arbitrary complex-valued func-
tions satisfying the conditions

0A*

A“AM — A’UBM - BHBM - 07 B’uai
T

= 0. (2.1.74)

Proof.  If u(x) # const, then making, when necessary, the change of inde-
pendent variables
Ty — 1&g, Tq — LT0,
(2.1.75)

LTy — Ley,  Te — Tp

with some fixed a,b,c = 1,2,3 we can without loss of generality suppose
that uy, # 0. With this condition we can make in (2.1.32) the hodograph
transformation

Ya =Tq, =012, y3=u, U=uzx3, (2.1.76)

where yo, .. .,ys are new independent variables and U = U (y) is a new depen-
dent variable. As a result, the following system of PDEs

Uyowo = Uyryn — Uyays = 0, Uy20 - U;1 - Uy22 =1 (2.1.77)
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is obtained.

Therefore, the four-dimensional system of PDEs (2.1.32) is transformed to
the system with three independent variables (the fourth variable ys is con-
tained in (2.1.77) as a parameter).

Equations (2.1.77) are obtained from the d’Alembert-Hamilton system
(2.1.27) with N = 0 by assuming that its solutions do not depend on z3
and by identifying x, with yo, a = 0,1,2 and v with U. Consequently, the
general solution of (2.1.77) is given by the formulae 1 from the statement
of Theorem 2.1.4 provided the indices take the values 0,1,2. And what is
more, all arbitrary functions included into the general solution contain y3 as
an argument.

Thus, the general solution of system of PDEs (2.1.77) is determined by the
formulae

U = ao(7, y3)yo — a1 (7, y3)y1 — a2(7, y3)y2 + Ra(7, y3),
bO(Ta y3)y0 - bl(T, y3)y1 - b2(7—7 y3)92 + RQ(T7 y3) = Oa
where an (T, y3), ba(T, y3), @ =0,1,2 are arbitrary complex-valued functions
satisfying the equalities
ad—a?—a3=1, bE—b}—b3=0,

apbg — a1b1 — asby = 0, %bo - %bl - %%bQ =0.

T

(2.1.78)

Rewriting the result obtained in the initial variables z, u(x) according to
(2.1.76) we arrive at the following representation of the general solution of
system (2.1.32):

x5 = ao(T, u)ro — ar(7, u)r1 — az(7, u)ze + Ri(7, u),
where 7 = 7(z,u) is a complex-valued function defined implicitly
bo(7, w)xg — b1 (7, u)w1 — ba(T, U)w2 + Ro(T, 1) =0

and aq (7, u), bo(7, u), a = 0,1,2 are arbitrary complex-valued functions
satisfying (2.1.78).

It is readily seen that the above formulae are obtained from (2.1.72)—
(2.1.74) under

Au=aq, A3=1, A=HRy,
Ba:ba7 B3:07 BZRQ?
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where a =0, 1, 2.

We have proved that any solution of system (2.1.32) satisfying the relation
u(x) # const can be reduced to the form (2.1.72)—(2.1.74) by the change of the
independent variables (2.1.75). Since the class of functions F' determined by
the relations (2.1.72)—(2.1.74) is invariant with respect to the transformations
(2.1.75) and contains the solution u(xz) = const, hence it follows that G C F,
where G is the class of functions u(z) determining the general solution of
system of PDEs (2.1.32). Let us prove the inverse inclusion G C F. This
assertion will be established if we show that any function u(x) determined by
the formulae (2.1.72)—(2.1.74) satisfies equations (2.1.32).

Differentiating equalities (2.1.72), (2.1.73) with respect to x, we find u,,
and 7., as

Uz, = % ((1‘ -B; + R2T)Au - (1' “Ar + RlT)Bu)a (2 1 79)
Te, = % ((J; : Au + Rlu)B'u - ({L‘ : Bu + R2u)Au)a -

where A = (z- A+ Ri)(z-By+Roy) — (- Ay+Riy) (- B+ Ry ), x-A = 2, AM.
Since
g, tgn = A72((@- By + Ray)?A- A= 2(x- By + Ryy)
x(x+ Ar+ Riz)A- B+ (- Ay + Riz)?B - B) = 0

(we have used the identities (2.1.74)), the Hamilton equation is satisfied.
Differentiating the first equation from (2.1.79) with respect to x, we get

1
U, = —g (@ Brt Rop) A — (- A, + Bay) BY)

0A 0A 1
.= -= T (ABRY _ AV M
X (87’ Tz, + Buum"> + —(A*BY — A”B#)

1 d
il (- B (. 1
+ {Txu 5 ((x B; + Ry )A* — (x - A + Ri,)B )

0
- : B (. m
iz, 5o (2 Br + Ror) A" = (3 Ar + Rir) B )}.

Convoluting ., with the metric tensor g, and taking into account
identities (2.1.74) we arrive at the equality Ou = 0.

Thus, we have established that the relations F' C GG, G C F hold, whence
it follows that F' = G. In other words, formulae (2.1.72)—(2.1.74) (the class F')
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give the general solution of the d’Alembert-Hamilton equation (2.1.32) (the
class GG). The theorem is proved. >

Note 2.1.4. Assuming that the functions A,, B, do not depend on 7 and
excluding 7 from the relations (2.1.72), (2.1.73) we get the following class of
the exact solutions of system (2.1.32):

g(Au(u)x“, By (u)x”, u) =0, (2.1.80)

where g € C?(C3,C') is an arbitrary function.
Provided A,, B, are constants, formula (2.1.80) gives the class of exact
solutions of the d’Alembert-Hamilton system obtained by Erugin [77].
Furthermore, if the function g does not depend on B,,(u)x#, we can resolve
(2.1.32) with respect to A, (u)2z* and thus get the generalization of the Jacobi-
Smirnov-Sobolev formula (2.1.5)

Ay(u)at + A(u) =0, A AF=0. (2.1.81)

It has been proved in [168, 317] that formulae (2.1.81), where indices take
the values 0, 1,..., n—1, give the general solution of the d’Alembert-Hamilton
system Opu = 0, (O4u)(0*u) = 0, provided u is a real-valued function of n
real variables xg, x1, ..., Tn_1.

Note 2.1.5. If we choose in (2.1.72)—(2.1.74)
A, =Cu(r), B,= CM(T), A=C(r), B= C’(T),
then we get the class of exact solutions
u=Cyu(r)z" + (1), Cu(r)a"+C(r)=0, C,C"'=0

which was constructed by Bateman [27].

3. Explicit solutions of the d’Alembert-Hamilton system. Theorems

2.1.4, 2.1.5 give a description of the general solution of systems of nonlinear

PDEs (2.1.27), (2.1.32) in the parametric form. But for some special choices

of the arbitrary functions it is possible to obtain particular solutions in explicit

form which is very important for applications of the above results. Below we

will construct some real solutions of system (2.1.30) using Theorem 2.1.4.
Take, for example, system (2.1.30) with N =3, e = —1

Ou = —3u"", (Ju)(0"u) =—1. (2.1.82)
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To obtain the general solution of (2.1.82) it is necessary to make in (2.1.33),
(2.1.34), (2.1.35) the change u — iu. As aresult, we get the following formulae:

u? = — (2 + Au(7)) (¥ + 4%(7)),
(2 + Au(r)) B (r) = 0, (2.1.83)
B, A" =0, B,B"=0.

Putting in the above formulae A, = 0, B, = 0 we get the well-known
O(1, 3)-invariant solution of system (2.1.27) with N = 3: u(z) = (x,a")"/2.
This solution can be obtained by means of the symmetry reduction of PDE
(2.1.27) with the use of the O(1, 3)-invariant Ansatz u(x) = ¢(z,2*).

A more interesting solution is obtained by putting

Ay = T, A = C’SiIl(T/C’)7 Ay = CCOS(T/C), Az = 0,
BU:AIH MZOV"737

where C € R, C #0.
With the chosen A,, B, formulae (2.1.83) take the form

u? = [x1 + C’Sin(T/C)]2 + [z2 + Ccos(7’/C’)]2 + x?)) — (mo + 7)2,
xo+ 7 — x1 cos(7/C) + zasin(r/C) = 0.

After making some simple algebraic manipulations we find an explicit form
of the parametric function 7

m(x,u) = £{2C(u? — 22)V? + x4z, — u? — C?}V/2,
whence we conclude that the function u(x) is determined by the formula
xo+ 7(x,u) =1 COS(T(ZL', u)/C) — 9 sin(7’(:z:, u)/C) =0.

This solution is new and cannot be in principle obtained within the frame-
work of the Lie approach.

In a similar way we have constructed other particular solutions of the
d’Alembert-Hamilton system (2.1.30) with different IV, ¢ which are listed be-
low
1) N=0, e=1

u(z) = wo; (2.1.84)
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w(z) = £(x2 — 23)V/?%; (2.1.85)

3) N=2, e=1
u(z) = £(22 — 22 — 22)1/2; (2.1.86)

4) N=3, e=1
w(x) = £(2f — 22 — 22 — 22)V/2; (2.1.87)

5) N=0, e=-1
u(z) = x1 cos Wi(zg + 3) + x2sin Wi (zg + 23) + Wa(zg + 73),
To + z1 sin Wy (u(x) + 953) + xo cos W1 (u(m) + xg) (2.1.88)
+ Ws (u(l‘) + $3) =0

u(z) = i{(xl + Wi(zo + x3))2 + (xz + Wa(zo + x3)>2}1/2; (2.1.89)

tu(x) + C = z¢sinh(7/C) — 1 cosh(7/C),
r=—m £ {af—ad+ (C% u(x))z}m;
+u(z) — C = 2y 5in(r/C) + 3 cos(r/C),
7= —zo+ {a} +23 - (—C’iu(x))Q}l/Q; (2.1.90)
zosinh 7 — x3 cosh T = 27V {+(—u?(z) — z,2") V% + u(z)},
r = aresin{ (V2(a? +43)"2) " (2ule) F (—2(@) - 2,0) ")
— arcsin{as (a3 +23) /2],

u(z) = £(2f + 23 + 23)1/%

i(u2(x) - x%) V2 + C = zgsinh(7/C) — x1 cosh(r/C),
T=—x9% {:1:(2) — x%—F(C + [u?(z) — x§]1/2>2}1/2;
(@)~ 23) " — O = @ sin(r/C) + wacos(r/C), (21.9)

{x% + 22 — (C F [u?(z) — x§]1/2)2}1/2.

B
I
|
8
o
H_
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Here {W7, Wa} € C%(R!,RY) are arbitrary functions, C' is a real non-zero
constant.

4. Conditional symmetry of the nonlinear d’Alembert equation.
According to the remark made in the very beginning of the section substitution
of the Ansatz (2.1.1), where u(z) is an arbitrary solution of the d’Alembert-
Hamilton system (2.1.30), into the nonlinear d’Alembert equation

Ow = Fy(w), (2.1.92)

reduces it to an ODE for a function ¢.

It occurs that the class of Ansédtze obtained in this way is substantially
wider that the one obtainable by means of the symmetry reduction.

Indeed, within the framework of the symmetry reduction approach to re-
duce the nonlinear d’Alembert equation (2.1.92) to an ODE one has to con-
struct Ansédtze invariant under the three-parameter subgroups of its symmetry
group. It is well-known that, provided Fy is an arbitrary function, the maxi-
mal symmetry group admitted by PDE (2.1.92) is the ten-parameter Poincaré
group P(1,3) having the generators

pP,=0" Ju=z,P,—x,P,. (2.1.93)

Furthermore, the general form of mentioned Ansétze is given by the for-
mula (2.1.1), where u(z) is an invariant of some three-parameter subgroup of
the group P(1,3). An exhaustive description of the invariants of the Poincaré
group having the generators (2.1.93) is obtained in [239]. In particular, it
is established that any invariant of a three-parameter subgroup of the group
P(1,3) can be reduced by an appropriate transformation from the Poincaré
group either to the forms (2.1.84)-(2.1.87) or to the forms

zo+x3, o1 +0(ro+a3), a1 +0(xo+w3)®, af+a3, @]+ x5+ a3,

where 6 is a constant.

But the invariants listed above are very special cases of the formulae
(2.1.88)—(2.1.90) which in its turn determine only particular solutions of the
d’Alembert-Hamilton system.

Such substantial extension of the class of the Anséatze reducing the nonlin-
ear d’Alembert equation is achieved at the expense of its conditional symmetry.

Consider, as an illustration, the Ansatz

w(w) = ¢ + plzo + 23)), (2.1.94)
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where p is an arbitrary smooth function, obtained by substitution of the first
formula from (2.1.88) with W7, =0, Wa = p into (2.1.1).

In spite of the fact that the Ansatz (2.1.94) is not Poincaré-invariant, it
reduces PDE (2.1.92) to the ODE —¢ = Fy(p). This phenomenon cannot be
in principle understood within the framework of the classical Lie approach be-
cause the existence of such Ansétze is a consequence of conditional invariance
of the nonlinear d’Alembert equation.

Indeed, the manifold (2.1.94) is invariant under the three-parameter Abe-
lian Lie group with the generators

Q1=00—03, Q2=00+03—2p01, Q3=0

(this fact is established by direct computation). Obviously, the operator Qs
cannot be represented as a linear combination of the operators P,, J,, with
constant coefficients which means that equation (2.1.92) is not invariant under
the Lie algebra A = (Q1, Q2, Q2).

We will prove that PDE (2.1.92) is conditionally-invariant under the alge-
bra A. Acting by the second prolongations of the operators ), on (2.1.92) we
have ~ _ N

Q1L =0, Q2L =4p01Q1u, Q3L =0,
where L = Ou — Fy(u).

Hence it follows that the system of PDEs

Ou = Fy(u), Quu=0, a=1,2,3

is invariant under the Lie algebra A, the same as what was to be proved.

All Ansétze obtained by substitution of the formulae for u(z) listed in
(2.1.88)—(2.1.91) (with the only exception of the last formula from (2.1.90))
into (2.1.1) correspond to the conditional invariance of the nonlinear d’Alem-
bert equation and give rise to the new (non-Lie) reductions of PDE (2.1.92).
Hence it follows, in particular, that the nonlinear d’Alembert equation admits
an infinite conditional symmetry. It will be shown that the nonlinear Dirac
and Yang-Mills equations have the same property (see Chapters 6,7).

2.2. Ansatze for the spinor field

We will apply the results given in Chapter 1 to construct Anséitze (1.5.15)
reducing Poincaré-invariant multi-dimensional PDEs for the spinor field to
equations having a lower dimension.
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According to Theorem 1.5.1 to construct an Ansatz (1.5.15) reducing a
given equation to PDE with the less number of independent variables we have
(see also [100, 155, 233, 236])

e to obtain operators @1, Q2,...,Qn of the form (1.5.11) satisfying con-
ditions of Theorem 1.5.1;

e to integrate the corresponding system of PDEs (1.5.9).

In the present section we consider the case when operators (), form a basis
of the N-dimensional real Lie algebra which is a subalgebra of the Lie algebra
of the invariance group G of the equation under study.

Let X1, Yo,..., 30, M > N be the basis elements of the Lie algebra AG.

Definition 2.2.1. Two sets of operators {Q1, Q2,...,Qn} and {Q}, Q%,...,
Q'y} are called G-conjugate if there exist such real parameters 61, . .., 0y that

exp {szz}Qj exp{—HiEi} = Q;, j = 1, ce ,M, (221)

summation over repeated indices being implied.

In other words, sets of operators {Q1, Q2,...,Qn} and {Q], @5, ..., QN}
are G-conjugate if there exists a group transformation from the Lie group G
having generators 31, Yo, ..., X which transforms @); into Q;, 7=1,...,N.
Two Lie algebras with basis elements Q;, i = 1,...,N and @}, i =1,...,N
are called G-conjugate if the sets of the first-order differential operators {Q1,
..., Qn}and {Q], ..., @y} are G-conjugate. Two Lie transformation groups
are called G-conjugate if their Lie algebras are G-conjugate.

It is evident that Ansétze invariant under G-conjugate subgroups of the
Lie group G are equivalent in a sense that they can be transformed one into
another by a suitable group transformation from the group G. That is why
we will consider non-conjugate subgroups (subalgebras).

Since the group generated by operators Q1,...,Qy is transformed by
(2.2.1) into the group having generators @, ...,Q’y, Definition 2.2.1 intro-
duces some relation on the set of subgroups of the Lie group G. It is not
difficult to become convinced of the fact that this relation is the equivalence
relation on the set of subgroups of the group G and, consequently, it separates
this set into mutually disjoint classes. The problem of complete description of
such classes (called the problem of a subgroup classification of the group G)
has been solved for many important invariance groups of mathematical and
theoretical physics equations [9, 10], [14]-[17], [100, 209, 237, 238, 267]. In
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particular, a complete description of non-conjugate subgroups of the Poincaré
group P(1,3) [9, 10, 209, 237], extended Poincaré group P(1,3) [14, 100, 238]
and conformal group C(1,3) [15, 100] is obtained.

We will construct Ansétze invariant under one- and three-parameter sub-
groups of the groups P(1,3), ]5(1,3), C(1,3).

1. P(1,3)-invariant Ansatze [150, 152]. The Lie algebra of the Poincaré
group has thirteen P(1,3) non-conjugate one-dimensional subalgebras

= (Joz), A2 =(N2), Asz= (Jo3+aJi2),

(Jor — Joz), A5 =(Po), Aes=(P3),

=(Po+ Ps), As=(Joz+al),

A9 = (Jiz +al3), A = (Ji2 + aly),

An = (Jiz+ (P + Ps)), Az = (Jo1 — Ji3 + aPs),

A1z = (Jo1 — Ji3 + aP),

(2.2.2)

where oo € RY, a # 0.

Thus, to construct all inequivalent Ansétze invariant under one-parameter
subgroups of the group P(1,3) it suffices to integrate system (1.5.9) for each
of the operators listed in (2.2.2). The problem of integrating equations (1.5.9)
is substantially simplified by the fact that operators (1.1.22) realize a linear
representation of the algebra AP(1,3).

At first, we adduce the Ansétze constructed and then consider an example
of integration of equations (1.5.9).

A general form of the Ansatz invariant under the group with generators
(2.2.2) is as follows

Y(z) = A(x)p(wi, wa, w3), (2.2.3)

where ¢ = ¢(J) is a new unknown four-component function. A (4 x 4)-
matrix A(x) and scalar functions w, = we(z) are determined by the choice of
a subalgebra from A;, As,..., A13 and are given below

1) ¢(z) = exp{(1/2)7073In(zo + a3)}p (af — 23, 21, 22),
2) Y(z) = exp{—(1/2)y172 arctan(z1/z2)}¢ (zo, 23 + 3, x3),
3) ¥(x) = exp{(1/2)1073In(zo + x3) — (1/2)1172 arctan(w1/z2)}

X (:U% — 23, 23 4 23, aln(xg + x3) + arctan(:vl/xg)),

4) Y(z) = eXP{xl (2(950 + $3)>_1(70 + 73)71}@ (zo + 3, 2§ — 27
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_I§7 1'2),

5)v(x) = ¢ (1, 22, 3),

6) v(z) = @(x0, 71, 22),

N Y(@) = ¢(zo+ a3, 21, T2),

8) Y(x) = exp{(1/2)v0y3In(zo + x3)}p (x% — 23, T, aln(zg + x3)
_$1)7

9) Y(z) = exp{—(1/2)y1y2arctan(z/x2)}¢ (xo, 3+ 23, 3
+a arctan(xl/xg)),

10) ¥(z) = exp{—(1/2)y1y2arctan(xzi/x2)}p (xg, x] + 73, 0
—« arctan(azl/xg)),

1) %) = exp{—(1/2)ny2arctan(z:/22)}p (w0 + w3, 73 + 23, 70 — 73
—2a arctan(xl/arg)),

12) %) = exp{(1/2a)(zo +x3)(30 + 1)1} (w0 +23)? — 201, 22,

(zo + x3)° — 3ax (zo + x3) + 3a2x0),
13) Y(2) = explra(20) ™ (30 + 1)1} (w0 + 23, 23 — 23 — 23, aay

—(Io + $3)x2> .

o0
In the above formulae exp{R} = Y (n!)"*R"™ + I, I is the unit (4 x 4)-
=1
matrix. "

We will construct the Ansatz invariant under the algebra A;. Since the
operator Q1 = Jo3 = —x003 —x300+ (1/2)7073 satisfies conditions (1.5.16), the
above Ansatz can be looked for in the form (1.5.21) withn =4, m =4, N =1,
a (4 x 4)-matrix A(x) and functions w;(x), wa(x), ws(x) satisfying equations
(1.5.20), (1.5.22). Thus, to construct the Ansatz for the field ¢ (z) we have to
find a particular solution of the matrix PDE

(2005 + 2300 — (1/2)707 ) A(2) = 0 (2.2.4)

and to obtain a complete system of functionally-independent first integrals of
the PDE
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(.1‘063 + .7}3(90)(4}($) = 0. (2.2.5)

Hereafter, when integrating a matrix PDEs of the type (2.2.4) we use the
following identity:

Ouexp{Tf(2)} = (9uf(x)) T exp{T ()}, (2.2.6)

which holds true for an arbitrary constant (4 x 4)-matrix 7" and a smooth
scalar function f(z).
We look for a solution of (2.2.4) in the form

A(z) = exp{y073.f(2)}-

Substituting the above expression into (2.2.4) and applying (2.2.6) we ar-
rive at the equality

{(2003 + x300) f — 1/2}y07v3 exp{y073f} =0

or
(2003 + 2300) f = 1/2.

A particular solution of the above PDE is of the form f(z) = (1/2) In(xo+
x3), whence it follows that A(x) = exp{(1/2) In(z¢ + 3)v073}-
PDE (2.2.5) is equivalent to the Euler-Lagrange system

dl‘o dl‘l d.’L‘Q Cl.%'g

I3 0 0 i) ’

whose first integrals can be chosen in the form wy = m% —x%, wo = I, W3 = To.
Substituting the results obtained into the formula (2.2.3) we obtain an
Ansatz invariant under the one-dimensional Lie algebra A;. The remaining
algebras As, ..., A3 are treated in a similar way.
Now we give a complete list of P(1,3) non-conjugate three-dimensional
subalgebras of the Lie algebra AP(1,3) following [100, 237]:

= (Py, P1, P»), Ay= (P, P, P3),
A3 = (Po+ P, P, ), Ay= (Joz, P1, P»),
As = (Jos3, Po+ B3, P1), Ag = (Jo3s+aPs, Py, P3),
A7 = (Jo3 + Py, Py + P3, P1), Ag= (Ji2, Po, P3),
Ag = (J12 + aFy, P1, P»), A= (Ji2 +abs, P, P),
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Ann = (Ji2+ Po+ P3, P1, P»), A2 = (G1, Po+ P3, P»),
A1z = (G1, Py + P3, P, + aPy),
A1y = (G + Py, Py + Ps, Py),
A1 = (G1+ Py, Py + Ps, Po), (2.2.7)
Aig = (G1 + Py, PL + P>, Py + Ps),
Arr = (Joz + adrz, Po, P3), Aig = (Jo3 + iz, P1, P),
Arg = (J12, Jo3, Po + B3), Az = (G1, G2, Py + P3),
Ag1 = (Gy + Py, Go + aP) + P2, Py + P3),
A22 (G1, Go+ Py + 8P, Py + P3),
=(G1, G2+ P, Py + P3), Ay = (G1, Jos, Pr),
A25 (Jos +aP1 + 8P, Gi, Py + Ps),
Age = (J12 + Po + P3, G1, G2), A7 = (Joz + aJi2, G, Ga),
Agg = (G1, Ga, J12), Asg = (Jo1, Joz, J12), Aso = (J12, J23, J31)-

In (2.2.7) G; = Jo; — Jiz, i = 1,2 and (@1, Q2, Q3) designates the linear
span of operators Q.

Ansétze invariant under the algebras (2.2.7) were constructed in [152, 155].
They can be represented in the form

P(z) = Alz)e(w), (2.2.8)

where p(w) is a new unknown four-component function, a (4 x 4)-matrix A(z)
and scalar function w(x) being given below.

DY) = ¢(x3),
2) P(z) = ¢ (20),
3) Y(z) = ¢ (zo+a3),
4) p(x) = exp{(1/2)y073 In(wo + 23) b (xf — 23),
5 ¥(x) = exp{(1/2)v073In(zo + x3)}p (z2),
6) Y(z) = exp{(z2/2a)y073}te (21),
) Y(x) = exp{(z2/2a)v073}e (a In(zg + z3) — :1:2),
8) ¥(z) = exp{—(1/2)n1y2arctan(z/z2)}p (47 + 23),
9) Y(z) = exp{—(zo/2a)m172}p (23),
10) () = exp{(x3/20)172}¢ (o),
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20) ¥(x)
21) P(x)

22) P(x)

23) ()

24) Y(x)

25) ()

26) ¥(x)

27) Y(x)

exp{(1/4)(z3 — z0)1172}¢ (To + x3),

eXP{ (371/2(950 + 903)) (70 + 73)71}@0 (z0 + x3),

eXP{ ((axl — x2)/2(z0 + 563)) (0 + 73)71}80 (zo + z3),
exp{(22/2) (Y0 + ¥3) 11} (0 + 23),

exp{—((xo + 333)/2) (0 + 73)’71}90 (2961 + (zo + 333)2),
exp{ —( (o + 3)/2) (0 + 8) pp (2(w2 — aw1)

—a(xg + :1:3)2),

exp{—(1/2) (073 + ay172) arctan(a /z2) o (a7 + 23),
exp{(1/2) (7073 + ayiv2) In(xo + 23) b (2F — 23),

exp{(1/2)v0y3 In(zo + x3) — (1/2)y172 arctan(zy /z2) }
X (a7 + 23),

eXP{ (1/2(930 + xs)) (0 +¥3) (n121 + 72$2)}90 (zo + 3),
exp{ {2((300 + x3)(zo + 23+ ) — Oz)] 71(70 +3)

X [71 ((550 + x5+ B)r1 — Oéxz) + 72((900 + x3)T2 — 901)} }
X (xo + x3),

exp{ (2(370 +23) (20 + 23 + 5)) 71(’70 +73)

X {,yl ((:co +a3+ B)r — 962) + Yoxa(zo + 903)] }@ (w0 + x3),

exp{ (200 + 2) (w0 + 23+ 1)) (0 + )
X (’71I1(~’Uo + 23+ 1) + y2w2(z0 + 963)) }@ (zo + x3),

exp{ (w1/2(w0 + 73)) (20 + 3)7 | exp{ (1/2)7073

x In(zg + x3)}o (xf — 27 — 23),

exp{ (1/2(3:0 + :z:3)) (:cl — aln(zg + :1:3)) (70 + 73)71}
x exp{(1/2)707 In(wo + 73)}p (w2 — Bln(wo + 73)),
exp{ (1/2(x0 +3)) (0 +73) (71 +7272)

X exp(—(1/4(xo + 373)) (- .CC)’yl’yQ}(,O (o + w3),

exp{ (1/2(:60 + 1:3)) (Yo +v3)(mz1 + 721‘2)}
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x exp{(1/2)(v073 + av172) In(wo + x3) o (- 7).

Let us note that triplets of operators (), which are basis elements of the
algebras Agg—Asp do not satisfy condition (1.5.10). Consequently, they lead
to partially-invariant solutions which are not considered here.

As an example, we will carry out integration of equations (1.5.20), (1.5.22)
for the algebra A4 from (2.2.7). Choosing in (1.5.20), (1.5.22) n = 4, m =
4, N =3, Q1 = —2003 — 2300 + (1/2)7073, Q2 = O, Q3 = O3 yields the
following system of PDEs for A(x), w(z):

($083 + 2309 — (1/2)’)/0’)/3)14 =0, 01A=0,A=0, (2.2.9)
(.%063 + .%380)&/ =0, Ow=0dw=0. (2.2.10)

From the last two equations of system (2.2.9) it follows that A = A(xg, x3).
Substituting this expression into the first equation we get

(2300 + w003 — (1/2)v073) A0, 73) = 0,

whence
A(x) = exp{(1/2)7073 In(xo + z3)}.

It is easy to see that a complete set of functionally-independent first in-
tegrals of system (2.2.10) consists of one integral which can be chosen in the
form w(z) = 22 — 3. Thus, we obtain the Ansatz numbered by 4.

2. P(1,3)-invariant Ansétze [148, 150, 152, 155]. Subgroup classification of
the extended Poincaré group was carried out in [14, 100, 238]. One-dimensional
subalgebras of the algebra AP(1,3) which are P(1,3) non-conjugate to subal-
gebras of the algebra AP(1,3) are equivalent to the following ones:

(Jor — Jiz+aD), (Ji2+ aD),

2.2.11
(Jo3s + BJia + aD), (Joz+ BJi2 — D + aby), ( )

where {a, 8} CR!, a #£0, D = 2, 0u+k, k€ R! is the infinitesimal operator
of the group of scale transformations (1.1.27).
Ansétze invariant under operators (2.2.11) are given by the formulae

P(z) = (o —x3)" exp{(1/20)(v0 + 73)71 In(zo + x3) } (&),
wi = (x5 — 2% — a3)a5 >, wo = (wo + x3)xy

ws = az(zo + 23) " + In(zo + 23);
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b@) = (2 +23) 2 exp{—(1/2)mnp arctan (e [2) o (3),
w) = 2073, wy = 2carctan(zy/x2) — In(2? + 23),
wy = (g — 25) (@] +25)

w(@) = (@ —23) 2 ep{(1/2) (0% + Bn)

xn((z0 + 23)/ (w0 — 23)) }io (@), (2.2.12)

wi = (2§ — 23)* Nwo + 23)**,  wa = (2 — 23)

x(23 +23)7!, ws = Bln(a} +23)
—2aarctan(zy /x2);

Wle) = (20 + 203 — o) exp{(1/4) (07 + Bnive)

X ln((xo + ZL‘3)/(xO - 1‘3)) }90 (@),
w1 = (2z0 + 223 — a) exp{(2/a)(xg — x3)},
wo = (2xo + 223 — oz)(a:% + x%)_l,

w3 = BIn(z? + x3) + 2arctan(zy /x2).

Here ¢ = p(w1,ws,ws) is an arbitrary four-component function.
Three-dimensional subalgebras of the algebra AP(1,3) which are P(1,3)
non-conjugate to subalgebras of the Poincaré algebra are as follows

=(~Joz+ D+ P+ P35, P1, P»),
(=Jos+ D+ Py + P3, Py — P3, Py),
=(Jio+a(—Joys+ D+ Py+ Ps), P, P),
(=Jo3s+ D+ P+ P3, Jiz + a(Po + P3), Po — P3),
(—=Jos+ D, Jio+ Po+ P3, Py — P),
(-
(=
(=
= (-

Joz + 2D, Gy + Py + P3, Py — P3),
Jo3 + 2D, Gy + Py + Ps, Py),
Jos + D, Gy — Py, Py — P3),
Jos — D+ Py — P3, G1, Py),

= (—Jos + D, Gl, Gy — Py),
Al = (—Jog — D+ Py — P3, Gy, Go),
= (J12 — a(Jos + D — Py + P3), G1, Go),
A13 = (Ji2 —aD, Py, P3), A= (Jia—aD, P, P),
(

A5 = (Jos+aD, Py, P3), A= (Jog+aD, Py— P3, Pp),
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A7 =(Jos +aD, P, P»), Az = (J12—ados — 8D, Ry, P3),

Arg = (J12 — aJoz — 8D, P1, P),

Ay = (G1 — aD, Py — P3, P), (2.2.13)

Ay = (G1 —aD, Py — P3, Py),

Agy = (G1 —aD, Py — P3, P, + 3P),

Ags = (G1 —aD, Gy — 3D, Py — P3),

Aoy = (G1, Jo3 + aD, Py — P3),

Ags = (G1, Joz +aD, Py,

Agg = (J12 — aD, Jos + 3D, Py — Ps),

Aoy = (Jos, Ji2, D), A = (P, P, D),

Asg = (P1, P», D), Az = (FPy+ P, P, D),

Az = (R, Ji2, D), Aszy = (P3, Ji2, D),

Az = (Po + B3, Ji2, D),  Azy = (P1, Jo3, D),

Ass = (Poy+ P3, Joz, D), Ase = (Po+ P3, Jia + aJos, D),

As; = (Py+ Ps, Gy, D), Asg = (P, Gy, D),

Asg = (G1, Go, D),  Asg = (G4, Jos, D),

Ay = (P + P, él, Gy + D), Ay = (C:’l, ég, Jos + aD),

Agz = (Gy, G, Jiz +aD), Ay = (Gy, Ga, Jiz + adoz + D),
where G; = —Jo; — Jiz, i =1,2; {o, 8} C R

Without going into details of integration of equations (1.5.22), (1.5.20) we
list the Ansétze for the spinor field 1 (x) invariant under the three-dimensional
subalgebras (2.2.13).

= (xo+ ajg)fk/Q exp{(1/4)v0ys In(zo + x3) }¢ (ln(xo + x3)
—To + 333),

= :cgk exp{(1/2)v0v3Inxe}p (xg — x5 — 2Inxg),

= (20 + 23) % exp{(1/4a)(ary0ys — y172) In(xo + 23)}
X (ln(xo +x3) —xo + xg),

= (22 + 22) "2 exp{(1/2)y172 arctan (z2/21) + (1/4)7073
x In(x? + 22)} o (a arctan (za/x1) + (1/2)(xo — x3)

~(1/2)In(a} + 23)),
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10) ()

11) ()

12) ()

13) ¥(x)

14) ¢ (x)

(22 + 22)7F2 exp{(1/2)7172 arctan(z2 /z1) + (1/4)v073

x In(z3 4 22)}o (arctan(m/xl) + (xo — xg)/2),

25" exp{—(1/4)71(70 — 73) (x0 — x3)} exp{(1/4)7073 In 22}
X (acg[(xo —x3)% — 4$1]_1>,

(20— 25)? — 1) exp{—(1/4)m (30 — 15) (w0 — 73)}
X exp{(1/4)’7073 111((900 —x3)? — 496'1) }80 ([(xo — x3)% — 4z ]°

X[(zg — x3)3 — 6(xo — x3)x1 + 6(x0 + xg)]_2>,

(161(300 —a3) ! — $2> exp{—(1/2)v1(v0 — v3)z1(z0 — x3) "'}
X eXp{(l/Q)’YoV:a 1n(901(f€0 2 332) }@ (zo — z3),

—k/2 exp{—(1/2)v1(v0 — ¥3)z1(x0 — 953)71}

(zo — x3)
x exp{—(1/4)3073 In(xo — w3)}p ((af — 2] — a)(wo — w3)”
+In(xg — x3)>,

(m x4 (23 — 2?2 — 23)(zo — xg)fl)_k/Q exp{—(1/2)x;
x (0 — x3) "' (v0 — 73) } exp{—(1/2)x2 (w0 — 23 + 1)~

x72(70 = 73)}exp{ (1/4)709s (- & + (aF — 2 — 23)

1

x(ao — @3) ") o (w0 — @),

(w0 — 3) /2 exp{(1/2)(z0 — 23) "' (70 — v3) (21 + Y222)}

x exp{—(1/4)v0v3In(xo — 3)} ((ar cx)(zog —x3) 7!

+1In(zo — 963)),

(w0 — m3) "% exp{(1/2) (w0 — 23) " (0 — Y3) (V121 + Y272) }

x exp{(1/4a) (172 — @y073) In(zo — 7)o (2 - )

x (20 — w3) ™" + In(zo — 23) )

(2% + 23) M2 exp{(1/2)172 arctan(wa/21) b (o arctan(wa/z1)
~(1/2) In(a +a3))

23 ¥ exp{(1/2a)y172 In 23} (v0/23),
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15) (z) = 23" exp{—(1/20)7073 In 22} (1/22),

16) p(z) = 23" exp{—(1/20)707 In @2} (w0 — ws)ay “FV/),

17) (2) = (20 + 23)*/2(wo — 5) /2 exp{ (1/4)7073 In (w0 + 3)
x (o — 963)_1> }<P ((xo + 23) 12 (2 — 363)(1_@)/2),

18) ¥(z) = (2f +23) 7 exp{(1/2)(1172 — ar073) arctan(ws/z1)}
x (Barctan(za/z1) — (1/2) In(af + 23)),

19) $lx) = (w0 +23)" /2 (o — 23) /2 exp{(1/40) (@073

—172) (0 + ) (@0 — 23) ™) bp (i + ) @)/
x(zo — 963)(“_6)/2),

20) ¥(z) = (w0 —w3) " exp{—(1/2)a1 (w0 — 23) ' (30 — 73)}
X (111(350 —x3) + axi(zo — 363)_1)7

21) (x) = 3" exp{(1/20)m (%0 — 73) (w0 — 23)}p (w0 — 23)/72),

22) Y(z) = (w0 — 23) " exp{(1/28)71(v0 — 73)(x2 — Bz1)(wo — w3) "'}
x (22 = B1) (2o — 23) ™" = (B/) In(zo — 23)),

23) ¥(z) = exp{(1/2)(2ak —71(70 — 7)1 (w0 — 23) ™ fexp{(1/2)
X (Qﬁk —72(70 — 73))332(900 - 563)_1}90 (GXP{(QM
+B15) (w0 — 73) " Hwo — 73)),

24) (x) = w3 exp{—(1/2)a1(wo — x3) "1 (70 — 73)} exp{—(1/20)
xy0y3 In 2o} ((370 - 903)362_( +1)/a)7

25) ¥(z) = (u§ — 2% —23) 2 exp{—(1/2)z1(x0 — 3) 1 (20 — 1)}
x exp{—(1/4a)y073 In(af — 2f — 23)}¢ (20 — 23)
x(af - af — ) (D20,

26) Y(x) = (2% +23) 72 exp{(1/2)mr2 arctan(vs/z1) + (1/4)707
x (n(af +23) ~2In(zo — 3)) o ((1/2)(8 + 1) In(af +3)

- 1n(g;0 — 3;3) . aarctan(l’z/xl)),
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2) () = (- 2) 2 exp{(1/4)70731n( (w0 + 23)(z0 — 25) ") }

x exp{—(1/2)y172 arctan(z1 /z2) }o (2 — 23) (23 + 23) 1),

28) P(z) = (21 +23) 20 (21/2),

29) (z) = (x§—23) "¢ (wo/xs),

30) ¥(z) = (wo—x3) " (évz(ﬂfo—fﬂz)_l),

31) ¥(z) = (a3 +23) "2 exp{(1/2)172 arctan(za/z1)}
X¢<($1+$2)1/2 )7

32) P(z) = (2% +23) "2 exp{(1/2)y172 arctan(zs/z1)}
X¢<($1+$2)1/2 71)

33) Y(x) = (af+23) 752 exp{(1/2)172 arctan(s/z1)}

xp ((af + 3)2(20 — 25) "),

30) Y(x) = (af —23) 72 exp{(1/4)7073 (w0 + 23) /(20 — 3)) }
xg ((@f — 23)223),

35) Y(z) = a;l_k exp{(l/Q)’yofyg ln(ml(azg — 1:3)*1)} (xa/x1),

36) w(x) = (af+23) 72 exp{(1/2)709 In( (3 + 23) /(20 — w5) ")

+(1/2)17 arctan(wa/z1) b (In(af +23)"/2 — In(wo — 23)

+a arctan(acg/xl)) ,

37) ¥(z) = (wo— 23) " exp{—(1/2)1 (70 — y3)x1(z0 — 3) "'}
X (962(%0 - 563)71),

38) ¥(z) = (wo— x3) " exp{—(1/2)n (70 — y3)1(z0 — 3) "'}
x (@ — 2% = a3)(wo — w5) ),

39) d(x) = (w0 —x3) " exp{(1/2)(x0 — x3) " (0 — 73) (121 + Y22)}
x (2~ a(zo — 25)72),

40) P(z) = z5" exp{—(1/2)71(v0 — 73)z1 (w0 — 23) "} exp{(1/2)7073
xIn(ws(z0 — 25) ™) Jo ((af — 2% — 23)252),

41) () = (w0 —x3) Fexp{(1/2) (0 — 78) (1 (w0 — 23) "
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—yo In(zp — :cg)) }gp (ln(xo —x3) + xo(x0 — 1‘3)_1>,

2) () = (z-2) " exp{(1/2)(x0 — 3) " (30 — 13) (N1 + Y222)}
X eXP{—(1/405)70’Y3 - $}90 ((x -x)* (o — $3)72a)7

43) () = (wo —m3) " exp{(1/2) (w0 — x3) " (0 — 1) (M1 + Y272)}
x exp{(1/2a)y0vs In(zo — z3) ¢ (55 - x(zo — $3)_2),

44) () = (z-2)""exp{(1/2)(x0 — 23) " (0 — 73) (121 + Y222)}

x exp{(1/48) (172 — ay073) In(z - 2)}p (@ - )27
X(.T(] — xg)_2ﬁ).

3. Conformally-invariant Ansétze. Complete classification of C(1,3) non-
conjugate subgroups of the conformal group was obtained quite recently [15,
100]. We use this classification to construct Ansétze for the spinor field ¢ (z)
invariant under one- and three-parameter subgroups of the group C(1,3).

C(1,3) non-conjugate one-parameter subgroups of the conformal group
which are not C(1,3)-conjugate to subgroups of the group P(1,3) are gener-
ated by the following operators:

Q1=Q, Q2=Q+e(Ph— ),

Q3=Jiz+aQ, Qi=Q+a(D — Jo3),

Q5 = BJ12 + aQ + (P — P3),

Qs = aJi2 + Q — Jo1 — Ji13 — P2,

Q7 = 6J12 + aQ + B(D — Joz), (2.2.14)
Qs = Py + Ko, Qo = a(Py+ Ko) + Ji2,

Qo = a(Py + Ko) + Ji2 + B(P3 — K3),

Q11 = Jio+ B(P3 — K3).

Here Q = (1/2)(Ko — K3+ Py + P3), {a, 8} CR!, e = +1.

Operators (2.2.14) unlike generators of the extended Poincaré group P(1, 3)
have quadratic dependence on x,. That is why the corresponding system
(1.5.20), (1.5.22) is nonlinear with respect to the independent variables z,, (in
particular, equations (1.5.20) with @ of the form (2.2.14) lead to a Riccati-type
system of ODEs). To avoid a necessity to integrate a nonlinear Riccati-type
system of ODEs we will apply the trick used by Dirac when investigating
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conformal invariance of equation (1.1.17) [70]. Relying on the well-known
fact of isomorphism of Lie algebras of the groups C(1,3) and O(2,4) he ob-
tained a change of variables connecting the transformation group C(1,3) of
the form (1.1.24)—(1.1.28) with the group of homogeneous linear transforma-
tions of some six-dimensional projective space preserving the quadratic form
22 422 — 22 — 22 — 22 — 22, And what is more, generators of the group O(2,4)
were linear in the variables z,, A=1,...,6.
Consider the following representation of the Lie algebra AO(2,4):

Q12 = 210z, — 220z, + (i/2)1170,
Mora = —2102,, — 224402 + (1/2)V4Vas
o014 = —2202,, — 224402 + (1/2)%07,
Dora2b = —22+a0z,, + 224602, + (1/2)7a %, (2:2.15)
D6 = 2105 — 2602, + (i/2)74,
Qo6 = 22025 — 2602, + (1/2)70,
Qg+a6 = —Zg+a826 + 26822+a + (1/2)’)/(1, a, b= 1, 2, 3
(the remaining elements of AO(2,4) are obtained by the rule Q 5 = —Qp,4,
A,B=1,...,6, A+ B).
It is straightforward to verify that operators (2.2.15) do satisfy commuta-
tion relations of the algebra AO(2,4)
[QABa QCD] = (pADQBC + pBCQAD - pACQBD - pBDQAC)a

where p,p = diag(l, 1,—1,—1,—1,—1) is the metric tensor of the pseudo-
Euclidean space R(2,4). Next, the isomorphism of the algebras AO(2,4) and
AC(1,3) is established by the formulae

Po=—0Q19—Q26, Po=—-D121a — Q4as,
Joa = Q22+a,  Jab = Q2va2+0s

D = -5, Ko=—Q12+ Qa,

Ko =—M924¢ + Qtas, a,b=1,2,3, a#b.

The transformation relating the groups O(2,4) and C(1,3) can be repre-
sented in the form

(2.2.16)

Ty = zuto (26 — Zl)_la
Y(x) = (26— z1)2{1 —(1/2)(26 — 21) 11 + i74) (2.2.17)

X (022 — %sz)}‘l’(z)a
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coordinates z1, ..., zg satisfying an additional constraint

ZAZAEz%+z§fz§fzzfz§fzg:().

It is important to note that the Lie groups O(2,4) and C(1,3) are not
isomorphic. Formulae (2.2.17) determine a projection of the group O(2,4) on
the group C(1,3).
On rewriting operators (2.2.16) in the variables x, v¥(z) according to
(2.2.17) we get the following expressions for the generators of the conformal
group C(1,3):
pP,=0" Ju=z,P,—x,P,+5,,
D =x,0,+3/2+ (1/2)(1 — iva), (2.2.18)
K, =2x,D — (z-x)0" 4+ 2S,,2" + (1/2)(1 — iva)yu,

where S, = (1/4)(Vu v — %), v =0,...,3, p<wv.

Hence we conclude that an Ansatz invariant under a subgroup of the group
0(2,4) with generators (2.2.15) is transformed by (2.2.17) into an Ansatz
invariant under a subgroup of the group C(1,3) with generators (2.2.18). But
the above arguments cannot be immediately applied to construct conformally-
invariant Ansétze reducing the massless Dirac equation (1.1.17). The matter is
that on the set of solutions of equation (1.1.17) a representation of the algebra
AC(1,3) inequivalent to the representation (2.2.18) is realized (see Section
1.1). To avoid this difficulty we will modify the change of variables (2.2.17).
Let us consider the group O(2,4) acting on the space of eight-component
spinors U which depend on six variables z1,..., zg. Its generators are chosen
as follows

Qo = 210,, — 200, + (1/2)oT,

Mota = =210z, — 224402 + (1/2)0T,,

Q2910 = =220z, — 22400z + (1/2)T0ly,

Dotao4b = —224a0z,, + 204502, , + (1/2)[aIy,

M6 = 2105 — 2605, + (1/2)0, (2.2.19)
Qo = 2205, — 260z, + (1/2)T0,

Dota6 = —22400z5 + 26025,, + (1/2)1y,

Oup = —Qpa, A+B.

Here I',, o are (8 x 8)-matrices of the form

_ 0 (I 0
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Using the relations
r.r,+r,r,=2g,1, I,o=-0oly,

we can become convinced of the fact that operators (2.2.19) do form a basis
of the Lie algebra AO(2,4).
The change of variables

Ty = zuya (2 —21) 7,
P(z) = (-2 {1-(1/2)(1+0) (2.2.20)
X (Toz2 — Taza4a) (26 — zl)_l}\fl(z),

where 1[)(x) is an eight-component spinor, establishes a correspondence bet-
ween the group O(2,4) having the generators (2.2.19) and the group C(1,3)
having the generators

IBM = oM, jm, = x,0" — 1,0" + S’W,
D =12,0,+3/2+(1/2)(1 - o), (2.2.21)
K, =22,D — (z-2)0" + 25,,2" + (1/2)(1 — o)L,
where S, = (1/4)[T, T].
Lemma 2.2.1. Let 1[1(3:) satisfy the equation
QY(x) = (uPy + BuvJu + 0D + 0,K ) (x) = 0, (2.2.22)

where oy, By, 0, 0, are some real parameters. Then, the four-component
spinor 1 = (YO0, 1, 2 )T satisfies the following equation:

QY(x) = (au Py + By Jyuw + 6D + 6, K,)(x) =0, (2.2.23)

the operators P, ..., K, being of the form (1.1.22).

Proof.  We represent the eight-component function ¢ (z) as follows

d(z) = (1/2)(1+ o) () + (1/2)(1 — o)iha(x).

Substitution of the above expression into (2.2.22) yields

(1/2)(1 +0)Q¢n + (1/2)(1 — 0)Q¢n = 0,
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whence it follows that o
(1/2)(1 4+ 0)Qy1 = 0. (2.2.24)

Since

(1/2)(1 + a)é&l (2) = (2u0 + 3/2)(1/2)(1 + o) (),
(1/ 2>(jL + o) Kb (2) = {22,(2,0, + 3/2) — (x - 2)0"
+28,,2" }(1/2)(1 + o),

s _(Sw O
S/LV_< 0 SM,,>7

we conclude that due to (2.2.24) equality (2.2.23) holds true. >
The above arguments can be summarized in the form of the following
algorithm of constructing conformally-invariant Ansétze for the spinor field

(x):

e using the isomorphism (2.2.16) we establish the correspondence between
C(1,3) non-conjugate subalgebras of the algebra AC(1,3) and O(2,4)
non-conjugate subalgebras of the algebra AO(2,4);

e integrating the systems of PDEs (1.5.20), (1.5.22) we construct Ansétze
invariant under non-conjugate subalgebras of the algebra AO(2,4) hav-
ing the basis elements (2.2.19);

e using the change of variables (2.2.20) we rewrite the obtained Ansétze
in variables z, ¥(z);

e acting on the eight-component spinor ¢(x) by the projector P = (1/2)
X (1 + o) we arrive at the conformally-invariant Ansétze for the spinor
field ¢ (z).

We will realize the above algorithm for the operator Q2 from (2.2.14), the
remaining operators being treated in an analogous way.
Due to (2.2.16), (2.2.19) the operator Q)2 takes the form
Q2 = 228Z1 — 2’1822 + 25826 — 268z5 + 8(2’6 — Zl)(azQ + 825)
+e(z2 — 25)(0z, + 0s5) — (1/2){'s +0lg + (1 4+ 0)(T'o — I'3) }-

Consequently, to determine matrix function A(z) and scalar functions
w1(2),..., ws(2) it is necessary to integrate the equations

Q2A(Z) = 07
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{2202 — 2102, + 2502 — 2602 +5(26 — 21) (2.2.25)
X (e + Ou) + £(22 = 25) (92 + Osy) fwi(2) = 0,

where i =1,...,5.
It is convenient to rewrite (2.2.25) by introducing new independent vari-
ables
_ 2 2
ur = (21 — 26)" + (22 — 25)7,
up = 2(21 — 26)(22 — 25), U3 =23, U4 = 24,
us = (21 — 2:6)(2:1 + 26) + (ZQ — 25)(2’2 + Z5),
Ug = (21 — 26)(2:2 + 25) — (ZQ — 25)(21 + Zﬁ).

As a result, equations (2.2.25) read
{ 2(u? — ud)28,, — 2eu10y, }wz(u) =0,
{20} - u§)1/2a — 2eu1dus — (1/2) (To + T3 (2:2.26)

+e(1+0)(To — T3)) A(u) = 0.

The first equation of system (2.2.26) implies that wi(u), ..., ws(u) are the
first integrals of the following Euler-Lagrange system:

dw _ dwp _duy _dugdus - dug
0 2w-ud)¥2 0 0 0  —2eu
A complete set of functionally-independent first integrals of the above sys-
tem can be chosen in the form

wy = arcsin(ug/uy) — e(ug/u1), wo = uy,
w3 = U2, W4 =1Uu3, W5 = U4.

Using the identity (2.2.6) we get the following particular solution of the
second equation of system (2.2.26):

A(u) = exp{—(eus/4u1) (oo + T3+ (1 +0) (g —I3)}.

Rewriting the above expressions in the variables z, and substituting these
into Ansatz (1.5.21) we have

U(z) = exp{—(s/4)[(zl — 26) (22 + 25) — (22 — 25)
x (21 + 26)][(21 — 26)° + (22 — 25)°] " (2.2.27)
x[Tg+olg+ (1+0)(Ty — F3)]}@(W),
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where ¢ is an arbitrary eight-component function of wy,...,ws and

wy = arcsin{Q(zl — 26) (22 — 25)((21 — 2’6)2 + (22 — 25)2)_1}

—e{(z1 — 26)(22 + 25) — (22 — 25)(21 + 26) }
X ((zl — 26)% 4 (22 — 25)2)7 ,

we = (21 — 26)2 + (22 — 25)2, w3 = 23, W4 = 24,

2 2 2 2 2 2
Ws =21+ 25 —23 — 24 — 25 — 25

In the initial variables z, (z) Ansatz (2.2.27) reads

P(z) =271 - (1/2)(1 + 0)0 - 2}

x exp{7(2) (T + 0T + (14 0)(To — I'3)) b (wn, wn, wy),
W) = — arcsin{Q(mo — mg)(l + (20 — x3)2)_1}
(20 + 25+ (20— za)o - 2) (14 (w0 — 3)?)

wo = (1 + (xog — x3)2)xf2, wy = (14 (zo — 3)%)25 2,
-1
T(z) = (/4) (xo + x5 + (xg — x3)x - m) (1 + (zo — x3)2)
(when deriving the above formulae we use the identities z1(zg — 21)~! =
(1/2)(z -z — 1), z6(z6 — 21) "' = (1/2)(z - z + 1) which follow directly from
(2.2.20)).
Acting on the Ansatz obtained by the projector P = (1/2)(1 + o) we get

P(x) = 171_2{(3082 T+ Yoy3sin® 7 4 - x(y0 — ¥3) cos T sin T } (w1, wa, w3),

where p(w) is a new four-component function, scalar functions 7(x), wq(x)
are determined above.
Below we adduce Ansétze invariant under operators @1, Qs, ..., Q11.

the operator Q4

1/1(95) = R(l’, Ty 1)331_2(p (Jj),

w) = [(x- 2 —1)* + 423272, wo = [(x -2 —1)* + 4ad]zy 2,
ws = arctan{(x - © — 1)(2x0) "'} — arctan{(z - = + 1)(2x3) "'},
7= (1/2) arctan{(z - & — 1)(2x0) '} + 7/2;
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the operator 03

¥(x) = R(z,7,0) (2% + 23) " exp{-my172}0 (&),
w = [(z -2 —1)* + 4ad) (2] + 23) 71,

wo = arctan{(x -z — 1)(2z9) "'} — aarctan(z; /z3),

wsg = arctan{(x - z — 1)(2z9) "'} — arctan{(z - = + 1)(2z3) "'},
T = (1/2) arctan(z /x2)

)

the operator Q4

$(2) = Rz, 7, i explra(l +10%)}¢ (@),
wi = In{z{[1 + (o — 23)*) 7"}

—aarcsin{2(zg — z3)[1 + (zo — 23)%] 7'},
wo = x7 2[x0 + 23 + (w0 — T3) - 7],
2o + 23 + (x0 — 23)7 - 2],
7 = (1/4a) In{23[1 + (zo — x3)*] ' };

w3 = Ty

the operator Q5

Y(z) = R(z,7,a)(a] + 23) "' exp{~frnrz}e (@),

wi = [1+ (zo — z3)* (2] +23) 7,

wy = earcsin{2(zg — z3)[1 4 (zo — 23)%] 71}
talzg + x3 + (xg — 23)x - 2][1 + (20 — 23)%] 71,

w3 = —2e arctan(z1/x2) + Blro + 23 + (x0 — x3)x - 7]
x[1 4 (xg — x3)%] 7,

T = (¢/2)[xo + x3 + (x0 — 23)z - 2][1 + (20 — 23)%] 1

the operator Qg

1+ (zo — :L‘3)2]_1{(3082(7'/2) + Y03 sin2(7'/2)
+ > (fjeosT —gjsinT)vi(v0 —73) + 7 2(70 —3)

x cos(7/2) sin(7/2)} exp{—(a7/2mr2}¢ (&), j=1,2,
a) under a = 1

fi=g2=-7/2, fa=—-g1 =1,
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w1 = [za(xg — x3) — 21][1 + (20 — 23)?] 71,

wy = —arcsin{2(zg — x3)[1 + (zg — x3)%] 71}
1

+2[z1(zo — x3) + 22][1 + (20 — 563)2]7 ,
ws = arcsin{2(zo — z3)[1 + (2o — 23)?] 1}

+(w0 +z3 + (g — x3)x - x) ((a:o — x3)xry — xl)il,
T = arctan(zg — x3);

b) under o # 1

f1=g2 =sin(1 — a)r,
fo = —g1 = [2(a = D]} [2(a — 1) cos(a — 1)7 + 1],
w1 = [2(zg — m3) w2 — 231 — (1 — @) (2] + 23)][1 + (w0 — w3)*] 7",
wo = (a — 1){((:50 — x3)xry — m1)2 + <($0 — x3)T1 + £E2>2}
X (1 + (.730 — x3)2)_2 + 2((.730 — .CCg):L'Q — x1> (1 + (xo - 1:3)2)_1
w3 = 2arcsin{ [(a — 1)((3:0 — x3)xy — 1:1) + 1+ (xo— $3)2}
x{[(a - 1)((3:0 — x3)x9 — xl) + 1+ (zo— x3)2}2
+(a— 1)2[(330 —x3)11 + ch]Q}_l/z}

+(a—1) arcsin{2(acg —x3) (1 + (zo — x3)2>_1},

T = arctan(zg — x3);

the operator Q7

Y(z) = Rz, 7,0) (23 + 22) L exp{B7(1 + Y073) — 671172} (&),
w) = (:E% + Ji%)_l[ﬂﬁo + 23+ (20 — 23)7 - 7,
ws = 8In{(a3 + aB)[1 + (w0 — 25)2]" '} — 28 awcsin {1 (a2 + 23) 1),
w3 = aln{(z] + 23)[1 + (vo — x3)*] '}
—Baresin{2(wg — x3)[1 + (w0 — 23)%] 7'},
T = (1/26) arctan(x1 /x2);

the operator Qg

W(x) = 272 (cosT — 7 - 2o sin T) (),
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w) = 22/71, wr=wx3/71, ws=(l+z 2)*(x+a3+a3) ",

T = (1/2) arctan{(z - z — 1)(2z0) "} + 7/2;

the operator Qg

(x) = 25°(cosar — v - wy0 sin at) exp{—T172}¢ (@),
w) = (22 +23)23?%, wo = (z-x+ 1)z,

wy = arctan{(z - x — 1)(229) "'} — a arctan(z; /x3),

7 = (1/2) arctan{(z -  — 1)(2z0) "'} + 7/2;

the operator Q19

Y(z) = (22 +23)7 ! (cos QT o8 BT + ~Ypy3 sin aT sin B7

+7 - (o sin a7 cos aT — 3 cos aT sin aT)) exp{—T1172} ¢ (&),
w1 = aarctan(xy /zp) — arctan{(z - z — 1)(2x0) "'},

wy = Barctan(zy /x9) — arctan{(z - z + 1)(2z0) "1},

wy = [(z -z —1)* + 423)(2? + 23)71,

T = (1/2) arctan(x1 /z2);

the operator Q11

(@) = (] +23) " (cos BT — - wy3 sin fr) exp{—T7172} (&),
wi = (af + 2)zg”,
wy = —Barctan(zy/xo) 4 arctan{(z -  + 1)(2z3) "'},

w3 = (x-x—1) (2 +22)7V2 7= (1/2)arctan(z1 /xs).
In the above formulae we use the following notation:
R(z,7,a) = cos® at + yoy3sin? ar + v - z(y9 — 73) cos ar sin ar,

» = p(@) is an arbitrary four-component function of wy, wa, ws.

Three-dimensional C(1,3) non-conjugate subalgebras of the conformal al-
gebra which are C(1,3) inequivalent to subalgebras of the algebra AP(1,3)
are as follows

A =(Q+ Ji2, —Jo1 — Jia — P2, D — Jps),
Ay =(Q + aJia, D — Joz, Py — Ps),
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Az =(Q+ Ji2 — Jor — J13 — Po, —Jo2 — Joz + P1, Py — P3),

Ay =(Q+ Ji2 + (D — Joz), —Jo1 — J13 — P, Po — P3),

As = (Ji2+ a(D — Jo3), Q + B(D — Jo3), Py — Ps3),

A = (Jos + D, (1/2)(Ko — K3), (1/2)(Po + P3)),

A7 =(Q, D — Joz, J12), Ag = (Ji2, Q, Py — P3), (2.2.28)

Ag = (Q + J12, —Jo1 — Ji13 — P2, Py — P3),

Asg = (J12, (1/2)(Ko + Po), (1/2)(P5 — K3)),

A = (Jag + (1/2)(Py — K1), J31 + (1/2) (P2 — K3), Ji2
+(1/2)(P5 — K3)),

Ao = (Ji2 + (1/2)(Ps — K3), —Jos — (1/2)(P1 + K1),
(1/2)(Po — Ko) + (1/2)(P + K3)),

Asz = (V3Jo1 — Jo2 — D, Py + Ko+ 2(Ka — P2), Ko — Py

— Ky — P, —V3(K, + P)), A= (Ko, Py, D).

Here Q = (1/2)(Ko — K3 + Py + P3), {o, 3} C RL.

The algorithm of constructing conformally-invariant Ansétze formulated
above proves to be very efficient when obtaining Ansétze invariant under
three-dimensional subalgebras of the algebra C(1,3) listed in (2.2.28) but
computations are much more cumbersome. That is why we omit interme-
diate computations and write down the final result: the Ansétze for the eight-
component spinor field ¥(z) invariant under three-parameter subgroups of the
group C(1,3) with generators (2.2.28).

1) ¥(z) = (1 + (w0 — 963)2) (362(900 —x3) — 961)_2
x(1=(1/2)(1 + o)L - &) exp{ (1/2)(To + Ts
~D102)71 + (1/2)(T1(To — Ts) + (14 0)T2 ) |
x exp{(1/2)(c + T'ol's)m3}e (W),
w= 2(351(950 —x3) + xg) (3:2(:60 —x3) — xl)il + (1 + (@0 — x3)2)
X (330 + a3+ (xg — x3)x - x) (1'2(1‘0 —x3) — xl)_z,
71 = arctan(zg — z3),

Ty = (1/2)<:Eo + a3+ (xg — x3)x - CC) (332(330 —x3) — x1)>_1,
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T3 = — ln{ (1 + (IL‘O — l’3)2) (ZL‘Q(l’O — 1’3) — $1>_1};
2) (@)= (at+23) 7" (1 (/21 +0)T-2) exp{(1/2)(oTo + T3
—alily)7 }exp{(1/2)(1 + 0)(To — I's)7s}

x exp{(1/2)(c + Tol'3)ma}¢ (w),
w = arctan(zy/x2) — aarctan(zg — x3), 71 = arctan(xg — x3),

7 = —(1/2)In{ (1 + (w0 — 75)?) (2% + 23) '},
rs = (1/2) (w0 + @3 + (w0 — w3) - o) (14 (w0 — 23)%) " ;
3) W(x) = (1+ (20— x3)2)_1 (1- (/20 +0)-2)
x exp{(1/2)(oTg + Ts = T1T5 = T1(Ty — Iy) — (1 + o)D) 71 |
x exp{(1/2)(1 + 0)(Ty — T3)7o} exp{(1/2)((1 + o)
~D3(To = Tg) )75 — (1 + 0)(To — T)wrs fo (w),
w = —arctan(zo — x3) + (21(z0 — v3) + @2) (1+ (20 — 23)?) .
71 = arctan(zo — z3),
ra = (21(w0 — 23) + 22) (w20 — 23) — 1) (14 (w0 — 23)?)
+(1/2) (w0 + 23 + (20— am)a - 2) (14 (a0 — 23)%)
73 = (a0 — 23) — 1) (14 (w0 — 23)%) " ;
1) (@) = (1+ (w0 — 23)%) (w0 — w3) - $1)_2(1 ~(1/2)(1 + o)l - )
X exp{(1/2)(r3 + 0T — Ty +alo + rorg))n}
x exp{—(1/2)(T1(To = Ts) + (1 + 0)T2 ) }
x exp{(1/2)(1+ 0)(L'o — I's)73}0 (w),
w =1 (14 (@0 — 23)°) (walwo —23) —21) "}

+2a arctan(zg — x3), 71 = arctan(xg — x3),

Ty = (.7:1(1:0 — 1’3) + 1’2) (1 + (370 — x3)2)_1

x exp{—a arctan(zg — z3)},

T3 = {(:m(:ro —x3) + xz) (:m(:ro — x3) — 961) <1 + (20 — x3)2) -2
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+(1/2) (930 + x5+ (v0 — x3)w - l‘) (1 + (o — $3)2>_1}
x exp{—aarctan(zg — z3)};
5) W)= (af+23)7 (1 (1/2)(0+0)T - 2) exp{(1/2)(0T + I’y
+8(0 + Tol's) ) } exp{(1/2)(T1T2 — a0 + Tol's) )71 |
x exp{(1/2)(1+ o)(L'o — I's)73} 0 (w),
w = 2aarctan(zg/x1) — 20 arctan(xg — x3)
+ ln{(:v% + 22) (1 + (zo — x3)2)71},
71 = arctan(zo/x1), To = arctan(zy — x3),
T3 = (1/2) exp{2a arctan(xs /1) — 23 arctan(xg — x3)}
X (930 + a3+ (xg — x3)x - x) (1 + (g — 1‘3)2)_1
6) W(z)=a;*(1- (1/2)(1+ o) - x) exp{(1/2)(1 — 0)(To — )1}
x exp{(1/2)(g —T'ol'3)ma} exp{(1/2)(1 + o)(To + I'3) 73} (w),
w=umx1/r9, T = (1/2)(10+23)(x-2)"", W= ln((a: . x)/a:l),
75 = (1/2)at(os — wo) ((af + 2o - 2)
) U(@) = (2 +23) 7 (1 (/21 +0)T - z) exp{(1/2)(0To + Ts)m
+(1/2)(0 + Tol'3)m2 — (1/2)T1 273} (w )
w = (1:0+3:3—|— xo—xg XX xl—l—xQ
71 = arctan(zg — x3), =(1/4) ln{ (( z)? 4 (x + x3)2)
X (1 + (xo — x3) )_1}, T3 = arctan(xi/x2);
8) W(z) = (a1 +23) 7 (1 (1/2)(1 + o) -2 ) exp{—(1/2)T1Tomi
+(1/2)(eTo + T'3)m2 + (1/2)(1 4 0)(Fo — [3)73}¢0 (W),
w= (A +a3)(1+ (0 —23)?)
71 = arctan(xy/x2), 7o = arctan(zp — x3),
T3 = (1/2)(900 + 3+ (o — z3)T - x) (1 + (zo — 1:3)2)71;
0) W)= (1+ (@ —23)°)  (1-(1/2)(1+0)T -2)

x exp{(1/2)(0To + Iy = T1Ta)ms — (1/2)((1 + o)1
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10)

11)

+T1(o = T'g) )72 + (1/2) (1 + o) (o — Tg) 73 } o (w),

w= (xg(fﬂo —x3) — 1‘1) (1 + (0 — fES)Q)il
71 = arctan(xg — x3), T2 = (m(iﬂo —r3) + 5'32) (1 + (w0 — $3)2>_17

73 = (1/2)(w0 + 73) — (1/2)23 (w0 — 25) ™ + (1/2)(1 = (w0 — 23)2) %
X (35'2(56‘0 — ZL‘3) — 561)2(560 — 1‘3)_1 (1 + (IEO — 1‘3)2) -
U(w) = (3 +23) 7 (1= (1/2)(1 4+ 0)T - z)
x exp{—(1/2)['1Tam + (1/2)oTo12 + (1/2)'3713} 0 (w),
w= (43:3 +(z- -z — 1)2)(3:% + 2371
71 = arctan(xy /z3), T = arctan((x cx— 1)(21‘0)_1) +7/2,
T3 = arctan((a: T+ 1)(2303)_1);
U(x) = :c52<1 -(1/2)1+o)I- :z:)
><(R13101 — RlBQCQ — R2B102 — RQBQCl)(p (w),
R1 =1+ (7‘1/2)(F2F3 — Fl) — (TQ/Q)(FgFl — FQ),
Ry = (11/2)(T'3l'1 — I'g) — (72/2)(T2l's — T'),
Bi = (1/2){1 - \Dols + (1/2) (2} + 23 + (2 -2 — 1)?)
X(l‘ R 1)_1(ZL‘% + ZL‘%)_I (111(1 + F1F2F3) + :L'Q(FIFQ — Fg)) },
By = (1/4) (x% +a5—(z-x— 1)2)(33 cx— 1) (2 4 23) 7!
X (xg(l + F1F2F3) + 2 (Fg — F1F2)>,
Cr =1+ (p1/2)(I2l's = I'1) + (p2/2)(I'sT'y = T'),

Co = (p1/2)(T'2 — I'sT'1) + (p2/2)(T2l's — I'y),
w=(z-z— 1",

1 = (1/4) (2:521"3 —xi(x-z+ 1)>(x% + x%)_l,
T = (1/4) <2x1x3 + zo(x -+ 1))(33% + 22)71,
pr=—(x-z—1) (2372&63 +zi(x-z+ 1))(95% +22)7!

x((xx —1)? +4x%>_1,
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ps=—(x-x—1)>2 (2$1x3 —xo(x -+ 1)) (22 +23)71 x
X <(x cx—1)% + 4353)71;
12) ¥(x) = ((z-2—1)? - 42} - 4x§)_1(1 - (1/2)1 + o)l - z)
X eXp{(Flrg —I's+ol1 — FOF3)7j} exp{(ro + O'FQ)TQ}
X exp{(1/2)(I‘1F2 — T3+ o0l +TIs) arcsin((27'4 —w)

x(@?+4)777) o (w),

w=T (241 -1), m=xi(z-z—1—2x0)
r = —(1/2){(1/2)(@ -z — 1 - 200) (0 -2 — 1) — 403 —423) "},
7-3:2( s(z-x—1—2x9) —x1(T - m—|—1—2x0)
)

—1

. 1/2
X(x-x—1—2x9) ((x'x—l — 4g% — 423

= 2r0—x-x—1)(x-z—1—229)" 1
13) W(z) = 23%(1— (1/2)(1 + 0)T - z) exp{7144 } exp{rag}
x exp{73q+ } exp{7aq} exp{7sq-}p (),
g+ = (1/2)(0 — ToT's + V3Loly) £ (1/2) (2T — o),
q=(1/2)(70 + 0Ty + V30T),
= (1/2)(x -z +1+2x0)(x-2— 1429 — V3x1) 7,
o= (1/2)In{2(z -2 — 1 + 22 + V3zx1)(z -z — 1)1},
functions w(y1,v2), Tk(y1,y2), k = 3,4,5 being determined by the following
relations:
Qm3 — 7'32 +3y1 =0, Qrs+2m3 =0,
Qrs +exp{—m} =0, w=1y5—4u(y; +1),
where
Q = 2420y, + 43y +1)0y,,
= (V3xy — 1) (V3x3) "t + (1/4)(2x0 + - x4 1)?
xrz(z-x — 1429 +V3x1) 7,
vy = (1/4)25 (- & — 1+ 2 + V/3ay) 3/
x{(2zg +x-x+1)> +2V3(2x0 + -z + 1)(V3z2 — 21)
X(x-x—1420 +V321) + 2220 — -2 — 1)(z -2 — 1 + 20 +V321)%}.
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Basis operators of the algebra A14 do not satisfy condition (1.5.10). Conse-
quently, they give rise to a partially-invariant solution which is not considered

here.

In the above formulae ¢ (w) is an arbitrary eight-component complex-

valued function.

To obtain conformally-invariant Anséatze for the four-component Dirac field
we act with the projector P = (1/2)(1 4 o) on expressions 1-13. As a result,

we have

[1+ (zo — x3)%][x2(20 — 23) — 21] 2 R(71)

x exp{—(71/2)1172} exp{—(72/2)71 (70 — 73)}

x exp{(73/2)(1 + 7073) o (w),

(23 4+ 23) "' R(m1) exp{—(a71/2)1172}

x exp{(72/2)(1 +v073) tp(w),

[14 (z0 — 23)*] ' R(11) exp{—(11/2)7172}

x exp{—(1/2)(v171 +7273) (70 — 73) }p(w),

[1+ (zo — 23)%][z2(z0 — 23) — 21] 2 R(71)

x exp{—(71/2)717v2 + (a11/2)(1 +v073) }

x exp{—(72/2)71(70 — 73) }p(w),

(22 + 23) "' R(m) exp{(B12/2)(1 + 7073)} (2.2.29)
x exp{(71/2)[1172 — (1 +7073)] (W),

(- 2)72(v - ) exp{(1/2)(3 = 7073) In[(z - ) /1] }op(w),
(@7 + 23) " R(m1) exp{(72/2) (1 + 1073) — (13/2) 1172} 0 (@),
(23 + 23) ' R(r2) exp{—(11/2)m72}p(w),

[14 (z0 — 23)*] " R(11) exp{—(11/2)7172}

x exp{—(72/2)71 (70 — 73) }p(w),

{1:% + x%)_l (cos(12/2) cos(13/2) + Yoy3 sin(z/2) sin(13/2)
+7 - [0 sin(12/2) cos(13/2) — 3 cos(12/2) sin(73/2)] }

x exp{—(71/2)1172tp(w).

Anséatze invariant under the algebras Ajy, Ao, A3 are given by very
cumbersome formulae. Therefore they are not adduced here.

In (2.2.29) ¢(w) is an arbitrary four-component function; w, 7y, 72, 73 are
real-valued functions defined above in the formulae 1-13;

R(7) = cos*(1/2) + ~oy3 sin®(1/2) + (1/2)y - 2(y0 — v3) sin 7.
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Thus, the problem of construction of Ansétze for the spinor field invari-
ant under the C(1,3) non-conjugate one- and three-parameter subgroups of
the conformal group is completely solved. It is important to note that these
Ansétze can be applied to reduction of any spinor equation invariant under
the groups P(1,3), P(1,3), C(1,3) in representation (1.1.24)-(1.1.28).

Now we will say a few words about Ansétze reducing Poincaré-invariant
equations for particles with arbitrary spins. Suppose that on the set of so-
lutions of the PDE under study a covariant representation of the Poincaré
algebra

P,=0" Ju=2,0"—2x,0"4+ S, (2.2.30)

where S, are constant matrices fulfilling the commutation relations of the
Lie algebra of the Lorentz group O(1,3), is realized. Then Ansétze invariant
under the P(1,3) non-conjugate one- and three-dimensional subalgebras of the
algebra with basis elements (2.2.30) are obtained by making in the P(1,3)-
invariant Ansétze for the spinor field the following replacement:

Y0Ya = 280a;  YaYo — —25a0, Yoo — 2Sap, a F#b.

On applying the same trick to the 15(1, 3) Ansitze for the spinor field we
get the Ansétze invariant under the ]5(17 3) non-conjugate subalgebras of the
algebra AP(1,3) having generators (2.2.30) and D = .0, + k (k may be a
constant matrix commuting with S, ).

Another method of constructing Poincaré and conformally-invariant An-
satze for fields with spins s = 0,1,3/2 via Ansétze for the Dirac field is sug-
gested in Section 2.6.

In conclusion we mention nonlocal Ansétze for the Dirac equation. As
established in [153] the real eight-component Dirac equation (1.1.14) admits
the Poincaré algebra having the following basis elements:

Py = 0"+ 0(Cs +T5) (0" +iml,), (2.231)
J = x,0" — x,0F + (1/4)(L, L) —TLT,). -
Here fu are (8 x 8)-matrices defined in Section 1.1, v =0,...,3, § = const.

Let us emphasize that the operators P, are non-Lie operators because the
coefficients of 0 are matrices not proportional to the unit matrix.

We have succeeded in solving systems of PDEs (1.5.20), (1.5.22) for each
inequivalent subalgebra of the algebra AP(1,3) listed in (2.2.7). As a result
we get P(1,3)-inequivalent Ansétze for the spinor field
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where A(x) is an (8 x 8)-matrix and w = w(x) is a scalar function, reducing
(1.1.14) to systems of ODEs for ¢ = ¢(w). These Ansétze cannot be, in
principle, obtained within the framework of the traditional Lie approach (for
more details, see [153]).

2.3. Reduction of Poincaré-invariant spinor equations

According to Consequence 1.5.1, substitution of P(1,3)-invariant Ansétze
(2.2.3) obtained in the previous section into the Poincaré-invariant equation

{iu0u — f1 = fayatb(z) = 0, (2.3.1)

where f; = fi(¥, ¥y41), yields a three-dimensional system of PDEs for a
four-component function ¢ = @(w1,w2,ws). As a direct computation shows
these Anséatze satisfy the relations

VY =@y, Py = Prap,
AN @) {ipdu — 1 — fara} Alm)e(w) (2.3.2)
= {’Yllf/ﬂlawa + (Qu + hu94)7u + fi+ foyate(w),

where f; = fi(@v, 2749); fua, 9u, hu are rational functions of wi, wa, ws.

Omitting intermediate computations we adduce a final result: reduced
equations for four-component functions ¢(J)

) (1/2)(v0 +3)e + (wl (v0 +73) +7 — 73)<Pw1 + V1P
+720w; = R,
~1/2 1/2
2)  (1/2)wy Y20 + Y0Puw, + 2wy Yoy + V30ws = R,
—1/2
3) (1/2)(’70 + 73+ ws / ’72)90 + (wl(’Yo +73) + 7 — 73)9%1
+2w;/27290w2 + (O‘(’y() + ’73) + w2_1/2’71)90w3 = R,
4) (1/201) (0 +78)9 + (0 +78)wr + (w1(70 = 73)

+(wa/wn1) (0 + 7)) Pun + 120ws = Ry
5)  MPur T V20w T V30w = R,
6)  Y0Pw + V1Puws + V2Puws = R,
7)) (90 +73)Puwy + 1Py + 120wy = R, (2.3.3)
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8)  (1/2)(h0 +3)e + (wl (70 +73) + 70 — Vs)wwl + Y20y

)
+<06(’70 +73) — 71)9%3 =R,
172

9)  (1/2)w, 'sto 900w + 205 2Py + (13 + awy P ) s = R,
—1/2

10) (1/2)wy wp + 130w + 203 20 + (Y0 — awy P 1) s = R,

1) (1/2)wy 720 + (30 + 713)0wr + 205 200 +

+(70 — 73 — 201wy 12 M)Pws = R,

12) =200, + 7290, + (3/2) (20790 + w1 (0 + 7)) Py = R,
13)  (20) 'va(v0 +713)e + (0 + 3)pus + (wl(% +93) = 20 twym
+(we + a7 %R)wr (30 +73) ) Pus + (0 — wi72)Puy = R.
I (2.3.3) o, = du,p, R =—if1(0p, prap)p — i fo(Pp, Prap) vagp.
P(1,3)-invariant Ansétze (2.2.8) also satisfy conditions of the form (2.3.2)
VY=o, by = gue,
AN @) (17,00 — f1 = foya) A(z)p(w) (2.3.4)
= (pu'y,uaw + (gﬂ + hy’Yﬁl)’Yp, - fi— f274)90(w)7

where f; = fi(@p, ©V49); pu, Yu, by are rational functions of w. Using this re-
sult we get the following set of reduced equations for four-component functions

(%2

1) mp=R,

2) ¢ =R,

3) (w+m)e=R,

) (1/2)(0 +7)e + (w0 + ) +70 = 33)¢ = R,

5 (1/2)(v0 +3)e + 726 = R,

6) —(1/20)mva0+n¢ = R,

7) —(1/204)%74@ + (aexp{-w/a}(yo+13) — 1) = R,
8) (1/2)w 2y + 2wy = R,

9)  —(1/2a)v374p + 3¢ = R,

10)  (1/2a)y0v4% + 09 = R,
11) (1/4)(v0 — 73)vae + (0 +73)9¢ = R,
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12)  (1/2w)(v0 +13)¢ + (0 +13)¢ = R,

13) (1/2aw)(a +94)(v0 +¥3) + (0 +73)¢ = R,

14)  (1/2)(v0 +73) a9 + (Y0 +73)9 = R, (2.3.5)
15) 2v1¢ = R,

16) 2(v2 —am)e =R,

17) (1/2a)w_1/2’yg(oz — Y1)+ 2w %y5¢ = R,

18) (1/2)(70 +78)(1 + @) + (w(90 + ) + 70 = 13)¢ = R,

19) (1/2)(v0 + 73 + @ P y2)p + 2w 204 = R,

20) w (0 +3)e + (70+73)90 R,

21) (1/2)(w(@+8) ) (L a)yu+20+8) (0 + )¢

+(10 +73)¢ = R,
22) (1/2) (w(w + 5)>_1(2w + 8 =) (0 +13)e+ (0 +13)¢ =R,
23) (1/2)(ww+1) " 2w+ 1) (0 +13)e + (o +13)¢ = R
(o +73)¢ ( (70+73)+70—73>¢:R7
)¢

)

24)

25) (0 +13)¢ (72 — B+ 73))9!5 =R,
)
)

[\V)

6 (1/4)(v0 = ¥3)74) 9 + (0 +73)¢ = R,

) +
(1/2)(v0 +73)(3 + ava)p + ( (o +73) +7 — 73)<p = R.

Here ¢ = dip/dw, R = —ifi(pp, 91ap)p —ifa(Pp, Prap)raep.
Formulae (2.3.2), (2.3.4) can be applied to reduce the equation

8,0Mp(x) = 0 (2.3.6)

by means of P(1,3)-invariant Ansétze for the spinor field ¢(z). To this end
we make use of the identity

00" = 7#8MA(93)A_1($)’Yuau (2.3.7)

which holds for each invertible (4 x 4)-matrix A(x). By force of (2.3.7), we
have

(w_ (70 + 73
27

A7 (@)0,0" A@)p(@) = A™H(2)3,0,A@) A~ (2),0,A() ()
= A7 @) A@) {YaFua @) P, + 70 (90(@) + b @)

= A @ fua(@)u, + 70 (903) + B @) } o
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the forms of functions fyq4, g, h, being determined by (2.3.3).
In the same way we establish that P(1,3)-invariant Ansétze (2.2.8) reduce
equation (2.3.6) to ODE

{Pu(@) 0 + (9u(w) + hu(w)m)'m}Qso =0,

where functions p,(w), gu(w), hu(w) are determined by (2.3.5).

Provided reduced equations (2.3.3), (2.3.5) possess nontrivial symmetry,
their dimension can also be decreased with the use of Theorem 1.5.1. But
direct application of the infinitesimal Lie method to investigation of the sym-
metry of systems of PDEs with variable coefficients (2.3.3), (2.3.5) is, in many
cases, impossible without applying symbolic computation packages [108, 109,
202, 252] (for multi-component systems of PDEs with n > 2 independent
variables these packages are also of little help).

In the papers [152, 155] we suggested a purely algebraic method of in-
vestigation of invariance properties of reduced equations. It is based on the
following assertion.

Theorem 2.3.1. Let G be a Lie invariance group of some PDE and H be a
normal divisor in G. Then an equation obtained via reduction with the help
of an H-invariant Ansatz admits the group G/H (here the symbol |/ means
factorization).

Proof can be found in [236]. >

We use an equivalent formulation of the above theorem: if there is a PDE
admitting a Lie algebra AG whose subalgebra QQ is an ideal in AG, then an
equation obtained by reduction with the help of a Q-invariant Ansatz is invari-
ant under the Lie algebra AG/Q.

To apply Theorem 2.3.1 to algebras (2.2.2), (2.2.7) we have have to select
the maximal subalgebras of the algebra AP(1,3) such that algebras (2.2.2),
(2.2.7) are ideals in these.

From the general theory of Lie algebras (see, e.g. [19, 194, 236]) it follows
that the algebra AG = (Q1,...,Qn) is an ideal in the Lie algebra AG = (¥,
Yo, sy X)), M > N iff

[Qi, Xj] = A%Qk, )\fj = const, (2.3.8)
the summation over repeated indices being implied.

Given an explicit form of the elements ();, we compute with the aid of
(2.3.8) the maximal subalgebra of the algebra AG such that the algebra AG
is an ideal in it. Next, we compute a factor-algebra whose basis elements
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according to Theorem 2.5.1 generate an invariance group of the corresponding
reduced equation.

The above scheme will be realized for the algebra As from (2.2.2). Sub-
stituting @ = Py into (2.3.8) and putting N = 1 we arrive at the following
relations for ¥; = O;VJW + O;PN:

[Po, 9§LVJMV+9§LPN] = )\jP(), j=1,.... M. (239)

Computing the commutators and equating coefficients of the linearly-in-
dependent operators P, J,, yield the system of linear algebraic equations for
constants 9;‘ v 9;-‘

Oa __ pal0 __ —
0;° =07 =0, a=1,2,3,
03-1(’, 0! are arbitrary real constants.

Consequently, the basis of a maximal subalgebra of the algebra AP(1,3)
containing the algebra As; = (Pp) as an ideal consists of the operators

P,, Ji2, Joz, J31. (2.3.10)

The basis of the factor-algebra ( P, Jap) /{ Fo) is formed by those operators
from (2.3.10) which are linearly independent of Py. As a result, we come to
the Lie algebra N

As = (P, Py, Py, Jia, Jo, Ja1) (2.3.11)

which, according to Theorem 2.3.1, is the invariance algebra of the system 5
from (2.3.3). The explicit form of symmetry operators is obtained by passing
from the "old ” variables z, 1(z) to the "new” ones w, p(w) according to
formula (2.2.3).

Below we write down the invariance algebras of equations (2.3.3)

A} = (—w2dys + w30, + (1/2)7172, By Oy ),
Ay = (w305, + w10y — (1/2)70735 Oy Ous)y Az = (Oy),
Ay = (201w30,, + W10, — (1/2)(0 4+ 3)71, —w10, + (1/2)7073,
W10wsys Oug),s
A5 = (—w10u, + w20, + (1/2)7172, —w20,5 + w30, + (1/2)7273,
— w30, + w105 + (1/2)7371, Owys Ouys Ous),
Ag = (w10, + w20, — (1/2)7071, w10us + w30, — (1/2)7072,
— w905 + W30, + (1/2)7172, Oy s Ouwys Ous), (2.3.12)
Az = (W10, — (1/2) (70 + 73)71, w105 — (1/2)(Y0 + 73)725 —w104,
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+ (1/2)7073, —w20uu3 + w30y + (1/2)7172, Oy Ours Ouss),
Ag = (Dy, Oug)y  Ag = (Buy, Ouy)y  A1o = (Bys D),
All = <aw1a aw3>a A12 - <aww aw3>v
Az = (20w10,, — (Y0 +73)71, 2wW30., + (W2 — 2)d,,

+ (1/20) (0 + 73) (@2 — 71w1), w10, )-

The invariance algebras of systems of ODEs listed in (2.3.5) are obtained
in a similar way

g1 = (Dus Y071, V072, 1172)s A2 = (D, M2, V273, V3M)s

= (11010 +73), 12(0 +73), N2, w0 — (1/2)7073, Q)
A4 = (n72), As=1(0.), As= (0, 101), Ar= (200, —073),

= (1013), Ao = (0w, M2), Ao = (O, M2), A = (O, M72),
A12 = (72(70 +73), @ "1 (0 + 73), WO — (1/2)7073),
Arz = (71 + a2) (0 + 73), w "1 (Y0 +73), wds — (1/2)7073),
Avs = (0 +78), 120 +73), o)y Ars = (Dy 2(70 +3)),
Aig = (0.), Air=(vw01), A= M), Aw=0, (2.3.13)
Az = (W0 — (1/2)7073, w1 (Y0 +73), w ™ y2(70 + 73), 1172),
Agy = ([ww+B) — o] (0 + ) (W + B — 7], ww + B)

— o] (0 + 73) (w2 — am)),

Agy = (w1 (0 +73), [wlw + B) — a] (0 + 73) (w2 — 1)),

Aoy = (W (o + 1), (W+1) 2010 +73)),  A2a = (1172),

Ags = (0, 1100 + 7)), Azg = (m2), Aoz = (m72)-

It is worth noting that any Poincaré-invariant spinor PDE after being
reduced by means of the P(1,3)-invariant Ansétze (2.2.3), (2.2.2) is invariant
under Lie algebras (2.3.12), (2.3.13). But for the specific reduced equations
these algebras are not, generally speaking, the maximal ones. We will consider

in more detail symmetry properties of the systems 5-7 from (2.3.3).
By the Lie method we can prove the following assertions.

Theorem 2.3.2. Equation 5 from (2.3.8) is invariant under the conformal
group C(3) iff
fi = @) (@) ™), §=1,2, (2.3.14)

Theorem 2.3.3. Equation 6 from (2.3.3) is invariant under the conformal
group C(1,2) iff (2.3.14) holds.
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Theorem 2.3.4. Equation 7 from (2.3.3) admits an infinite-parameter in-
variance group with the following generators:

a) with arbitrary fi, fo
Ql = awy QQ - _w28uJ3 + w38uJ2 + (1/2)’}/1727
Q3 = w10, + W20,y + (1/2) (w11 + w2y2) (0 +73),  (2.3.15)
Q1 = w104, — (1/2)7073;
b) with fi = fi(Yy), fo=0
Ql = 80017 QQ = _w28w3 + w38w2 + (1/2)717%
Q3 = w104, + w20u, + (1/2)(W171 + W2y2) (Y0 + 73),
Qs = w3vs(y0 +73), @5 = w10, — (1/2)7073;

¢) with f; = (L)% fi (P () 1), i = 1,2
Ql = 8&117 QQ = _WQaw:a + w3aw2 + (1/2)717%

@3 = w10u, + w200, + (1/2) (171 + w272) (70 + 73),
Q4 = waawa + ka QS = wlawl - (1/2)’7/073’
d) with f; = (Gv)V2fi(Pvup) 1), i =1,2
Q1 = w104, + w20u; + (1/2) (w171 + w272) (Y0 +73),
QZ = _w28uJ3 + w38w2 + (1/2)7172)
Q3 = w00, + Wo(wW20u, + w30uy) + 1o + (1/2)t0
X (w2 +72ws) (Y0 +73), Qu = w10, — (1/2)7073-
Here w, = wy(w1) are arbitrary smooth real-valued functions, an overdot
means differentiation with respect to w;.
Consequently, the invariance algebras of PDEs 5-7 from (2.3.3) are sub-
stantially wider than the algebras A5 — A7 adduced in (2.3.12).
Using the above results we have constructed the Ansétze for field i (x)

reducing PDE (2.3.1) with f; = f1(¢%), fo = 0 which cannot be obtained

within the framework of the Lie approach:

1) fi € C(RY, RY) is an arbitrary function

Y(x) = exp{wsya(yo +73) — (1/2) (w171 + w2y2) (0 +¥3) }
p(z1 +w1),
x { exp{—(1/2)y1v2 arctan[(z1 + wy)(z2 + w2) "]}
X [(z1 +w1)? + (22 + w2)?];
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2) fi=Ay)Y2, A e R

P(z) = wyexp{wsya(yo+73) — (1/2)(drm + 2v2) (0 + 73)
—(wo/2wo)[y1(z1 + w1) + 2(w2 + w2)] (0 +13)}  (2.3.16)
@ [wy ' (21 + w1)),
x ¢ exp{—(1/2) arctan|(z1 + w1)(z2 + w2) ]}
o [(w1 4 wr)?wy? + (22 + w2)wy 7;

Y(r) = (y0r0 —Mr1 — 72562)(963 — 23 —23)7/?

12 [530(130 - 951 - fU%) 1]
¥ [371(930 - xl - 37%) ]
exp{—(1/2) arctan(zy/x2)}
xp (a7 +a3)(25 — 27 — 23)77);
P(z) = (mz1+ 22+ y3a3)(af + 23 + 25) 732
¢ [z (2t + 23+ 23) 7,
x ¢ exp{—(1/2)y1y2 arctan(z;/x2)}
<o (2] +23) (2] + 23 + 25) 7).

In (2.3.16) wo, . .., ws are arbitrary smooth functions of zo+x3; ¢ = ¢ (w)
are unknown four-component functions.

Substitution of Ansétze (2.3.16) into PDE (2.3.1) with corresponding f1, f2
gives rise to the following systems of ODEs:

i = fl(@P)SD»
(i/2)w™ 2700 + 2i0 00 = f1(@p)e,

i1 = M@p) 2,

(i/2)w™ 200 + 2iw' 2720 = A(@p) %o,

o = —M@p) 2, (2.3.17)
iy = —A(w)l/2

(i/2)w™ 20 + 2iw" 290 = = (@) /2,

i = —/\(Wﬁ)l/Q

(1/2)w™ 0 + 2iw' P y0p = —A(@p) .

From Theorem 2.3.4 it follows that the Dirac equation (1.1.1) is conditi-
onally-invariant under an infinite-parameter Lie group. As established in [152,
155] a broad class of Poincaré-invariant equations (the Bhabha-type equations)

(iBs0s —m)¥(x) =0, m = const (2.3.18)
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possess such a property.
In (2.3.18) ¥ = (WL, w2, ... "7z = (20, 21,...,2N8), N > 2; B0, B1,. ..,
On are (n x n)-matrices satisfying the conditions

[ﬂ& ST ] = (QSTﬁp - gsp/BT); (2319)

where S-, = (6:8, — B,07), gsr = diag (1,—1,—1,...,—1).
It is well-known that the Bhabha equation is invariant under the Poincaré
group P(1, N) having the generators [30]

PT:nga$p7 JTp:xTPp_xpPT+STP'

Imposing an additional condition (9z, — 0z, )¥(z) = 0 on ¥ (z) we get the
following system of PDEs for ¥(w) = ¥(zg + N, T1,...,ZN-1):

N-1
{i(ﬁo + 0x)0y + D B0, — m}%) = 0. (2.3.20)

j=1

Theorem 2.3.5. Fquation (2.3.20) is invariant under the infinite-parameter
Lie group having the generators

Ql = a(.«.)()a ij‘ = _w,]awk + wkawj + Sjk’

N-1 , (2.3.21)
Q2 = 121 {Wi(wo)0u, — Wi(wo)(Sor — Skn)}s

where W1, Wo, ..., Wn_1 are arbitrary smooth functions, Wi, = AWy /dwy, 7,

k=1,...,N—1.

Proof. It is evident that the operators Q1, Qjr belong to the invariance
algebra of equation (2.3.20). Let us prove that the operator QQ2 commutes
with the operator of equation (2.3.21)

N1
L =1i(Bo+ BN)Ou, +1 Z B0y, — m.

Jj=1

Computing the commutator [L, Q] we have

N-1
[L,Q = i), {—Wk(ﬁo + BN ) (Sok — Skn)
k=1

~Wi[Bo + B, Sox — SkN]awo}-
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Resulting from relations (2.3.19), the equalities

[Bo + BN, Sok — Skn] =0,
(Bo + BN)(Sor — Skn) = (Bo + BN ) (BoBr — BrBo — BrBn
+BnBk) = (BoBoBr — Bobrbo) + (BNONBr — B BrBN)

+(BoBNBr — BnBrBo) + (BnBobr — BoBrbN)
=0k —0r=0, k=1,...,N—1

hold, whence it follows that [L, Q] = 0. The theorem is proved. >
P(1, 3)-invariant Ansétze for the spinor field ¢ = 9 (x) (2.2.8) obtained in
the previous section reduce a P(1,3)-invariant spinor equation

00 — ) i (0 Bya) ) + o (P (rae) )y feo = 0

to systems of ODEs of the form

1) 2iy39 4 (i/4)(v0 + 73) (Y073 — 2k)¢ = R,

2) i(v0 — 272 — 1)@ + (i/2)72(v073 — 2k)p = R,

3)  2iy3¢ + (i/4a) (0 +73)(av0y3 — 1172 — 2ka)p = R,

4) (i/2)(v0 — 3 — 2m1 + 2a72)@ + (i/2)(1 — 2k + y073) = R,
5 (i/2)(v0 — 73+ 27v2)¢ + (i/2)n (1 — 2k +073) = R,

6) iw(dwyr +72)¢+ (1/4)v2(v073 — 4k)p = R,

7) —iw(1271 + w2 (159 + 973) )b — i1 (Y073 — 4k)¢ = R,

8) i(v0 —3)¢ + (i/2w) (70 — 93+ (1 — we)

x (Y073 — Qk))SD =R,
9)  2iv9 + (i/4)(v0 — 13)(2 — 2k —y073)p = R,
10) i(yo — 3)® + (i/2)(v0 — 73) (w_l +(w+ 1)_1)90 + (i/4)
X ((’Yo +73)(1+w) + (0 —v3) (1 + W)_l)(%% —2k)p =R,
2in0¢ + (i/4) (o — 73)(4 — 2k —y073) = R,
2in0¢ + (i/4) (0 — 73) ((4 —2k)a — aoys + 71’72)@ =R,
(a2 =)@ + (i/2)(1 = 2k)ne = R,
i(v0 — yaw)@ + (i/20)v3(M172 — 2ka)p = R,
i(71 — yew)$ — (i/20)72(2ka + y073)p = R,

_ =
N =

—_
W
NS AN AN NN

—
ot
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) (i/e)(aly0 = ) — (@ + Dwrz) ¢ — (i/2a)72(2ka +7073)¢ = R,
) iw? (0 + ay3)@ + (i/20)w(vo + 2kays)e = R,
18) i(By2 — )¢ + (/28 ((1 = 2k)8 — arors) 0 = R,
) iwl® (g + Byg)p + (i/20)w! *y3(av073 — 172
+20k)p = R,
20) (0 — 3 +av)e+ (i/2)(1 = 2k) (0 — 13)p = R,
21) i(yo — 3 —wy2)¢ — ikyep = R,
22) (i/)(a(r2 = B1) + By —10))¢ — (i/28) (0 — 78)(2KB + 172)
= R,
23) i(ay1 + By2 + 7 —13)¢ + (i/w)(v0 — 13)¢ = R,
24) (i/a) (a0 = ¥8) = (@ + Dwy2) & + (i/20) (0 — 7s)ep
—(i/20)72(1073 + 2ka)p = R,
25) (i/20)((a = )0 —73) — (@ + Dw? (0 + 7)) ¢ + (i/20) (30 — 13)¢
—(i/4ow) ((70 —73) + (70 + 73)602) (v0v3 + 2ka)p = R,
26) i((ﬁ + v =By — ) — 0672)¢ + (i/2)71(1 = 2k + v0v3)p
+(i/2) (70 — 1) = R, (2:3.22)
27) (i/2)(1 = w) " (w0 = 12)¢ +i((1/2) (@270 + 22)
Hh(w = 1) (w0 — 1)) = Rlw - 1)71/2,

28) i(y1 — wy2)@ — ik(w? + 1) Hwn +12)p = R(w® +1)7/2,

29) (ino — wys)@ — ik(w? — 1) (wyo — 73) = R(w? — 1)~/

30) 2(72 —w( — 73 ) —ik(y0 —73)p = R,

31) i(wy — w?s)@ + (i/2)(1 — 2k) 1 =

32) i(wom —w vo)cp +(/2)(1 = 2k)nep =

33) z<w71 — (v — 73 ) + (i/2)(1 — 2k )'ylgo =R,

34) i(wy —w 72)(,0 +(i/2)(1 = 2k)y19p = R,

35) i(y2 —wy1)@ + (i/2) (0 — v3 + 2y — 2km)p = R,

36) i(m1 +ar2 — Y0 +78)% + (5/2) (Y0 — 98 + 127 + (1 = 2k)m )0 = B,
37) i(h2 — w(0 —18)) @ + (5/2)(1 = 2k)(30 — 13)¢ = R,
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38)
39)
40)

41)
42)

43)
44)

(0 + 73 — w0 — )¢ + (/2)(1 = 2k) (0 — W) = R,
i(v0 + 73 —w(o —73)>¢+i(1 —k)(v0 —13)¢ = R,

(
(
2(w( Yo — 272 = 73) + 70 +73) ¢ + (i/2) (2000 — 1) — 171 — 2k72)
(

i((1=w) (0 =) +72) ¢ + (i/2) (1 = 2k) (0 — 1) = R,

iw((1 = a)w! (0 = 3) + (1 + @)™/ (70 +73) )

+(i/40) [ (14 20(2 = k) )2 (70 — 75) — (1 + 2ha)w ™1/

x (0 + 73)}80 =R,

(0 + 73 — w0 — 1)) + (i/20) (20(1 = k) +71) (o — 1) = R,
iw((a = B (0 = 73) + (@ + w2 (30 +15) )¢

+(i/48) [ (o + 481 = k) = 74)w"/? (30 — 1)

—(a+ 4k = y)w (0 + 73) |0 = R,

where R = (@go)l/%{fl(@p(@%sO)*l) + f2(@90(@’}’4¢)71)’74}90~

At

last, Ansédtze (2.2.29) invariant under C(1,3) non-conjugate three-

dimensional subalgebras of the algebra AC(1,3) listed in (2.2.29) after being
substituted into a conformally-invariant spinor equation

.0t — (G0 i (P (@a0) 1) + fo (D0 (Brae) ) fip =0

give rise to the following systems of ODEs for ¢ = p(w) :

1) i(—(3/9)(@? +4) (30 = 18) + 70 + 78 +wn +27)
+i(’71 —w(y0 —73) + (1/2)7172(70 — 73))90 =R,

2) i1 cosw — ysinw — a0 —3) )¢ — (i/2)(3 — 07)
X (y1sinw + 2 cosw)p — (ia/2)(y0 — ¥3)Y172¢0 = R,

3) i(y2—1+13)¢ =R,

1) i(m +alro —)e)é + 2imp = Re

5) (71 + a2 — Bl — 1))@ — (i/2) (3m (2:3.23)

+2ay2(1 + ’yo’yg))go = R67”/3,

w/3
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6) i(w2'yg —wm)e —iw(l + w2)71’yg(1 + Y073)¢ + (i/2)(w2 +3)
X (w? + 1) 'y — (i/2)(Bw® + 1)(w? + 1) '2up = R,

7) i((WQ + D)Y4(y0 +93) + W+ 1) V4 (0 — 3) — 2w72)¢
ti(w(w? + 1) (30 +78) — (@2 + 1)7H(1 +707)7%2
~(3/2)2)¢ = R(w?+ 1)'/1,

8) 2wy — (3i/2)y20 = Ruw™ /6,

9) —imp=R,

10) —2iw(w — 4)y2¢ — i((1/2)w1/2(w ) 2)7290

_ Rwl/z(w _ 4)1/2 ((1/2) [wl/Q + (w _ 4)1/2})1/3’

where R = (¢0)/*{ fi(@0(@110) 1) + fo (20 (ae) ) b

2.4. Exact solutions of nonlinear spinor equations

Using the results obtained in Sections 2.2, 2.3 we will construct in explicit
form multi-parameter families of exact solutions of the following systems of
nonlinear PDEs:

{i7,0 — AWp)Y %} = 0, (2.4.1)
{ivu0, —m — MNY)F e =0, (2.4.2)

which are obtained from (2.3.1) by putting fi = A)Y/?¢, f, = 0 and
fi =m+ AYp)F, fa =0, respectively.

In (2.4.1), (2.4.2) m, A, k are real constants, m # 0, k # 0.

Equation (2.4.1) with & = 1/2 was considered by Heisenberg [180]—[74] (see
also [184]) and equation (2.4.2) with £ = 1 was suggested by Ivanenko as a
possible basic model for the unified field theory [192].

According to Theorem 1.2.1 equations (2.4.1), (2.4.2) are invariant under
the Poincaré group. In addition, system of PDEs (2.4.1) admits the one-
parameter group of scale transformations (1.1.28).

To reduce equations (2.4.1), (2.4.2) we apply P(1,3)-, P(1,3)- and C(1, 3)-
invariant Ansatze constructed in Section 2.2.
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1. Poincaré-invariant solutions of system of PDEs (2.4.1).

1.1. Integration of reduced ODFEs. Substitution of the P(1, 3)-invariant Ansétze
(2.2.8) into (2.4.1) gives rise to systems of ODEs (2.3.5) with R = —i\(@gg)'/?*
x . When integrating these we will use essentially the following assertions.

Lemma 2.4.1. Solutions of equations 3, 12-14, 20-23 from (2.5.5) satisfy the
relation @ = 0.
Proof.  Multiplication of the ODE 3 from (2.3.5) by the matrix g + 73 on

the left yields the following consistency condition:

1/2k(

—iA(Pyp) Yo +73)p =0,

whence ¢p = 0 or (70 + v3)¢ = 0. The general solution of the algebraic
equation (g + v3)¢ = 0 is represented in the form

© = (y0+73)¢1,

where 7 is an arbitrary four-component function-column.

Since ¢ = {p1(70 +73)}170 = @1(70 + 74), an identity g = @1(y0 +
74)%¢1 = 0 holds. Other equations are treated in the same way. >

Lemma 2.4.2. The quantity pp is the first integral of systems of ODFEs 1, 2,
5, 15, 16, 25 from (2.3.5).
We prove the assertion for the system 1. Multiplying it by —v3 yields

» = iA(@p) /5. (2.4.3)
The conjugate spinor satisfies the following equation:

Multiplying (2.4.3) by @ on the left, (2.4.4) by ¢ on the right and summing
the expressions obtained we arrive at the relation

¢ = —iX(pyp) '/

oo+ pp =0,

whence d(@p)/dw = ¢p + ¢ = 0. The lemma is proved. >

Due to Lemma 2.4.1 we conclude that the Ansdtze numbered by 3, 12-14,
20-23 give rise to the solutions of equation (2.4.1) which satisfy the condition
Y1 = @p = 0. Consequently, a factor A(t))'/?# determining the nonlinear
self-coupling of the spinor field ¢)(x) vanishes. Such solutions are of low interest
and are not considered here.
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According to Lemma 2.4.2 the system of ODEs 1 from (2.3.5) is equivalent
to the linear equation
b = iANCY a0 (2.4.5)

with a nonlinear additional constraint
¢p = C = const. (2.4.6)
Integrating ODE (2.4.5) we get
p(w) = exp{iNC 3wy, @(w) = X exp{—iAC/*Fqw}. (24.7)

Hereafter y is an arbitrary constant four-component column.
Substitution of expressions (2.4.7) into (2.4.6) yields

X exp{—iAC"/ %50} exp{iAC Pyl = C,
whence yx = C. Thus, the general solution of the system of nonlinear ODEs
1 from (2.3.5) is given by the formula

1/2k

p(w) = exp{iA(Xx) 3w x-

The general solutions of equations 2, 5, 15, 16, 25 are constructed in the
same way. As a result, we have

= exp{—iA(x0) " owlx,
= exp{ina (V)™ = (i/2) (0 + ) )w}x;

()
()

@) = exp{(in/2) (00" * v, (2.4.8)
() (

()

€ €

)

= exp{(iA/2)(1 +a*) 7 (00 (2 — am)wlx,
exp{ [12(70 + 78) + A0 (32 = B0 +8) ) |w .

)

S

To integrate systems of ODEs 6, 9-11 from (2.3.5) we will use their sym-
metry properties. As established in Section 2.3 the equation 6 is invariant
under the Lie algebra with the basis elements 0, ~9y3. We seek for a solu-
tion which is invariant under the one-dimensional subalgebra of this algebra
<8w - 9’70'73)? 0 e R'.

In other words, a four-component function ¢ = ¢(w) has to satisfy the
additional constraint

Qp = (0, — Ov073)p = 0.
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The general solution of the above equation reads

o(w) = exp{Oyo73w}X’, (2.4.9)
where X’ is an arbitrary constant four-component column. Substituting (2.4.9)
into the system of ODEs 6 from (2.3.5) we have
(6717073 — (1/20)1172) exp{Br0750 by’ = —iAr exp{ro750 X,
where 7 = (x'x/)"/?*.

Multiplying both parts of the above equality by exp{—6vpysw} on the left
we arrive at the system of algebraic equations for y’

{(972 -~ (1/204)71)74 + z‘AT}X’ —0. (2.4.10)

Consequently, substitution (2.4.9) reduces the system 6 to algebraic equa-
tions (2.4.10). Making in (2.4.10) the transformation

X = (072 = (1/20)m)7 — ixT) x
yields
A272 — 0% — (20) 2] = 0.
As x # 0, the equality
0 = (c/2a)(4N>720® — 1)Y2, e=+1 (2.4.11)

has to be satisfied. B
The condition 7 = (x'x’)
for 7

1/2k gives rise to the nonlinear algebraic equation

728 = 20272 () 4 2iAT0(Xy274x) — idTa L (Xy174x). (2.4.12)

Thus, we have constructed a particular solution of the system of ODEs 6
from (2.3.5)

o(w) = exp{07075w} ([072 = (1/20)m]ya — A7) x,

where 0, T are determined by (2.4.11), (2.4.12).
Particular solutions of systems of ODEs 9-11 from (2.3.5) are obtained in
an analogous way

p(w) = eXP{9V1’72w}([970 —(1/2a)73]ys — iAT)X, (2.4.13)
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parameters 6, T being defined by the formulae

728 = 22272 (xXx) + 20A70(xv074x) — iIATa T (X1374X),

2.4.14

0 = (¢/2a)(1 — 402 N272)1/2; ( )

o(w) = exp{@*yl'wa}([H’yg + (1/2a)v0]ya — i)\T)X, (2.4.15)
parameters 6, 7 being defined by the formulae

728 = 22272 (xXx) + 20A70(xv374x) + iATa T (Xv074X), (2.4.16)

0= (g/2a)(1 + 4a2)\292)1/2;

o(w) = exp{fy172w} (49(7@ + v3)74 + (Y0 — ¥3)Y4 — 41')@))(, (2.4.17)
parameters 6, 7 being defined by the formulae

728 = 32X272(yy) — 8iAT[X(70 — 73)X]

2.4.18
7322')\373[)2(70 +v3)4x], 6= —\272, ( )

Equation 8 from (2.3.5) by virtue of the change of variables

pw) = w M g(w),

where ¢(w) is a new unknown four-component function, is reduced to the
following system of ODEs:

20w P2 = ™1 (G9) /7.

1/2

Multiplying both parts of the above equality by (i/2)yew™"/¢ we come to

the equation ) _
& = (i/2)w™ (1320 Ak (G 1/, (2.4.19)

the conjugate spinor satisfying the following equation:
QE — _(i)\/Q)w_(1+2k)/4k’YQ(§5¢)1/2k¢- (2420)

Multiplying (2.4.19) by ¢ on the left, (2.4.20) by ¢ on the right and sum-
ming the equalities obtained we get

¢ + ¢ =0,

whence ¢¢ = C' = const. Consequently, equation (2.4.19) is equivalent to the
linear ODE _
¢ = (iX/2)w™ GFHD/ARCL/ 2k, (2.4.21)
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which is supplemented by the additional constraint ¢¢ = C.
Integration of (2.4.21) yields

k#1/2, d(w) = exp{2iXk(1 — 2k)"1CY2ypuk=1/4k1
k=1/2, ¢w) = exp{(ir/2)C2Inw}.

Since C' = ¢¢ = Y, the general solution of the initial equation 8 is given
by the formulae

k#1/2, o) = w ' exp{2iAk(1 - 2k)~" (xn)"/*
X yauw 21/ 4k (2.4.22)
k=1/2, ¢w) = o Y exp{(i\/2)(xx)12 Inw}x.

To integrate the system of ODEs 19 from (2.3.5) we make the change of
variables ¢(w) = w™/%$(w) transforming it to the form

2w 296 + (1/2) (Y0 + 13)d = —idw ™/ (Gg) /g, (2.4.23)

Solutions of the above system of ODEs satisfy the condition ¢¢ = C' =
const, whence it follows that equation (2.4.23) is linearized

2w 200 + (1/2) (70 + 73)¢ = —iACY/ 2Fw™ /4, (2.4.24)
A general solution of (2.4.24) is looked for in the form

ow) = {fiw)+r2f2(w)+ (0 +73)f3(w)

(2.4.25)
+v2(70 + v3) fa(w) }x,

where f;(w) are some real-valued scalar functions.
Substituting (2.4.25) into (2.4.24) we arrive at the following system of four
linear ODEs:

22 = _i)\CI/ka—l/zlka’

2w1/2f2 _ Z-)\Cl/2kw—1/4k:f1’

2w/ fs = (1/2) fo — iNC 2R~k g,
22 fy = (1/2) f1 +iAC*Rw= V4 £y,

Integration of the above system is carried out by standard methods. As a
result, we have

fi = coshf(w), fp = isinhf(w),
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w

I3 (i/4){coshf(w)/zl/2 sinh[2f(2)]dz

—sinhf(u))/z*l/2 cosh[2f(z)]dz}, (2.4.26)

w

fa (1/4){cosh f(z)/,fl/2 cosh[2f(2)]dz

w

— sinh f(w) /271/2 sinh[2f(z)]dz},
where

; _{ (AC/2) Inw, k=1/2, P

| 20Mk(1 = 2k) IOV kR 4k 2 /2,

From (2.4.26), (2.4.27) it follows that ¢¢ = Yx, whence we conclude that
C = xx. Thus, the general solution of the system of ODEs 19 from (2.3.5) is
given by the formula

ew) = w V1 +72fo + (Y0 +73) f3 + 12(Y0 + 73) fal X

functions f1(w),..., f2(w) being defined by (2.4.26), (2.4.27) with C = xx.
In addition, we have succeeded in integrating the systems of ODEs num-
bered by 4, 24, 27 (with ae = 0). These systems can be written as follows:

(N/2) (0 +73) + (w30 +78) + 70 = 73) ¢ = —iA(@0) /¢,

where cases N = 1,2, 3 correspond to equations 4, 24,27 (with a = 0) from
(2.3.5).

Multiplying both parts of the above equality by the matrix w(vyo + v3) +
Yo — v3 on the left yields

dwp = —{N(l +9078) + iA(@e) /% (w(% +73) + 7 — 73) }90, (2.4.28)

the equation for the conjugate spinor taking the form

dwp = —@{N(l —7073) — iA(@p) (W(VO +73) + 70 - 73) } (2.4.29)
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Multiplying (2.4.28) by ¢, (2.4.29) by ¢ and summing we arrive at the
relation
b0+ @ = —2N@p,
whence it follows that gy = Cw= /2, C = const.
Substitution of the result obtained into (2.4.28) gives rise to a linear equa-
tion for p(w)

dwp = {=N(1 4 yo73) + irw? (W0 +73) + 70 — 73) Yo,

where 7 = —\CY/?* 9 = —N/4k.
Writing this equation component-wise (we assume that y-matrices are of
the form (1.1.8)) we get a system of four ODEs

2w? = iTwd 12, 2wl = —N! + iTw? 3,

(2.4.30)
2w = iTw? 1?2 2wp? = —Np? + iTwl 0,

which is equivalent to the following second-order system of ODEs:

W23+ (1/2)(N = 20)w® + (12 /4)w?Hie0 = 0,
w2¢3+(1/2)(N—29)w¢3+< 2[4 =0,
ol = —(2i/T)w 0%, o = —(2i/T)w 0 0

The first two equations of the above system are the Bessel-type equations
[26, 197, 282]. Provided 0 # —1/2, their general solutions are given by the

formulae
o0 = w(2+29’N)/4(x0Jy(z)—i—szy(Z)),

(2.4.31)
PP = wWCHNAGAY, (2) £33 0,(2)),

where J,,, Y, are the Bessel functions, z = 7(20 + 1) 'w@+1/2 1 = (9 + 1
— N/2)(1+20)71, x°,...,x® are arbitrary complex constants. Consequently,
the general solution of system of ODEs (2.4.30) is given by (2.4.31) and by
the following formulae:

SOQ —  (2+20-N) /4{( /27)(N — 20 — 2)w —6-1

X (XOT(2) + XPYo(2)) — w2 (x ij<z> +x2(2)) }, o)
(,01 —  (2+20-N) /4{( /27)(N — 260 — 2)w™

X <X3J,,(z) +xY, (z)) —1/2 <X3J,,(z) + XIY,,(Z)> }



2.4. Exact solutions of nonlinear spinor equations 143

Formulae (2.4.31), (2.4.32) determine the general solution of nonlinear
equations (2.4.28), (2.4.29) provided

Pp = 900*902 + 900902* + 903*801 + 903()01* _ Cw_N/Q.

Substitution of expressions (2.4.31), (2.4.32) into this formula gives rise to
the following equality:

2i (20 + 1) (7m) 7 (O — AT+ XM

_X1X3*)w—N/2 _ CW_N/Q

(we have used a well-known identity for the Bessel functions J(2)Y,(2) —
Y, (2)J,(2) = 2(mz) "t [282)).
Comparing the both parts of the above equality yields

C=2i(20 +1) (rm) (O = X+ =X,
whence
C = {i (2k — N) (k) 7 (X7 = X Xt — )P e,

System (2.4.30) with 8 = —1/2 (& k = —N/2) is integrated in elementary
functions. Omitting intermediate calculations we present the final result

)2#N—-1, N=23

gDO = X0w9++X2w077

o' = —(2i/T)w (03 +0_xw-), (2.4.33)
p? = —(2i/T)w 20X W + 0 xR,

0 = X3 4+ xlw?-,

where 0+ = (1/4) (1 ~ N+ [(N-1)?%- 47'2]1/2), X%, ..., x3 are arbitrary
constants; 7 satisfies the equality

. * * * * 1/2
i = X0 = ) (N = 1) = 472)
— (_1)N+17_N+1)\—N,
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2) T#0, N=
©¥ = x%cos[(7/2) Inw] + x?sin[(7/2) Inw],
el = —iw™1/? (X cos[(7/2) Inw] — x3sin[(7/2) In w]), (2.4.34)
©? = —iwfl/z(x cos[(7/2) Inw] — XY sin[(7/2) lnw]), -
©3 = x3cos|[(7/2) Inw] + x!sin[(7/2) Inw],
where \Y,..., x> are arbitrary complex constants; 7 is determined by the
equality
SO = X 3 — )
) T=¢e(N—-1)/2, e==1
@ = NGO+ P Inw),
el = (i/21)(N — 1)w™1/2p3 + dig(1 — N) " lw=(VFD/4 1 (2.435)
P = (/20N = D20 4 die(1 - N) - (VHD/42
p* = WA £y nw),
where X, ..., x? are complex constants satisfying the equality
200X = X" = X = ) = (DN (V= 1)/22) M

Thus, the general solution of system (2.4.28) is given by formulae (2.4.31),
(2.4.32) under k # N/2 and by formulae (2.4.33)—(2.4.35) under k = N/2.
Now we turn to Ansétze (2.3.16) which were obtained by reducing the non-
linear Dirac equation (2.2.1) by means of the one-parameter subgroups of the
group P(1,3) and then by means of symmetry groups of the reduced equations
5-7 from (2.3.3). As established in Section 2.3 Ansétze (2.3.16) reduce system
of PDEs (2.4.1) to systems of ODEs (2.3.17) with f; = A(¢1)Y/?#. Up to the
sign at the nonlinear term /\(Lﬁcp)l/ 2k, they coincide with systems of ODEs
1, 2, 8 from (2.3.5). Using this fact it is not difficult to construct their general
solutions
plw) = exp{idn (o) whx,
exp {2i)\k(1 —2k) 1 (o) Y%y,

exp {(iN/2)(xx)2 Inw} x, k=1/2,

w174
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pw) = exp{ir(xx)*nwlx,

pw) = w M exp{—2iA(xx)"*2w'}x, (2.4.36)
pw) = exp{ir(xx)"*ow}x,

pw) = exp{—iA(xx)"*nw}x,

pw) = w  exp{2iA(x0) 2w/} x,

pw) = exp{—iA(x) " *nwly,

(w)

w™ M exp{2iA () 2aw .

S

Here x is an arbitrary constant four-component column.

The fact that many of nonlinear systems (2.3.5) are integrable in quadra-
tures is closely connected with their nontrivial symmetry. The last property,
in its turn, is the consequence of the broad symmetry admitted by the initial
PDE (Theorem 2.3.1). Therefore, the wider the symmetry group of the equa-
tion under study the more effective is the application of the group-theoretical
methods for construction of its exact solutions.

1.2. Ezact solutions of equation (2.4.1). Substitution of formulae (2.4.8),
(2.4.9), (2.4.13), (2.4.15), (2.4.17), (2.4.22), (2.4.25)~(2.4.27), (2.4.31)—(2.4.36)
into the corresponding P(1, 3)-invariant Ansétze (2.2.8) and (2.3.16) yields the
following classes of exact solutions of nonlinear spinor equation (2.4.1):

the case k € R!

Pi(z) = exp{—iA(xx)"*0zo}x,
Ya(x) = exp{iA(xx)"*ysas}y,
Y3(x) = exp{(1/2)y0v3In(zo + z3)}
x exp{ina[(Xx)/*F = (i/2)(v0 + 73)lz2} X,
Ya(z) = exp{—(1/2)(70 + y3)1(z0o + x3)}
x exp{(iA/2) (0x) "y [221 + (w0 + 73)°}x.
Ps(z) = exp{—(1/2)(0 + y3)71 (w0 + z3)} exp{(iA/2)(1 + &*) !
< (XX) % (12 — o) [2(2 — am1) — a0 + x3)°] X,
Yo(r) = exp{(1/2)[x1 — aln(zo + x3)](zo + x3) ' (y0 + 13)m}
x exp{(1/2)v0y3 In(zo + x3)} eXP{ (72(70 +73) + i ()

x[72 = B(v0 +79)]) [z — BIn(zo + w3)] b,

Yr(x) = exp{(2a)~ (w2 + 20021)7073} (072 — (20) "Ty1)7a — @A,
a €RY, 0, 7 are determined by (2.4.11), (2.4.12);
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Ys(z) = exp{(2a) " (2a0z3 — 20) 1172} (070 — (20) " 1y3) 4 — IAT]X,
= ]Rl; 0, T are determined by (2.4.14);
Yo(r) = exp{[(1/4)(x3 — x0) + 0(z0 + 23)]7172}
X [40(v0 + 73)7a + (Y0 — ¥3)7a — 4iAT] X,
0, T are determined by (2.4.18);
Yio(x) = exp{[—(1/2)(w1y1 + w2y2) + w3va](Y0 +73)}
x exp{iA ()1 (21 + w1) bx;

the case k € R!, k #1/2

due) = exp{(1/2)y073 In(zo + z3) b (a5 — 23),
¢(w) is determined by (2.4.31), (2.4.32) under N = 1;
Yia(@) = [(@1+w1)? + (22 +w2)’] " exp{[—(1/2) (i

+1i272) + w3val (Y0 +73) } exp{—(1/2)1172
x arctan((x1 + wy)/(z2 4+ w2)]} exp{2iAk(1 — 2k) !
X (00 P al(w1 + wi)? + (2 + wp)? BED
Yia(x) = (o] +a3)" exp{(1/2)7073 In(zo + z3) — (1/2)71172
x arctan(zy/@2) Hf1 +72/2 + (0 +73).f3 + 7v2(0 +73) fatx,
fi = fi(z? + 23) are determined by (2.4.26), (2.4.27)
under k # 1/2;

the case k € R!, k # 1

Yua(z) = exp{(1/2)z1(xo +23)" ' (y0 +3)1}
x exp{(1/2)7073 In(zo + x3) }oo(af — 2T — 23),

¢(w) is determined by (2.4.31), (2.4.32) under N = 2;

the case k € R, k # 3/2

dis() = exp{(1/2)(zo +x3) " (30 +3)(M1z1 + Y22)}
x exp{(1/2)v073 In(zo + x3) }p(x - 2),
¢(w) is determined by (2.4.31), (2.4.32) under N = 3;
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the case k = 1/2

drs(z) = exp{(1/2)y073 n(xo + z3) (x5 — 23),
¢(w) is determined by (2.4.34);
drr(x) = (2f +23) " exp{(1/2)7073 (w0 + 73) — (1/2)7172
x arctan(z1/22) Hfi +v2f2 + (Y0 +73) f5 + 72 (0 + 73) fal X,
fi = fi(2? + x3) are determined by (2.4.26), (2.4.27)
under k = 1/2;
dis(z) = [(@1+wi)? + (22 +w)?)
x exp{[—(1/2) (w171 + wa2y2) + w3va] (0 + 73)}
x exp{—(1/2)y1y2 arctan[(z1 + w1)/(z2 + w2)|}
x exp{(iA/2) (xx)72 In[(z1 + w1)? + (22 + w2)*]}x;

the case k =1

Yro(z) = wy' eXP{ (—(1/2)(11'1171 + 27y2) + w3ys
= (1/2)towg 1 (21 + wi) + (22 + w2)]) (0 + 73) }
x exp{idwg ' (0x) 2y (21 + wi) bx;
Yan(r) = wy (a1 +w)? + (w2 +wp)? "V
X exp{ (—(1/2)(11)171 + 1bay2) + w3y — (1/2)bowy *
X[i(z1 +w1) + v2(z2 + w2)] (0 + 73)}
x exp{—(1/2)y1y2 arctan[(z1 + w1)/(z2 + w2|}

x exp{—2iA(Xx) 2 al(21 + w1)? + (w2 + w2)? Ay Py,
Por(z) = (om0 — a1 — Yow2)(xf — 2} — 23) 732

x exp{iA(XxX)" 2 yozo(f — 2f — 23) "}y
Uoa(z) = (om0 — M1 — Yex2)(af — 27 — 23) 732

x exp{—iA(xx) 21 (@ — 23 — 23) "y
Pas(z) = (yomo — N1 — Y2w2)(2g — 23 — 23) " (af + 23) 1/

x exp{—(1/2)7172 arctan (w1 /z2) } exp{2iA(xx) />

xa(af +a3) Y (af — o — 23) P

¢24($) = '}/a-ra(xbxb)_gﬂexp{_i)‘(XX)l/nylxl($a$a)_1}X§
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Vos(@) = Yata(wara) (2f + 23) T exp{—(1/2)117

x arctan(z1/x2) } exp{2iA(xx) /(27 + 23) " (wawa) T}
Pog(z) = exp{(1/2)z1(xo +x3)" " (y0 +13)n}

x exp{(1/2)y07y3 In(zo + x3) (x5 — a7 — 23),

¢(w) is determined by (2.4.33) or (2.4.35)

under N = 2;

the case k = 3/2

Yor(z) = exp{(1/2)(v0 +73)(v121 + Y22) (0 + 23) '}
x exp{(1/2)yoys In(xo + z3) }o(x - ),
¢(w) is determined by (2.4.33) or (2.4.35)
under N = 3.

In the above formulae wy, wy, we, w3 are arbitrary smooth functions of
o + x3, an overdot denotes differentiation with respect to zg + x3.

In addition, in [152, 155] we have constructed two other classes of exact
solutions of system of PDEs (2.4.1)

the case k = 1/2

as(x) = wlexp{(1/2)m (0 +8) (w0 + 23)} 12 + B30 + 7))
x[w2 + B(zo + 3)] + (1/2)1[221 + (20 + 73)*]}
x exp{id(xx) (8 + 63) '™ (B2 + B(h0 + 8)] + Ban )
(ﬁl (22 + B(xo + x3)] + (B2/2)[221 + (20 + 563)2]) }X;

the case k € RY, k<0

Yoo(z) = exp{(1/2)v1 (70 +73)(z0 + 333)}{ ([72 + B(v0 +v3)l[z2 + B
X (w0 + 23)] + (1/2)m (221 + (w0 + )%] ) (@) + ig(w) }x-
Here a, B, f1, (32 are arbitrary constants,
w = [zg + B(xo + x3)]> + (1/4)[221 + (w0 + 23)*)°,
flw) = \k|1/2 (5(1 _ ]{7)1/2)\71(X)()fl/zle)kw—(kJrl)m7

k
g(w) = —e(1 — k)12 (5(1 _ k)1/2)\71(5<x)71/2k) w2 = 4.
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Thus, we have constructed wide classes of exact solutions of the nonlinear
Dirac equation (2.41), some of them containing arbitrary functions. By a
special choice of these functions we can select subclasses of exact solutions
possessing important additional properties.

For example, if we put

wo = exp{0(zo + 23)%}, OER, wy=wy=w3=0

in the solution t19(z), then it takes the form

P(x) = exp{—0*(zo + :v3)2}(1 + 0% (zo + 23)(Ma1 +yew2)  (2.4.37)
x (0 +73) ) exp{ AN s expf{—0% (w0 + 23)°} .

This solution is localized inside the infinite cylinder having the generatix
parallel to the coordinate axis Ox3. In addition, it decreases exponentially as
Ty — +00.

It is worth noting that (2.4.37) under § = 0 becomes the plane-wave solu-
tion

U(z) = exp{id(xx) 21z} (2.4.38)

Consequently, (2.4.37) can be considered as a perturbation of the stationary
state (2.4.38).

1.8. Generation of solutions. Solutions ¥ (x)—129(x) depend on the variables
x, in asymmetrical way, while in equation (2.4.1) all independent variables
are enjoying equal rights. Using the language of physics we can say that
system of PDEs (2.4.1) is solved in some fixed reference frame. To obtain
solutions (more precisely, families of solutions) not depending on the choice of
a reference frame it is necessary to apply the procedure of generating solutions
by transformations from the Poincaré group [137, 139, 140, 155].

Let the equation under study be invariant under the Lie group of trans-
formations of the form

o), = fu(z,0), '(a) = Az, 0)y(x), (2.4.39)

where A(x,0) is an invertible (m x m)-matrix, § = (61, 6o,...,0,) are group
parameters. In addition, there is some particular solution 17 (z) of the equation
considered.

Theorem 2.4.1. The m-component function r(x) determined by the equality

vir = A~ (@, 0)0r( f(x,0)) (2.4.40)
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is a solution of PDE admitting the Lie group (2.4.539).

Proof.  According to the definition of the invariance group, the Lie group
(2.4.39) transforms the set of solutions of the equation under study into itself.
In other words, provided ¢ = (x) is a solution of the equation written in
coordinates x, 1(z) the function constructed by means of formulae (2.4.39) is
a solution of the same equation written in coordinates z’, ¢’(z’). Resolving
(2.4.39) with respect to ¢(x) we have

1[)(1,‘) = A_l(x> 9)¢/(3§,),

whence due to (2.4.39) we get
w(x) = A7 (@, 0¥ (f(x,0)).

Denoting ¥ = v, ' =1y yields (2.4.40). >
Using Theorem 2.4.1 it is possible to obtain a r-parameter family of exact
solutions starting from a single solution.

Definition 2.4.1. Formula (2.4.40) is called the formula for generating solu-
tions by transformations from the group (2.4.39).

Definition 2.4.2. A family of solutions of the form

’l/)([IJ) :lbo(x,T), T = (7—177_2;---,7—3) GRS,
Ri(T):O, i:l,...,s—n—i—l’ 1§7’L§S

is called G-ungenerable (or ungenerable) provided the equality

A_l(a:, 0)vo (f(x, 0), 7') =1y (CC, (T, 9))

holds and what is more R;(7'(7,0)) =0, i=1,...,s —n+ 1.

Using the final transformations from the group C(1,3) (1.1.24)—(1.1.28)
and Theorem 2.4.1 we obtain formulae of generating solutions by transforma-
tions from the conformal group C(1,3).

1) the group of translations
Yri(x) = r(a), @, =2, + 0y (2.4.41)

2) the Lorentz group O(1, 3)
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a) the group of rotations O(3)
¢11($) = exp{(1/2)5ab09a5bc}¢1(x/)7
Ty =T0, T, = Tac080 — 0 e ypebpe sin O (2.4.42)
+0720,(0pxp) (1 — cos B);
b) the Lorentz transformations
Yri(z) = exp{—(00/2)07a}¥1("),
x(, = x¢ cosh Oy + x4 sinh O, (2.4.43)
x!, = x4 coshfy + xosinh by, ), = xp, b# a;
3) the group of scale transformations
_ k‘@o / ! 90,
Yrr(z) = e (2'), x, = x,e"; (2.4.44)
4) the group of special conformal transformations
Yrr(x) = o2 (@)(1 =7 - 2y - 0)ihr(a’),
( (@) ) (2.4.45)
), = (xy — Opx - x)o~(z).

Here 6, . . ., 05 are real constants, 8 = (0,0,)'/2, o(z) =1—20-240-0z-x.
As an example, we will consider the procedure of generating the solution

1(x). Let us apply formula (2.4.43) with a = 3 to ¥1(x)

Yrr(x) = exp{—(00/2)v073} exp{—iA()Zx)l/%(:co cosh 0y + x3 sinh 0p)vo } x.

We rewrite this expression as follows

Yrr(x) = eXp{—(HO/Q)'yo’yg}{cos (A()Zx)l/% (xo cosh 6y

+x3sinh 90)> — i sin (A()Zx)l/%(azo cosh 0y + x3 sinh 00)) }

x exp{—(6o0/2)v073} x-

Taking into account the identities

~o cosh B + 73 sinh 6,
Vv, V™t =< ~3coshby + 7o sinh o,
Vs

T T T
Il
= w o

[\V)
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where V' = exp{—(60/2)073}, which are proved with the help of the Campbell-
Hausdorff formula [41, 179] we have

Yrr(x) = {COS(A()’('X’)U%(JUO cosh 6y + 3 sinh 90)) — i(~yp cosh 6
+73 sinh fp) sin ()\()_('X/)l/% (o cosh By + 3 sinh 90)) }X',
where x" = exp{—(60/2)7073}
Using formula (2.4.42) yields the following family of exact solutions:
Yrr(z) = {COS(A(Xx)l/Qka . ﬂs) — 1y - asin(A(;}X)l/%a . x) }X
= exp{—iA(xx)/* (v - a)(a - 2)}x,

where a,, are arbitrary real parameters satisfying the condition a - a = 1.

It is not difficult to verify that family (2.4.46) is invariant with respect to
transformations (2.4.41), (2.4.44).

The family of solutions (2.4.46) depends on the variables z, in symmet-
rical way. Let us show that it is invariant under the Lorentz group O(1,3).
Applying, for example, formula (2.4.42) to (2.4.46) and grouping terms in a
proper way we arrive at the following family of solutions of PDE (2.4.1):

Prr(z) = exp{—iA(X'x) /(- d)(d - 2)},

(2.4.46)

where

ap = ap, ap = apcosf — 0 epeqacty + 9_20b(90ac)(1 — cosb),
X/ = exp{(1/2)5abcea5’bc}X'

Since a’-a’ = 1, the obtained family coincides with (2.4.46). Thus, we have
constructed the ]5(1, 3)-ungenerable family of exact solutions of the nonlinear
Dirac equation. The transition from 1 (z) to (2.4.46) seems to be of principal
importance because we obtain the class of exact solutions having the same
invariance group as the initial equation (2.4.1). In other words, the family of
solutions (2.4.46) contains complete information about the Lie symmetry of
the nonlinear Dirac equation (2.4.1).

Generating in the same way solutions 12 (x) —1s(z) we obtain the following
P(1,3)-ungenerable families of exact solutions of system of nonlinear PDEs
(2.4.1):

va(x) = exp{iA(x)" (v b)(b- )}y,
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P3(x) = exp{(1/2)(y-a)(y-d)In[0(a-z+d-2)]}

x exp{iy - c[(00)"* = (i/2)(y - a + - d)]e- 2},

Pa(z) = exp{—(0/2)(y-a+v-d)(v-b)(a-z+d-2)}

% exp{(IA/2) (002 (1 B)[2b - 2+ 0(a- =+ d - 2]},

Us(x) = exp{—(0/2)(y-a+v-d)(v-b)(a-z+d-2)}

x exp{(iA/2)(1 4+ *) 7 (x0) (v - e —ay - b)
X[2(c-z—ab-2)—ab(a-z+d-2)*]}x,

Ye(x) = exp{(29)_1(9b-z—aln[@(a-z+d-z)])(a-z+d-z)_1
x(y-a+y-dyy-b}exp{(1/2)(y-a)(y-d)nfo(a- 2 +d-2)]}
xexp{ (- e(y-a+7-d)+ARO)Y* [y e~ By a+y-d))
X(c-zfﬁ9_lln[¢9(a'z+d-z)])}x,

where z, =z, +0,; o, 3, 0, 0, are arbitrary constants.
Hereafter we denote by a,, by, ¢, du, p=0,...,3 arbitrary real constants
satisfying the following conditions:

a-a=-b-b=—-c-c=-d-d=1,

a-b=a-c=a-d=b-c=b-d=c-d=0. (2447)

Evidently, the four-vectors with components a,, b,, c¢,, d, form a basis
in the Minkowski space R(1,3) with the scalar product x -y = z,y".

Provided the parameter k in (2.4.1) is equal to 3/2, this equation ad-
mits the conformal group C(1,3). Consequently, we can generate solutions by
transformations (2.4.45). Let us give an example of the C(1,3)-ungenerable
family of exact solutions of the conformally-invariant Dirac-Giirsey equation

W) = o @)1 — 72y 0) exp{—iA() /(7 a)
x(a-z—a-0x-z)o (x)}lx.
2. P(1,3)-invariant solutions of the nonlinear Dirac equation (2.4.1).
Now we turn to reduced equations (2.3.22) putting R = A(@@)/*¢. To

integrate these we need some well-known facts from the general theory of
systems of linear ODEs.

Definition 2.4.3. By a normalized solution of the system of linear ODEs

(@) = Bw)p(w) (2.4.48)
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we mean the (4 x 4)-matrix (2 (B) satisfying the following conditions:

A,

—0 =B, =T,

wo?
where wg = const, I is the unit (4 x 4)-matrix.

The normalized solution of system (2.4.48) is given by the following infinite
series [197]:

w w T
Q% :I+/B(7)d7+/B(T)/B(Tl)dTldT+... (2.4.49)
wo wo wo

If we succeed in constructing the normalized solution of system of ODEs
(2.4.48) in explicit form, then its general solution is given by the formulae

pw) = Q5 (B)x, ¢(wo) = x,

where x is an arbitrary constant four-component column.
We will consider in detail a procedure of integration of system of ODEs 1
from (2.3.22). On multiplying it by the matrix (i/2)vs on the left we get

b= (1/8)(2k — 1)(1 + v07)¢ + (IA/2s(29) /P, (2.4.50)
while the conjugate spinor ¢(w) satisfies system of ODEs of the form
¢ = (1/8)(2k — 1)@(1 — y073) — (iA/2)@13(P0) /**. (2.4.51)

Multiplying (2.4.50) by @ on the left, (2.4.51) by ¢ on the right and summing
we come to the linear ODE for ¢

PP+ oo = (pp) = (1/4)(2k — 1)@,
which general solution reads
pp = Cexp{(1/4)(2k — 1w}, CcRL (2.4.52)

Substitution of (2.4.52) into (2.4.50) gives rise to the system of linear ODEs

o = {(1/8) (2k = 1) (1 +70%) + (iA/2)CV/

x exp{(2k — 1)(8/{:)_1&)}73}@‘ (2.4.53)
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Let ©f be a normalized solution of system (2.4.52). Then the general
solution of (2.4.52) is given by the formula

o(w) = QEx. (2.4.54)
Substituting (2.4.54) into (2.4.52) we have
X2 x = Cexp{(1/4)(2k — 1)w},

where Qy = v0(2%)fv0. As Q¥|,—0 = I and Q¥|,—o = I, from the above
relation it follows that yx = C. Inserting C' = yx into (2.4.54) we obtain the
general solution of the initial system of nonlinear ODEs (2.4.50).
Substitution of the result obtained into the corresponding P(1, 3)-invariant
Ansatz gives rise to the exact solution of the nonlinear spinor equation (2.4.1)

Y(x) = exp{(1/4) (703 — 2k) In(zo + z3) A x, (2.4.55)

where w = In(z¢ + 3) — ¢ + 3.

In a similar way we can integrate systems of ODEs 2, 4, 7, 9, 11, 13, 16,
17, 20, 23-25 from (2.3.22) (a detailed analysis of these equations has been
performed in [8]). Here only the cases, when infinite series (2.4.49) can be
summed up, are considered.

If we put in (2.4.53) k = 1/2, then a system of linear ODEs with constant
coefficients is obtained. Its general solution has the form (2.4.54), where

w wooT
QF = I+/BdT+/B/BdT1dT+...
0 0 0
I+wB+ (2N 'Ww?B? 4+ (3) 'Ww?B? 4 ... (2.4.56)
= exp{Buw}.
In (2.4.56) B = (iA/2)(xX)73-
Substitution of (2.4.56) into (2.4.55) gives rise to the exact solution of
system of nonlinear PDEs (2.4.1) with £ = 1/2
P(x) = exp{(1/4)(v0y3 — 1) In(zo + x3)}

(2.4.57)
x exp{(1A/2)(Xx)ysIn(zo + x3) — 20 + @3] }x.

Similarly, computing the normalized solutions of systems of ODEs 4 (under
a=0,k=1/2),9 (under k = 3/2), 11 (under k = 5/2), 13 (under k = 1/2),
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20, 22 from (2.3.22) we get their general solutions in the form (2.4.54)

pw) = exp{(iA/2)(Xx) (73 — 10 + 271)w}X,

pw) = exp{—(i/2)(xx)"*1ow}x,

pw) = exp{—(ir/2)(xx)" row}x,

pw) = exp{ix(1+a®) (are — 1) (X)w}x,

pw) = exp{[(1/2a)(2k — 1)(v0 — 1)
—ixa™ (70 — 73 + am) () Fw}x,

pw) = exp{((1/28)(1+ ) '(2kB* - m
—B(2k + 1)72] (0 — v3) — iA(L+ )71
x[y2 = By — (B/a) (v — %)](YX)I/%]W}X.

We have also succeeded in integrating systems of ODEs 30, 37, 41. They
can be represented in the following unified form:

i(72 — (10— 73)2) % = <i9(70 —73) + )\(@P)l/%> ®, (2.4.58)

where the case § = k, z = w corresponds to the system 30, the case § =
(1/2)(1 — 2k), z = w to the system 37 and the case § = k, z = w — 1 to the
system 41.

Rewrite equation (2.4.58) in the equivalent form

& = {07210 — 1) — iM@9) (72— (10— 13)2) oo

Since @y = 7 = const, the above equation is linearized

= {972(70 — 73) — AT/ (72 — (0 — 73)2) }80- (2.4.59)

The general solution of the system of ODEs (2.4.59) can be represented in
the form

Y= (f1(2) + fa(2)v2 + f3(2)(v0 — v3) + fa(2z)y2(70 — 73)))(, (2.4.60)

where Y is an arbitrary four-component constant column and functions f1, ...,
fa satisfy the following system of ODEs:

fr=ixrl 2R fy fo = —inrl/2fy

f3 = i)\Tl/Qkf4 + 9f2 + i)\Tl/szfl,
fa= —iNtY o fa 4 0F) — TR .
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The above system is integrated by the standard methods, its particular
solution reads

f1 = cosh(ATY?%2),  fo = —isinh(Ar'/?F2), (2.4.61)
fs = = ((20+ 1)i/40) 77/ cosh(Ar!/22) + (i/2)(1 + 2) sinh(Ar!/ %),
fa= ((29 + 1)/4)\)771/2’C sinh(ATY/2%2) + (1/2)(1 — 2) cosh(Ar1/?F2).
As a direct computation shows, the function (2.4.60) satisfies an identity
oo = X(IWP = 1RP+(Afs + Fifore+ (fifs+ fifi — i a
—f2fi)(v0 —v3) + (fi fa = fufi + f3 f3 — f2f5)v2(v0 — 73)))(-
Substituting into its right-hand side formulae (2.4.61) we get
T = QY = XX- (2.4.62)

Consequently, we have established that the general solution of the system
of nonlinear ODEs (2.4.58) is given by the formulae (2.4.60)—(2.4.62).

Substitution of the expressions obtained above into the corresponding
P(1,3)-invariant Ansétze (2.2.8) yields the following exact solutions of the
nonlinear Dirac equation (2.4.1):

the case k =1/2

U(z) = exp{(1/2)y72 arctan(wa/w1) + (1/4) (073 — 1) In(af + 23)}
x exp{(iA/4) (73 — 70 + 271) (V) [z0 — 23 — In(af + a3)] bx;
Y(z) = exp{(1/2)y172 arctan(zz/z1) — (1/4) In(zf +23)}
x exp{i\(1 + o?) 71 (xx) (a2 — 71)[earctan(zy /z1)
—(1/2) n(a? + 23] b
the case k = 3/2

(x) = exp{—(1/2)vi(v0 — y3)z1(z0 — 23) "'}
x exp{—(1/4) (7073 + 3) In(zo — z3) } exp{—(iA/2) (xx)"/®
xol(zf — 23 — 23) (w0 — x3) " + In(wo — 23)] }x,

the case k = 5/2

(x) = exp{—(1/2)m (0 — 3)x1(z0 — z3) " — (1/2)72(70 — 73)
xa(wo — x3) "} exp{—(1/4)(v073 + 5) In(zo — x3)}
x exp{—(iA/2)(xx)"/*y0lz - (2o — 23) ™' + In(zo — 23)]}x;
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the case of arbitrary k

()

exp{—(1/2)m(v0 — 73)a1 (w0 — 23) " — kIn(wo — 23)}

x exp{[(1/2a)m (0 — 73) (1 — 2k) —ida*(v0 — 73

+am) (00 [In(wo — 23) + a1 (w0 — x3) ') Iy
exp{(1/28)1 (0 — v3)(x2 — Ba1)(wo — 23) "

—kn(zo — z3)} exp{ ((1/28)(1 + 82 [(28%k + )m
—B(2k + 1)72)(0 — 713) — iA1+ 8% 2 — B
—(B8/a) (0 = %)) () /) [(w2 — Bz1) (w0 — w3) "

—(B8/) In(zo — 23)]}x;

(o — x3) 7" (fl + fov2 + fs(v0 — v3) + fav2(0 — 73)))(,
where f; = fi[zo(xo — x3) 7] are determined by (2.4.61),
(2.4.62) with 6 = k;

(w0 — x3) " exp{—(1/2)71(v0 — ¥3)z1 (w0 — 23) '}

X (fl + fov2 + f3(v0 — v3) + fav2 (o — 73)))(,

where f; = fi[zo(xo — 23) '] are determined by (2.4.61),
(2.4.62) with 0 = (2k — 1)/2;

(w0 — 23) * exp{(1/2) (70 — 3) 121 (m0 — 23) — 72

x In(zg — £E3)]}<f1 + fav2 + f3(v0 — ¥3) + fare(vo — 73)>X,
where f; = fi[In(zo — z3) 4+ z2(zo — 23) ! — 1] are determined
by (2.4.61), (2.4.62) with 6 = (2k — 1)/2.

3. Conformally-invariant solutions of the nonlinear Dirac-Giirsey
equation. Substitution of the C(1,3)-invariant Ansétze for spinor field listed
in (2.2.29) into the Dirac-Giirsey equation yields systems of ODEs (2.3.23)
with R = A(@g)/3.

In spite of the extremely complicated structure of equations (2.3.23) some
of them can be integrated in quadratures within the framework of the above
described approach.

Lemma 2.4.3. The quantities

I3 = @p, 1= ppexp{dw},
Is=gpw™?, Iy =gy,
Lo = pw?(w— D)2 w2 4+ (w— 1)1/
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are the first integrals of the systems of ODEs 3, 4, 8-10 from (2.5.23).
We will prove the lemma for the system of ODEs 8, other systems are
treated in the same way.
Multiplying the mentioned system by the matrix —(i/2w)vy2 on the left
yields
o = (3/4)w™ o — (IM2)w™%(gp) P2, (2.4.63)

the conjugate spinor satisfying the equation
p = (3/1w e + (IA/2w (@) P Eva. (2.4.64)

Multiplying (2.4.63) by @ on the left, (2.4.64) by ¢ on the right and sum-
ming we come to the ODE for pp

(Pp) = (3/2w)pe,

whence g = Cw®/? or ppw=3/2 = C' = const. The assertion is proved. >

Applying the above lemma we can construct general solutions of nonlinear
systems of ODEs 3, 4, 8-10 from (2.3.23) with the help of normalized solutions
of their linearized versions. And what is more, normalized solutions of the
linearized systems of ODEs 3, 8-10 can be obtained in explicit form. This fact
enables us to integrate in quadratures the systems of nonlinear ODEs 3, 8-10
from (2.3.23).

= exp{iA(X0) 3 (12 + 73 — 0)wlxs

(W)

pw) = wtexp{(3i0/2)(xx) Y raw! Yy,

pw) = exp{=iA(0)" nwlx,

pw) = w—1/4(w_4)—1/4(w1/2+(w_4)1/2>71/2

x eXp{—i2_4/3A(>2x)1/372/ 23z - 4)_2/3d2}x,

where x is an arbitrary constant four-component column.

Substitution of the above expressions into the corresponding Ansétze for
the spinor field ¢ (x) listed in (2.2.29) yields four classes of exact solutions of
the conformally-invariant nonlinear Dirac-Giirsey equation (1.2.26)

Y(z) = [L+ (w0 —23)%) ' Rlarctan(zo — z3)] exp{—(1/2)717
x arctan(zo — x3) } exp{—(1/2)v1(y0 — 73) arctan(zg — z3)}
x exp{—(1/2)72(v0 — 73)[z2(z0 — 73) — 21]
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x[1+ (20 — 23)%] Y exp{id(xx)/3 (32 + 73 — 70)

X (— arctan(zg — x3) + [z1(zo — x3) + z2][1 + (zo — xg)g]_l) }X,
(23 + 23) 41 + (20 — 23)*]"*/* Rlarctan(zg — x3)]

x exp{—(1/2)y1y2 arctan(z1/z2)} exp{(3iA/2)(>2x)1/3’yg
(2] + 23) 2 [1 + (20 — 23)°] "/ }x,

[1+ (2o — 23)%] ' Rlarctan(z — x3)] exp{—(1/2)7172

x arctan(xg — x3) } exp{—(1/2)v1 (70 — 73)[z1(20 — T3) + 2]
x[1+ (w0 — 23)*] '} exp{—iA(xx) Py [w2(z0 — x3) — 21]
x[1+ (zo — 23)*] " }x,

(22 + 23) "1 {cos(2/2) cos(73/2) + Yoy3 sin(r/2) sin(73/2)
+7 -z sin(12/2) cos(13/2) — 73 cos(12/2) sin(73/2)]}

x exp{—(1/2)y172 arctan(a:l/xg)}wflﬂ(w — 4)*1/4

X[u)l/2 + (w _ 4)1/2]71/2 exp{—i24/3/\(xx)1/3’yz/ 272/3

X (z — 4)_2/3dz}x,

where the following notations are used

R(7) = cos*(7/2) + vy sin®(7/2) + (1/2)7 - x(y0 — 73) sin T,
9 = arctan((z - x — 1)(229) '] + 7/2,
3 = arctan[(z - x + 1)(2x3) '] — 7/2,

w=[dag + (-2 — 1)) (a] +25) 7.

4. Exact solutions of equation (2.4.2). To construct exact solutions of
system of nonlinear PDEs (2.4.2) we use P(1,3)-invariant Ansétze for the
spinor field (2.2.8) and Ansétze (2.3.16). Omitting intermediate computations
we give the P(1,3)-ungenerable families of exact solutions of the nonlinear
spinor equation (2.4.2) (see, also, [135, 137]):

Y1()
Ya(x)
V3(z)

— exp{—if(y - a)(a-2)}x;
— exp{if(y - b)(b-2)}x,
— exp{(1/2)(y-a)(y - d)na-z+d- 2)}

< expliv- clf — (i/2)(y-a+7 - de- 2},
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Ya(z) = exp{—(1/2)(v-a+y-d)(v-b)(a-z+d 2)}
x exp{(i0/2)(y-b)[20- 2z + (a -z +d - 2)*]}x,

Us(z) = exp{—(1/2)(yv-a+y-d)(v-b)(a-z+d-2)}
x exp{(i0/2)(1 + a®) "1 (y-c — ay - b)
x[2(c-z—ab-2) —ala-z+d-2)}}x,

Ye(z) = exp{(1/2)[p-z—In(a-z+d-2)|(a-2z+d-2)""
X(y-atry-dyy-brexp{(1/2)(y - a)(y - d)In(a- 2 +d-2)}
XeXp{(v-C(v-a+7-d)+i9[v-cfﬁ(7-a+v-d)])
x(cz—Blnfa-z+d-2])fx,

Yr(z) = exp{[—(1/2)(1y - b+ 2y -c) +wsya](y-a+y-d)}
< explity - b(b- =+ wn) by,

Ps(x) = [(b-z+w)*+ (c-z+wg)? 14
x exp{(—(1/2)[1y - b+ 12y -¢c) + wayl(y-a+y-d)}

x exp{—(1/2)(y - b)(y - ¢)arctan[(b- z +w1)/(c- z + w2)]}
x exp{iy - cf[(b-z +wi)? + (¢ z +w)?]}x.
Here we use the following notations:

fw) = {mwl/ 2P A1 — k)" (w02, k£
mw'/? + (N/2)(xx) Inw, k=1;

Zy =, + 04 0 =m+ ANxXX)* we = we(d- 2+ d-z) are arbitrary smooth
real-valued functions; o, 3, 6, are real constants.

As earlier, we denote by a,, b, c¢,, d, arbitrary real parameters satisfying
(2.4.47).

2.5. Nonlinear spinor equations and special functions

Here we will establish a rather unexpected fact: there exists a correspondence
between exact solutions of the nonlinear Dirac equation

{90 — F () }b(z) = 0, (2.5.1)

where F € C' (R, RY), and special functions satisfying a second-order ODE
of the form ) .
U+ a1(w)U + ag(w)U = 0. (2.5.2)
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The above facts enable us to construct exact solutions of equation (2.5.1)
in terms of the Weierstrass, Gauss and Chebyshev-Hermite functions.
To obtain exact solutions of PDE (2.5.1) we use the following Ansétze:

Y(x) = exp{(1/2)x1(xo+x3)" (v +13)7} (2.5.3)
x exp{(1/2)y0v3 In(zo + x3) b (xf — 27 — 23), o

(x) = exp{(1/2) (zo + x3) " (0 +13)(Mz1 + 22)}
x exp{(1/2)v073 In(zo + 23) }p (z - ).

Substituting (2.5.3), (2.5.4) into the initial equation (2.5.1) we get systems
of ODEs for the four-component functions ¢ = ¢ (w)

(2.5.4)

dwp = —{n(l +7073) +iF(pp) (W(’Yo +73) +70 — 73) }907 (2.5.5)

where the cases n = 2 and n = 3 correspond to Ansétze (2.5.3) and (2.5.4)
accordingly.
The equation for the conjugate spinor ¢ has the form

4wp = —@{n(l —073) — iF(pp) (W(W’o +73) +70 — 73) } (2.5.6)

Multiplying equation (2.5.5) by ¢, equation (2.5.6) by ¢ and summing
yield the ODE for a scalar function @

which general solution reads
@p = Cw™™?, C = const. (2.5.7)

Thus, equation (2.5.5) is reduced to the linear ODE

dwp = ={n(1+70%) +iF(Cw ) (w0 +18) + 70— 1) fo  (2:58)

with the nonlinear additional condition (2.5.7).
If we choose y-matrices in the representation (1.1.8), then equation (2.5.8)
in component-wise notation takes the form

200 = —iF(Cw™?)p?, 2wo! = —iF(Cw ™))% — ne!,
2% = —iF(Cw 2!, 2w@? = —iF(Cw %) — ne?.
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On making the change of the independent variable
t=Cw™? w=(t/C)7", (2.5.9)
we get

nC 2 tg) = iF(t)p?,  ntel = iF(8)¢* +ne',

C*Q/nt(’n+2)/n 3 — F ¢ 1 ¢ 2 _ F " 0 9 (2510)
" g} =iF(t)', nte} =iF(t)e" +ne®.

System of ODEs (2.5.10) by means of the change of the independent vari-
able

t
€= /F(T)T*"/zdf (2.5.11)

is reduced to the form

nC’_Q/”gog =it 12, nt=2/n % =i +nF71(t)p!, (25.12)
nC’_Q/"gog’ =it 1!, nt(”_g)/”wg =i + nEF7L(t)p2. -

Differentiating the first equation with respect to £ we get a second-order
ODE of the form

Ree + CHrp=220=m/np — ), (2.5.13)

where the function ¢ = #(£) is determined by (2.5.11).
Consequently, system (2.5.12) is equivalent to the following second-order
system of ODEs:

B 2(1—n)/n
e +C¥mn2(1(9))

e + CYrn 2 (1(9))

P' =0, o' =—int(§)C e,

21 (2.5.14)

PP =0, ¢*=—int(€)C"ef.

Let u(€), v(§) be a fundamental system of solutions of equation (2.5.13).
Then, the general solution of system (2.5.14) is represented in the form

O = xOu(é) + x*(),
D= —int(©02 (xFi(€) + 1 0l) ).
2 — —mt(g)c—2/n(><0a(§)+x2®(£)),
o= XPu(é) + x'v(é),

(2.5.15)

S €. € €
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where X, x!', x?, x? are arbitrary complex constants.

Formulae (2.5.15) give the general solution of system of nonlinear ODEs
(2.5.5) if equality (2.5.7) holds. Substitution of (2.5.15) into (2.5.7) gives rise
to the following relation for C, x*:

&w — wO*wQ +¢2*,¢0 +¢1*'¢3 +w3*¢1 _ intC‘z/”
X(XOXQ* _ X2XO* + XSXI* o X1X3*)w(u’v) — = Cw_"/Q.

Here w(u,v) = ud — @ is the Wronskian of the fundamental system of
solutions of equation (2.5.13) which is constant for any u, v satisfying (2.5.13).
The above relation is rewritten in the form

C = {in(X0X2* - XQXO* + X3X1* - X1X3*)w(ua U)}n/Q' (2.5.16)

It is well-known that each ODE of the form (2.5.2) is transformed to equa-
tion (2.5.13) by an appropriate change of variables (one has to take into ac-
count that the function ¢ = ¢({) depends on arbitrary function F'). Con-
sequently, choosing the function F(@¢) in an appropriate way we can obtain
exact solutions of the nonlinear Dirac equation in terms of any special function
described by equation (2.5.2).

We will consider several particular cases of equation (2.5.13). First of
all, we recall that solutions of equation (2.5.13) (and, consequently, solutions
of the nonlinear Dirac equation (2.5.1) of the form (2.5.3), (2.5.4)) under
F = M@p)Y/? are expressed in terms of the Bessel functions (see Section
2.4).

1. Choosing
n2C¥mP=n/n — 9N 41 -¢2 N eN, (2.5.17)

in (2.5.13) yields the Weber equation
R+ (2N +1-¢H)R=0.

The fundamental system of solutions of the above equation reads [197]

w(€) = exp{—(1/2)€}Hn(®),
¢ 2 (2.5.18)
v() = u(f)g(u(T)) dr, a = const,

where
dN
dev

Hy (&) = (—1)N exp{€?}—— exp{—¢*}
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is the Chebyshev-Hermite polynomial.
It is not difficult to verify that functions (2.5.18) satisfy the identity

w(u,v) = 1.

Thus, substitution of formulae (2.5.15), (2.5.18) into (2.5.3), (2.5.4) with
account of (2.5.16) under w(u,v) = 1 gives rise to a class of the exact so-
lutions of the nonlinear Dirac equation in terms of the Chebyshev-Hermite
polynomials and what is more

€2 = 2N +1 —n 20U/ nyn=t, (2.5.19)

To obtain an explicit form of F' = F(t) we differentiate equality (2.5.17)
with respect to t

2(1 — n)n 3¢/ @3/ — —25%,

whence it follows that
—-1/2
F(t) _ (n o 1)n—302/nt(4—3n)/n (2N - n—ZCQ/ntQ(l—n)/n) / )

Let us note that under n = 3, i(x"x% — x2x** + x*>x* — x'x**) < 0 the
solution obtained is localized in the Minkowski space with exception of the
hyperplane x3 = —x(, where it has a non-integrable singularity.

2. If we choose
n 20220/ — (3 /4)We(€), (2.5.20)

where We(&) is the Weierstrass function having the invariants wi, ws, in
(2.5.13), then the Lamé equation is obtained

R — (3/4)We(§)R = 0. (2.5.21)
The fundamental system of solutions of ODE (2.5.21) is as follows [197]

u(§) = {We(g/2)} 12,

v(€) = We(&/2){We(g/2)} /2 (2.5.22)

and what is more w(u,v) = 1/2. Hence, using formulae (2.5.3), (2.5.4),
(2.5.15), (2.5.16) (under w(u,v) = 1/2) we obtain the exact solutions of the
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initial PDE (2.5.1) in terms of the Weierstrass function, the equalities

(4/3)n—20(4—2n)/nwn—1
§= / (=473 + wiT — wo) Y 2dr,

F(t) = (4/3)(n — 1)n—202/”t<2—3n>/”{—4((4/3)n—202/”

3 _1/2
Xt2(1—n)/n) b (4/3)wrn 202 ne20-m)/n _ w2} /

holding.
3. Choosing in (2.5.13)

n=2CY 2/ — (1/4)e72{2(a+ b+ 1) — (a+b+1)2} —ab
we get the hypergeometric equation
R+ ((1/9¢7%[1 = (a+b)?] - ab) R = 0.
The fundamental system of solutions of this equation is as follows [197]

w(g) = WP b a+b+1, &),

w(€) = 0o DR2Rp(h g 1—a—b,¢), (2.5.23)

where F' = F(a, b, c, &) is the hypergeometric Gauss function and besides

w(u,v) = (a+bI'(1+a+bI'(1—a—>b)

><{1“<1 +a) (1 +b)T(1—a)(1 - b)}*l. (2.5.24)

Here I' =TI'(a) is the Euler y-function.

Substitution of formulae (2.5.15), (2.5.16), (2.5.23), (2.5.24) into the An-
satze (2.5.3), (2.5.4) yields the exact solutions of the nonlinear Dirac equation
(2.5.1), the relations

§£=(1/2) (1 — (a+ b)2)1/2 <n720(472n)/nwn,1 n ab)fl/Q’

F(t)=(1/2)n 3 (n — 1)02/"(1 —(a+ 6)2)1/2t(473n)/n
% <n7202/nt2(17n)/n +ab)_3/2

holding.
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Let us note that solutions of equation (2.5.1) of the form (2.5.3), (2.5.4)
can be treated as solutions of the linear Dirac equation

(i, — U(x)}i(a) = 0 (2.5.25)

with potentials U(z) = F[C(23 —23—23)" '] and U(z) = F[C(z-x)~3/?]. That
is why there exists an analogy between equations (2.5.1) and (2.5.25). The
principal difference is that in the case of a linear equation the potential char-
acterizes interaction of the spinor field with some external field (for example,
with the scalar field u(x) = U(z)), while in the nonlinear case the ”potential”
is determined by self-interaction of the spinor field ¢ (x).

2.6. Construction of fields with spins s = 0, 1, 3/2
via the Dirac field

In [152] we have suggested a purely algebraic method of construction of Ans-
atze for scalar, vector and tensor fields by the use of Ansétze for the spinor
field ¥(x). The method is based on the following well-known fact: provided
the spinor field ¢ (z) transforms according to formulae (1.1.24)—(1.1.26), then
the quantities

u(z) = P, (2.6.1)
Au(x) = l/_mﬂﬁ, (2.6.2)
Fuu($) = “EW%% (263)

transform with respect to the Poincaré group as the scalar, vector and second-
rank tensor correspondingly. Consequently, substitution of the P(1, 3)-invari-
ant Ansétze for ¢(z) obtained in Section 2.2 into formulae (2.6.1)—(2.6.3) with
subsequent replacement ¢ — B(w), @v.p — Bu(w), i@ye — Bu(w)
yields the Ansétze for the scalar, vector and tensor fields invariant under the
one- and three-dimensional subalgebras of the algebra AP(1,3).

It is worth noting that the above described procedure of construction of
invariant Ansétze is much simpler than integration of system of PDEs (1.5.22),
(1.5.20).

Furthermore, if we substitute Ansétze for ¢ (z) invariant under one- and
three-dimensional subalgebras of the Lie algebra of the extended Poincaré
group AP(1,3) into formulae (2.6.1)-(2.6.3), then P(1,3)-invariant Ansitze
for fields u(x), A,(x), Fu(x) are obtained.
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To construct conformally-invariant Anséatze for the scalar, vector and ten-
sor fields we introduce into formulae (2.6.1)~(2.6.3) the normalizing factors of
the form (1))

u(w) = ()3, (2.6.4)
Au(@) = Py ()3, (2.6.5)
Flu (@) = ithyuytp () ~/? (2.6.6)

(it is not difficult to ascertain that the fields u(x), A, () transform according to
formulae (1.4.5), (1.4.13) provided the spinor field 1 (z) transforms according
to (1.1.28)).

We apply the procedure described to obtain Poincaré-invariant Ansétze for
the vector field A, (x) which reduce the corresponding P(1, 3)-invariant system
of PDEs to ODEs. Before substituting Ansétze for ¢ () into formula (2.6.2) we
generate them by transformations from the Poincaré group (formulae (2.4.41)—
(2.4.43)). Substitution of P(1,3)-ungenerable Ansétze for the spinor field ¢ (z)
into (2.6.2) yields P(1,3)-ungenerable Ansétze for the vector field A, (x) that
can be represented in the following unified form:

Ay(z) = {(auay — dud,) cosh 0y + (dya, — dya,)sinh 6y
+2(a, + d,)[(01 cos O3 + O sin O3)b,, + (02 cos O3
—0ysinb3)c, + (07 +03)e " (a, +d,)] + (buc,  (2.6.7)
—byc,)sinbs — (cuc, + bub,) cos B3 — 2e~%
X (01by + O2c,) (@, + do) } B (w),

where a, by, cu, d, are arbitrary real constants satisfying equalities (2.4.47)
and BY are arbitrary smooth functions. Explicit forms of the functions ¢, w
depend on the choice of a three-dimensional subalgebra of the Poincaré algebra
(2.2.7) and are given below

—_

0,=0, w=d-z

0,=0, w=a-z;

0,=0, w=k-z

Op=—In(k-2), 01=0,=05=0, w=(a-2)?—(d-2)%
p=—-In(k-z), 01=0,=03=0, w=0b-z;

Op=—al(c-2), O=0=03=0, w=b-z, a0;
Op=—alc-2), =0,=03=0, w=aln(k-2)—c-z, a0;

W N

at

(@] =~
— — — — Y Y ~—

3
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8) Op=0;=0,=0, 603=—arctan(b-z/c-2), w=(b-2)*+(c-2)%
9) Gy=0=0,=0, O3=—aYa-2), w=d-z, a#0;
10) p=0,=0,=0, O3=a"'(d-2), w=a-z, a0;
11) 6p=01=0,=0, O35=(d-z—a-2)/2, w=k-z
12) 6p=02=05=0, 01 =0b-2/2k -2z, w=k-z;
13) Op=0=03=0, O1=(ab-z—c-2)20k-2)"', w=k- 2,
a # 0;
14) Op=02=03=0, 01 =(c-2)/2, w=k-z; (2.6.8)
15) Gp=0=03=0, 61=—(k-2)/2, w=2b-2+ (k-2)%
16) Gp=0=03=0, 61 =—(k-2)/2, w=2c-z—ab-z)—alk-2)%
17) 6p = o tarctan(b-z/c-z), 6 =6y =0,

03 = —arctan(b-z/c-z), w=(b-2)*+(c-2)?, a#0;
18) 6p=—1In(k-2), 61 =02=0, 03=aln(k-z),

)
19) 6p=—1In(k-2), 61 =02=0, 603=—arctan(b-z/c-z2),
)"+ (

20) Op=635=0, O1=0b-2/2k -z, Os=c-z/2k -z, w=k-z;
21) 6p=05=0, 01 =(1/2)[(k-2+08)b-z—ac-z]lk-2(k-z+ )
—a]™t, By =(1/2)(k-zc-z2—b-2)[k-z2(k-24+3) —a] 7},

w=k-z

22) Bp=05=0, 0, =(1/2k-2)(b-z—c-z(k-z4+3)71),
Op=(1/2)c-z(k-z+p)7 , w=k- z

23) Op=03=0, 01 =0b-2/2k-2, 6= (1/2)c-2(k-2z+1)"1,
w=k-z

24) Op=—-In(k-z), 61=0-2/2k-z,
Op=03=0, w=(a-2)?—(b-2)?—(d- 2)%

25) Op=—In(k-z), O1=[b -z—aln(k-2)]/2k -z,
fo=03=0, w=c-z—LFn(k-2);

26) 6p=0, 61=0b-2/2k-z, Oy=c-z/2k-z,
O3 =—2-z/4k -z, w=k-z;

27) Op=—-In(k-z), O1=0b-2/2k-z, Ors=c-z/2k- z,

03 =aln(k-z), w=z-z
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where k, = a, + by, z, =z, + T4, T, =const, p=0,...,3.
Let us consider an example of construction of an Ansatz for the vector field
A, (x) by taking as () the Ansatz

¥(z) = exp{(1/2)7073 In(zo + x3) Yo (2§ — 23)

invariant under the three-dimensional algebra (Jos, P1, P2) € AP(1,3).
It is not difficult to check that a P(1, 3)-ungenerable Ansatz for the spinor
field is obtained by making the following change:

Yo—=7a mMm—7b oy oy
ro—a-z, x1—b-z, 3—cCc-z, x3—d-z

in the above Ansatz.
As a result, we have

W) = expl(1/20y-ay-din(k- 2)}e

= {cosh[(1/2)In(k - z)] + v - ay - dsinh[(1/2) In(k - )]},
pexp{—(1/2)y-ay-dn(k - 2)}

= {cosh[(1/2)In(k - z)] — v - a7y - dsinh[(1/2)In(k - 2)]},

=
&
[

where ¢ is an arbitrary complex-valued four-component function of (a - 2)? —

(d - z)2. Substitution of the formulae obtained into (2.6.2) yields

Ay(x) = ¢@{coshf —~-ay-dsinh8}y,{cosh® +~-ay-dsinhf}p
Prup — (sinh 6)@[y - ay - d, y](coshf + - ay - dsinh f)
= @Y +2a,8(y-dcosh® + v - asinhf)psinh 6 — 2d,
X@(y-acoshf + - dsinh0)psinh 6 = {(a,a, — d,d,)
x cosh 20 + (a,d, — dya,) sinh 20 — b,b, — c,c0} 7 @,

where § = (1/2)In(k - z). Designating the real-valued functions @y, by
B, p=0,...,3 we arrive at the Ansatz 4 from (2.6.7).

To obtain from (2.6.7) Ansétze for the vector field invariant under the
three-dimensional subalgebras of the Poincare algebra (2.2.7) we put

Ty = 0, a, = 6#0; b“ = —(5#1, Cu = —(5#2, d'u = _5M3'

Let us emphasize that the above procedure of construction of Ansétze for
the vector, scalar and tensor fields is based on transformational properties of
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the spinor field with respect to the Poincare group only and the explicit form of
the function v (z) is not used. There arises a natural question: what equations
are satisfied by functions w(x), A,(x), F(z) defined by formulae (2.6.1)-
(2.6.3) provided 1) = ¥ (x) is a solution of the nonlinear Dirac equation? In
other words, is it possible to construct exact solutions of equations describing
fields with spins s = 0,1, 3/2, ... with the help of exact solutions of a nonlinear
PDE for the field with the spin s = 1/27

It occurs that for some classes of fields the answer to this question is
positive [155].

We look for solutions of the complex nonlinear d’Alembert equation

00" u = A |u|*u, (2.6.9)
where A1, ki are constants, in the form
w(x) = ip @), (2.6.10)

Here ¢y = 9(z) is a solution of nonlinear spinor equation (2.4.1) and 6(z) €
C?(R%* R!) is a phase of the field u(x). With the use of exact solutions of the
nonlinear Dirac equation listed in Section 2.4 we have obtained a number of
exact solutions of the nonlinear d’Alembert equation which are adduced in the
Table 2.6.1.

Thus, spinors ¢ = 1 (z) satisfying nonlinear PDE (2.4.1) give rise to com-
plex scalar fields uw = w(z) which are described by the nonlinear d’Alembert
equation (2.6.9). It is interesting to note that the inverse procedure is also
possible. Namely, starting from a special subclass of exact solutions of the
nonlinear d’Alembert equation we can obtain exact solutions of the nonlinear
Dirac equation (see Section 2.1).

As straightforward computation shows, the vector field constructed with
the help of formula (2.6.2), where ¥(z) is a solution of the nonlinear spinor
equation (2.4.1), satisfies the following system of PDEs:

(8u0" + M2 () Aula) = (@),

(2.6.11)
OuAu(z) =0,

functions M (x), ju(x) depending on the choice of 1(x).
For example, if we take ) = (), then

M (z) = A(xx)Y?* = const,
Ju(x) = AX(cos Axg — ivp sin Azg)y,(cos Axg + ivyp sin Azg) x.
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Consequently, the nonlinear spinor field gives rise to a field A, (x) which
can be interpreted as the vector field with a variable mass M (x).

Table 2.6.1. Exact solutions of the nonlinear
d’Alembert equation

N u(z) Ky
1-10 Cexplia -z} k€ R

11 C(x? 4 23)~ Y2 exp{iwg} 2

12 Cl(x1 4+ w1)? + (22 + w2)? /2 expliwg} 2

13 C(x? 4 23)~ 2 expliwg} 2

14 C(z} — 23 —23)~1 1

15 C(x - x)~3/? 2/3
16 O(xg — x3)~1/2 2

17 C(x? 4 23)~ 2 exp{iwg} 2

18 Cl(z1 +w1)? + (22 + wa)?) V2 exp{iwg} 2

19 Cwy ? expli(ry +w1)} 0

21 C(zk — 23 —23)72 1/2
22 C(zk — 23 —23)72 1/2
24 C (23 + 2% + 23) 72 1/2
26 C(x3 — 23 —23)7! 1

27 Clx - x)~3/? 2/3
28 | C{[x2 + Blzo + z3)]*> + [1 + (1/2)(zo + 23)%?} % | 1/k, k<0
29 | C{lw2 + Blwo + z3)]> + [1 + (1/2)(z0 + 23)?]*} 1 1

Here N denotes the number of the corresponding solution of the nonlinear
Dirac equation, wg, w1, wg are arbitrary smooth functions of zo+x3; C, o, 3
are constants.

Let us adduce an example of a tensor field with the spin s = 1 constructed
with the use of an exact solution of nonlinear PDE (2.4.1). Substituting the



2.7. Exact solutions of the Dirac-d'Alembert equation 173

four-component function ¥ (z) = exp{—i\ypxo} into the formulae
By = iyove,  Ha = (i/2)eabctbmed)
we get the exact solution of the Maxwell equations with the current
Go =0, ja=—2iXxTyax) sin 2Az0 — 2X(XVaX) cOS 2Azq.

In conclusion of this section we give the formula for construction of Poinca-
re-invariant Ansétze for the field with the spin s = 3/2

Au(x) = (W), pw=0,...,3. (2.6.12)

Substitution of the P(1, 3)-invariant Ansétze (2.2.8) into (2.6.12) gives rise
to Ansétze for the field A, (z) with the spin s = 3/2 reducing the corresponding
Poincaré-invariant equation to systems of ODEs.

2.7. Exact solutions of the Dirac-d’Alembert equation

Few works containing exact solutions of systems of nonlinear PDEs of the form
(1.4.8) [20, 21, 287] use essentially the Ansatz for the spinor field

Y(x) ={y 2f(z 2) +ig(z-z)}x (2.7.1)

suggested by Heisenberg [180]. In (2.7.1) {f,¢g} € CY(R!,R') are arbitrary
real-valued functions.
The scalar field v = u(x) is looked for in the form

u(z) = p(x-z), e C*RH,ChH. (2.7.2)
Substitution of (2.7.1), (2.7.2) into (1.4.8) under
F = Ry(uu®, ), H = Ry(uu®, Yy)u, R; € C(R%RY) (2.7.3)

gives rise to a system of three ordinary differential equations for functions
f, g, ¢. Consequently, a reduction of PDE (1.4.8) both by the number of
independent variables and by the number of dependent variables takes place.
We recall that Ansétze constructed in Section 2.2 reduce Poincaré-invariant
spinor equations by the number of independent variables only.
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In [148] we have suggested a generalization of the Heisenberg Ansatz which
made it possible to obtain broad classes of the exact solutions of the multi-
dimensional Dirac and Dirac-d’Alembert equations.

Following [151] we look for a solution of system of PDEs (1.4.8), (2.7.3) of
the form

(@) = {f (Wb +igw)kx, uz)=pW), (2.7.4)

where {f, g} ¢ C*(RY,RY), ¢ € C?(RY,RY), w = w(x) is an arbitrary smooth
real-valued function.
Since

7,0, () = {=§7,0,w + i f0,0"w + if (9,w)(D"w) }x,
0, 0Mu(z) = ¢(0,w)(*w) + I, 0t w,
P = xx(97 + FA(Ouw)(0"w)),

substitution of formulae (2.7.4) into (1.4.8) yields the system of PDEs for
5 9, ¢, w

Sb(auw)(auw) + ()baltauw = Rl@:
f(0,w)(0*w) + f0,0"w = Rag, (2.7.5)
g = _Rva

where R; = R;(¢pp*, 9>+ f2(8uw)((9“w)), 1=1,2.
If we resolve two last equations with respect to (0,w)(0*w) and 0,0"w,
then the following necessary compatibility conditions arise

0,0"0 = Fi(w), (0,w)(0"w) = Fy(w).

In other words, the scalar function w = w(x) has to satisfy the d’Alembert-
Hamilton system (2.1.25) and besides the functions Fj, F do not vanish
simultaneously. Since functions f(w), g(w) are arbitrary, we can choose them
in such a way that w = w(z) satisfies system of PDEs (2.1.30), equations
(2.7.5) taking the form

ef + F(w)p = Ri(pe”, 7 +efe,
ef + F(w)f = Ra(pg”, ¢* +f?)g, (2.7.6)
§=—Rapp*, > +ef*)f,

where F(w) =eNw™, N=0,...,3, ¢ = %1.



2.7. Exact solutions of the Dirac-d'Alembert equation 175

Thus, the problem of constructing particular solutions of the multi-dimen-
sional system of five PDEs (1.4.8) is reduced to integration of a system of
three ODEs. If we succeed in integrating system (2.7.6), then substitution of
the obtained results into Ansatz (2.7.4), where w = w(z) is the solution of
the d’Alembert-Hamilton system (2.1.30), gives rise to exact solutions of the
initial system of PDEs (1.4.8), (2.7.3).

Let us note that Ansatz (2.7.4) can be interpreted as the formula for con-
struction of the nonlinear spinor field ¥(z) satisfying the Dirac-d’Alembert
system with the help of the nonlinear scalar field w(x) satisfying the nonlinear
d’Alembert-Hamilton system.

It is clear that the P(1,3)-invariant Ansétze obtained in Section 2.2 can
also be applied to reduce the Poincaré-invariant equation (1.4.8) but the re-
sulting systems of ODEs prove to be much more complicated than system
(2.7.6).

We will construct exact solutions of system of PDEs (1.4.8), (2.7.3) having
the following nonlinearities:

Ry = —{mul™ + pa(d)}?, 277)
Ry = Mul' + Ao ()2, '
where |u|? = uu*; A\, Ao, u1, p2, k1, ko are constants.

Substitution of Ansatz (2.7.4) into system of PDEs (1.4.8), (2.7.7) yields
the following equations for unknown functions f, g, ¢:

A+ Fw)p = —{mlel™ + fialgz + Af*) )20,
M+ F@)f = Pulel™ + dalg” + Af*) ) g, (278)
g=—{ulel™ + Xa(g® + AF2)"2} .

Here 9 = ,UQ()_(X)kza 5\2 = )\2(>_CX)]€2§ F(w) = N)‘w_lv N =0,1,23 X=
e ==l1.

We have succeeded in constructing the general solution of system (2.7.8)
provided N = 0. Under N # 0 some particular solutions are obtained.
1) N=0, A=1

Multiplying the second equation of system (2.7.8) by f, the third by g and
summing we have ff + g9 =0 = f?+ g2 = C? = const. Due to this fact
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equations for g, f are easily integrated

w
flw)=Ch sin{/\1/|g0(z)|k1dz + 5\201%%) + CQ}a
(2.7.9)

w
g(w) =Cq cos{)\l/\go(zﬂkldz + 5\201%%) + 02},
where C'y = const.

Substituting (2.7.9) into the first equation of system (2.7.8) we come to
the following ODE for ¢(w):

¢ = —{mle/™ + aCi* 2.
On representing the complex-valued function ¢ in the form
o(w) = p(w)e@), (2.7.10)
where p(w), 8(w) are real-valued functions, we rewrite this ODE as follows
p— pb? = —{p1p" + [1C2V2p, 20p +6p = 0. (2.7.11)

The second equation of the above system implies that 6= Csp V2, Cy =
const. Substitution of this result into the first equation of system (2.7.11)
yields the ODE for p = p(w)

p=C5 — ™t — 2 i CFF M — 130172 p = ay (p),

whose general solution is given by the implicit formula

p(w) —1/2
/ (2/a+(z)dz + C’4> dz = w. (2.7.12)

Thus, the general solution of system of ODEs (2.7.8) under N =0, A =1
has the form
w

flwy = sin{)\l /pkl (z)dz + 5\201%%; + CQ},
w
glw) = 1 Cos{)\l /pkl(z)dz + 5\2012k2w + Cg},

w

plw) = p(w)exp{ics/p‘l/Q(Z)dZ},
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where C1, Cy, Cs are constants, p(w) is defined by (2.7.12).
2) N=2,3, \A=1.
We look for particular solutions of system (2.7.8) in the form of power

functions
fw) =Cw™*, g(w)=Dw*? ¢w)=FEw.
Substituting these expressions into (2.7.8) and equating exponents of w
yield
a; =, ap—1= 042(1 + ng), ask] = 2a0ks,

whence a1 = ag = —1/2ko, a3z = 1/k;.
Consequently,
flw) = Cw™Y22 g(w) = Dw™V22 p(w) = Bw™ /M, (2.7.13)

parameters C, D, FE satisfying the system of nonlinear algebraic equations

kT2 (Nky — ky = 1) = {1 |E|* + i2(C® + D?)*2)2,
(2k2) 7' D = {M|E|" + Ao (C? + D*)21C, (2.7.14)
(262) "L (2Nky — 1)C = {M|E[M + Xa(C? + D?)*2}D.

From the second and the third equations we get the equality
D?*C™2 =1 —2Nk. (2.7.15)

The first equation of system (2.7.14) and equality (2.7.15) yield the follow-
ing restrictions on the choice of parameters ki, ko: k1 > (N — 1)1, ky >
(2N)~L.

Therefore, relations (2.7.14) can be rewritten in the form

D =e(2Nky — 1)Y/2C,
{im|E[™ + fia(2N ko C?)*2
{M|E|" + X (2N ko C?)2

12 = (1+k — Nky)kr?% (2.7.16)
} = e(2Nky — 1)1/2(2k) 71,
where e = 1, k1 > (N — 1), ko > (2N)~L.

Under k; = 2(N —1)71, ks = N1 system (2.7.8) possesses the following
class of particular solutions:

flw) = fw(l+6%?) (NHI2,
gw) = (1+6%?) D2
p(w) = E(1+6%)-N72
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parameters 6, E being determined by the system of nonlinear algebraic equa-

tions

P2(N2 - 1) = E2/(N—1)+~ 2
( ) ={mlE| f fi2} @2.717)
(N +1)0 = {0 |EY VD 4 xp).

3) N=0, \=-1.

Multiplying the second equation of system (2.7.8) by f, the third by g and
summing we have f2 — g? = —C? = const. Due to this fact equations for g, f
are easily integrated

w
flw) = Clsinh{—)\l/|cp(z)]k1dz—S\QCIQka—i—CQ},

w
gw) = Clcosh{—)\l/|<p(z)]k1dz—;\2012k2w+02}7

where Cy = const.
Substitution of the above formulae into the first equation of system (2.7.8)
gives rise to the ODE for ¢(w)

¢ = {1l + 12077} 2.

Representing ¢(w) in the form (2.7.10) we come to the following system of
ODE: for p(w), 6(w):

p—pb? = {p™ + 12072, bp+20p=0.
The general solution of the above system is given implicitly
p(w)

w ~1/2
0 = Cg/pfl/Q(z)dz, / (2/a_(z)dz + C4> dz = w, (2.7.18)

where a_(z) = 3221 4 2y 1o CH2 i+l 4 2007 2 4+ €2, C3, Cy are cons-
tants.

Consequently, the general solution of system of ODEs (2.7.8) under N = 0,
A =1 has the form

w
flw) = Clsinh{—)\l/pkl(z)dz—5\2C12k2w—|—02},
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w
gw) = 4 cosh{—/\1 /pkl(z)dz — MC7P2w + 02}7

plw) = p(W)exp{iCz/p/2(2)dZ},

function p(w) being determined by (2.7.18).

4) N=1,2,3, A= —1.
Solutions of equations (2.7.8) are looked for in the form (2.7.13), whence
we get the following system of nonlinear algebraic equations for C, D, E:

k2 (kN — ky — 1) = — {1 |E|" + fip(D? — C?)F2}2,
(2k2) "1 (1 — 2Nko) = {M|E[M + Ao (D? — C?)*2}DC, (2.7.19)
(2k) ™' = {\|E|F + Ao (D? - C?)k23CD L

Analysis of the above equations yields the restriction on the choice of C, D:
D?C~2 = 1 — 2Nky. Due to this fact equations (2.7.19) are rewritten in the
form

D =eC(1—2Nky)'/2,
(1+ky — Nk)kr? = {1 |Elky + fio(—2NkoC?)*212 ) (2.7.20)
e(1 — 2Nko)/2(2k) ™! = { M| E|* + Ao (—2N ko C?)k2},

where e = £1, k1 < (N — 1)1, ky < (2N)~ L
Substitution of the results obtained into Ansatz (2.7.4) gives the following

classes of exact solutions of the nonlinear Dirac-d’Alembert equations (1.4.8),
(2.7.7) :

the case of arbitrary ki € R, ky € R

0
i(z) = {iCOS <)\1 /Pkl(z)dz + Ao ()"0 + CQ)
x(

+0 sin (/\1 /Pkl (2)dz + Ao (X)) 20 + C2> }X7

Zo

ui(x) = p(xo)exp{ng/(p(z)>_1/2dz}7
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where Cy, C3 are arbitrary real constants, function p = p(w) is determined by
formula (2.7.12) under C; = 1:

Po(x) = {icosh(—)\l /pkl(z)dz — X (Xx)hw + C2>
+(y,0,w) sinh (—)\1 /pkl(z)dz — /\2(>2X>k2w + C’2> }X,

ug(x) = p(w)exp{iC%,/(p(z))1/2dz},

where Cy, C35 are arbitrary real constants, function p = p(w) is determined by
formula (2.7.18) under C; = 1, w = w(x) is given by one of the formulae listed
in (2.1.88);

the case k1 > 1/2, ko > 1/6

bo@) = w VR i(Oh — 1)V 4+ 00

ug(z) = Buw /%1
where F, x are defined by (2.7.16) under C =1, N = 3, w = w(x) is given
by (2.1.87);
the case k1 > 1, ky > 1/4

vale) = w Ve — 1Y+ 0 )X,
ug(e) = WV,

where E, x are defined by (2.7.16) under C' =1, N =2, w = w(x) is given
by (2.1.86);

the case k1 < 1/2, ko <1/6

Us(@) = w M ei(l - 6k2)'? + 0wy,

us(z) = Ewil/%l,
where F, x are defined by (2.7.20) under C =1, N = 3, w = w(x) is given
by (2.1.91);
the case k1 < 1, ke < 1/4

ve(z) = w71/4k2{5i(1 - 4k2)1/2 + YuOuw X,
ug(z) = FEw /%1,
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where E, x are defined by (2.7.20) under C =1, N = 2, w = w(x) is given
by (2.1.90);

the case k; € RY, ko < 1/2

Yr(z) = w71/4k2{5i(1 - 2k2)1/2 + 'Vuauw}Xa

ur(z) = Ew /%1
where E, x are defined by (2.7.20) under C =1, N =1, w = w(x) is given
by (2.1.89);
the case k1 =2, ko =1/2

Ps(x) = (1+ 0% 32{0 + 0wy, 0w},

ug(z) = E(1+60%w?)~Y2
where 0, E, x are defined by (2.7.17) under N = 2, w = w(z) is given by
(2.1.86);
the case k1 =1, ko =1/3

vo(z) = (1+ 02w2)_2{i + 0wy, 0w} X,
uole) = B(1+0%),

where 0, E, x are defined by (2.7.17) under N = 3, w = w(z) is given by
(2.1.87).

According to Theorem 1.4.1 system of PDEs (1.4.8), (2.7.7) under k; =
1, ko = 1/3 admits the conformal group C(1,3). Therefore we can apply

to solutions {¢1(x), ur(2)}, {P2(2), ua(2)}, {¥3(2), us(x)}, {Yr(2), ur ()},
{t9(x), ug(x)} with k1 = 1, ko = 1/3 the procedure of generating solutions by
means of the four-parameter group of special conformal transformations

Vi) = o (@) (1= - Oy - 2)u(a),
urr(z) = o~ (2)ug(2), (2.7.21)
2!, = (v, — b - )0 (2),

where o(z) =1—-20 -2+ 0 -0x -z, 0, are constants.

The above formulae are obtained from (1.4.13) with the help of Theorem
2.4.1.
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The nonlinear functions Ap|ulFt + Ao (11)*2, p1|ul®* + p2(pp)*? can be
interpreted as "masses” of the spinor (M (1)) and scalar (M (u)) particles cre-
ated because of interaction of these particles. As straightforward computation
shows, the following relations hold

(M@)/M ()" = (1/RNky — Dhy > (Nky — k1 — 1),
where the cases N = 2, N = 3 correspond to the solutions {14, us}, {3, us};
(M@)/M (W) = (/R @NEs — D)k 2 (Nky — by — 1),

where the cases N =1, N =2, N = 3 correspond to the solutions {¢7, uz},
{6, ue}, {5, us};

-2
(M@)/M(w) ~ =N +1)(N =17,

where the cases N =2, N = 3 correspond to the solutions {t, ug}, {19, ug}.

Consequently, in spite of the fact that "masses” of the spinor and scalar
particles described by equations (1.4.8), (2.7.7) are variable their ratio is the
constant determined by the exponents k1, ko and by some discrete parameter
N. Thus, the above relations can be interpreted as the formulae for the mass
spectrum of the spinor and scalar fields. It is worth noting that the discrete
parameter N arises because of the fact that the nonlinear differential operator
+w?20 has the discrete spectrum N = 0,1,2,3 on the set of solutions of the
equation (0,w)(0"w) = +£1 (see Section 2.1).

The solutions {¢3(x), us(z)} — {t9(x), ug(z)} vanish at the infinity under
positive ki, ko and besides they have a non-integrable singularity [151].

Using the fact that system (1.4.8), (2.7.7) under A\; = p2 = 0 splits into the
nonlinear Dirac and d’Alembert equations we can get from {;(x), ui(x)} —
{t9(x), ug(x)} their exact solutions by putting A\; = 0, uz = 0. In particular,
the solutions {19(z), ua(x)}, {ts(x), us(x)}, {ve(x), ug(x)} give rise to new
solutions of the nonlinear Dirac equation which differ from those constructed
in Section 2.4.

In conclusion we will say a few words about exact solutions of the conforma-
lly-invariant system of PDEs

Fpdu = Agu® — A,
Y0, = { v+ Ao ()13},

where A1, A2, A3 are constants, obtained in [20, 21] with the help of Heisenberg
Ansatz (2.7.1), (2.7.2). Since Ansatz (2.7.1) is a particular case of Ansatz

(2.7.22)
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(2.7.4) (under w(x) = z-x), the above mentioned solutions can be constructed
within the framework of our approach. In particular, functions {¢3(z), usg(z)},
{t9(x), ug(x)} with k1 = 1, ko = 1/3 satisty system of PDEs (2.7.22) provided
the constants F, x*, 0 satisfy the algebraic relations

ME + X23(00Y? = 3e/2,  —2M1(%x) + \E3 =3
and
ME 4+ Xa(00)Y2 =40, M (xx) — ME> = 862,

correspondingly.

2.8. Exact solutions of the nonlinear electrodynamics equations

Let us carry out reduction of Poincaré-invariant equations (1.4.7) for the spinor
and vector fields using Ansétze constructed in Section 2.6. Substitution of
P(1,3)-ungenerable Ansétze for the spinor field (we recall that these are ob-
tained by making the change

Yo—7vra, m—7vb yw—vyc y—7-d,

(2.8.1)
x9g—a-z, x1—b-z, x9—c-z, x3—d-z

in P(1,3)-invariant Ansétze (2.2.8)) and P(1, 3)-ungenerable Ansétze for the
vector field (2.6.7), (2.6.8) into system of PDEs (1.4.7), (1.4.18) yields after
rather cumbersome computations 27 systems of ODEs for functions ¢(w),
By(w). Systems of ODEs for p(w) are obtained from (2.3.5) if we replace
Yu, Ty by the expressions given in (2.8.1) and put

R ={v-B(fi+ foya) + f3 + fava}e,

wheref1, ..., f4 are arbitrary smooth functions of

pp, Pup, @v-Be, ¢uy-Be, ¢ vy Bp, B-B.  (282)

Reduced systems of ODEs for the vector field are written in the following
unified form:

kuy BY + 1y BY +mpn BY = g1 By + 2@y, + g3P1avusp (2.83)

+910 Y0270, 1=0,...,3,
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where gi,...,94 are arbitrary smooth functions of the variables (2.8.2) and
ks luvy, my are functions of w listed below

—_
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— = = =
w NN = O
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—_ —
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S N e e N N N N
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N |

18)

19)

20)
21)

22)

Kuy = =Gy — dudy, Ly = myy = 0;

Kuy = Guy = aptys - Ly = My = 0;

Ky = Kby, luy = myy = 05

kuy = 49w — apasy(w +1)% = (audy + dyay) (@° = 1) = dudy (w — 1)%,
by = 4guy + (apdy — aydy)] = 2[au(w + 1) + dy(w — 1]k,

myy = 0;

Ky = =Guy = bubys  luy = —buky, My = 0;

kuy = =Guy = by, Ly =0, myy = —(auay — dud,)/a?;

kuy = —9uy — (O‘kveiw/a - Cv)(akueiw/a — )y luy = (2/a)(audy
—aydy) + (akue™® = )kye 0 myy = —(apay — dud,) [
by = =4w(guy + cucy)s by = =4guy +Cucy)s My = —(buby) /w3
by = =gy — dudy,  Luy = 0, myy = (buby + cuey) /s

kuy = Guy = apty, Ly =0, myy = —(buby + cucy) /s

kuy = —kuky, Ly = 2(cuby — bucy),  myy = 0;

Ky = —kukys iy = = (kuky) fw,  mym = 0;

kuy = —kuky, iy = = (kuks) o, myy = —(kuky)/(0?0?);

kuy = —kpky, Ly =0, myy = —kyky;

kuy = —4guy — 4buby, My =y = 0;

kpy = —4(1 4+ a®) gy — 4(cy — aby)(cy — aby),  muy =1y = 0;
kuy = —4w(guy + cucy)s  luy = —4(guy + cucy),

My = —(1/w)[(apay — dudy)a™ 4 buby);
kuy = 4lguyw — (ap — dp)(ay — dy)], Ly = 4guy + (apdy — aydy,)
+O‘(bﬂcﬁ’ - Cub'y)] - 2(au - d,u)k'ya My = 0;

Ky = =4w(guy + cucy)s  luy = —4guy — dcucy — QCukvwl/Q

My = —(buby)w ™

Ruy = —kukys Ly = =(2kuky) fw, myn = 0;

kuy = —kuky, Ly = —kuky (2w + B)lw(w + ) — ] 7,
My = —kuky (o0 — 1)2[w(w +8) - O‘]_Q;

kuy = —kuky, iy = —kuky (2w + B)[w(w + ﬁ)]_l’
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My = —kukylw(w + 8)]7%;

23) kuy = —kuky, Ly = —kuky (20 + D{w(w + B myy =0;

24)  kpy = dwgpy — (kpw +ay — dy)(kyw + ay — dy), Ly = 69,y
+A(apdy — aydy) = 3(kuw + ap — dp)ky, My = —kuky;

25) Ky = —Guy — (Cu - ﬁku)(cv - ﬁkv)y Ly = 2(Bky — cp)ksy,
My = —kpky;

26) kuy = —kuky, luy = (cuby — bucy + 2k, ky)/w,
My = (Cuby = bucy) w3

27)  kyy = dwgpy — (ap — dp + kpw)(ay — dy + kyw), iy = 4294
+a(bucy = cuby) = kpkyw — (apay — dudy)l, My = —2k,ky.

Integration of the above systems of ODEs even under specific F, R, is
an extremely hard problem. So it is not surprising that up to now there is
practically no papers devoted to construction of exact solutions of the Maxwell-
Dirac equations (1.4.1).

The fact that ODEs obtained are integrable with some specific F, R, is a
consequence of their nontrivial symmetry. Using Theorem 2.3.1 we can prove
that these systems admit invariance algebras which are isomorphic to algebras
(2.3.13).

In the present section we will construct multi-parameter families of exact

solutions of classical electrodynamics equations (1.4.1) and of the system of
nonlinear PDEs

(iVHau - efyﬂA'“)zﬁ(:r) =0,

_ (2.8.4)
8,0" A, — 918, A, = —elry b + AAL A, AV,

where e, )\ are constants.

1. Exact solutions of the classical electrodynamics equations. We
have made an observation that integrable cases of the systems of ODEs ob-
tained by means of reduction of (2.4.1) with the help of P(1,3)-ungenerable
Ansatze for the spinor and vector fields give rise to the exact solutions of
system of nonlinear PDEs (1.4.1) of the form

() = (v a+7-d)e(wr, wa, ws), (2.85)
AM(J}) = (CLM + du)u(wl, w9, LU3),

where ¢(&J) is a four-component complex-valued function, u(@) is a scalar
real-valued function; w1 =b-x, wo=c- -z, w3 =a-x+d-x.
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Formulae (2.8.5) imply the following method of constructing particular
solutions of equation (1.4.1): not to fix a priori the functions ¢, u in (2.8.5)
but to consider them as the new dependent variables. Such an approach
proved to be very efficient because it enabled us to obtain exact solutions of
the classical electrodynamics equations containing arbitrary functions [155].
Substituting Ansatz (2.8.5) into (1.4.1) and taking into account the identities

(y-a+ty-d?=a-a+d-d=0,
e(y-a+vy-dyu(y-a+vy-dy =2(a,+d)p(y-a+v-d)p

we come to the system of two-dimensional PDEs for ¢(J), u(d)

Y bpw, +7 - Cpw, —imp =0, (2.8.6)
Upyw; T Uwowy = 26@(7 ca+y d)(p,

where @,,, = 0¢/0w;, Uy, = aZu/awf, 1=1,2.

Let us emphasize that in the above equations there is no differentiation
with respect to the variable ws. Consequently, functions ¢, u contain ws as a
parameter.

The general solution of PDE (2.8.7) is given by the d’Alembert formula
for the two-dimensional Poisson equation [61]

u(@d) = w(z,ws)+ w(z*,ws)
wo wi +i(wy—7T)
e[ [ et at - dele s,

w1 —i(wg —7T)

(2.8.8)

where w is an arbitrary analytical with respect to the variable z = w1 + ‘w9
function.

Consequently, the problem of construction of exact solutions of system of
nonlinear PDEs (1.4.1) is reduced via Ansatz (2.8.5) to integration of the two-
dimensional linear Dirac equation (2.8.6). Using the Fourier transform we can
obtain its general solution in the form of the Fourier integral [35, 61] but we
restrict ourselves to the cases when it is possible to construct exact solutions
in explicit form.

Choosing the eigenfunction of the Hermitian operator —id,,, as a particular
solution of equation (2.8.6) yields

o(&) = exp{idwi + iy - ¢(Ay - b — m)wa}po (w3), (2.8.9)
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where @y € C'(R,C*%). Imposing on solution (2.8.9) the condition of 27-
periodicity with respect to w; we get

A=\, =27mn, neZ. (2.8.10)

Substituting formulae (2.8.9), (2.8.10) into (2.8.8) and computing the in-
tegral we arrive at the explicit expression for u (&)

uw(@) = (1/2)(m? 4+ A2)~ {7 cosh[2(m? + \2)1/ 2w,

(2.8.11)
+7y sinh[2(m? + X2)2wo]} + w(z, w3) + w(z*, ws).

Here z = wy + iws, 71 = e@o(y-a+ v -d)po, 2 = ie(m? + )\%)_1/2 Po
X(y-a+v-d) (Any-b—m)po.

Substitution of formulae (2.8.9), (2.8.11) into Ansatz (2.8.5) gives a multi-
parameter family of the exact solutions of the classical electrodynamics equa-
tions (1.4.1) containing three arbitrary functions:

v(x) = (v -k)exp{izb-z+iv-c(Apy-b—m)c-x}po(k - x)
=™ (x),
Ay(z) = k#{w(z, k-x)4+w(z" k- x) (2.8.12)
+(1/2)(m? 4+ X2)" {7 cosh[2(m? + A2)/2¢ - 2]
+7y sinh[2(m? + A\2)1/2c. a:]}} = Al&”) (x),

where k, = a, + d,.
Similarly, if we choose a particular solution of equation (2.8.6) in the form

p(@) = (F +wd) M exp{—(1/2)(y-b)(y - ¢) arctan(wi /w2)}
x exp{—im(y - ¢) (& +w3)"*}io0 (w3),

where g € C*(R!,C%), then formulae (2.8.5), (2.8.8) give rise to the following
family of exact solutions:

W(x) = |27y k) exp{—(1/2)(7 - b)(7 - ) arctan[(b - z)
x(c-x) "} exp{—imy - c|z|}po (k- 2),
Ay(z) = kyqw(z, k-x)+w(z*, k-x) (2.8.13)

2|

+ /[71 sinh(2my) + 72 cosh(me)}y_ldy}.
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In the above formulae w is an arbitrary analytic with respect to z =
b-x +ic-z function, |2|? = 22* and

T = —2e@o(y - k)po, T2 = 2ie@o(y - k)(v - c)po.

We will consider the solution (2.8.12) in more detail putting w = 0, ¢o =
exp{—a?(k - x)?}x, where x is an arbitrary constant four-component column,
« = const. A direct check shows that the identities

—9,0m A8 = A(m? + 4x2n2) ATV, 9,4 =0,

(2.8.14)
_auau¢(n) = mZyp),

where n € Z, 0, = 0/0xy,, p=0,...,3, hold. The operator —0,0" is one of
the Casimir operators of the Poincaré algebra (see the Appendix 1). Its eigen-
values are interpreted as masses of particles described by the corresponding
motion equations. If such an interpretation is extended to a nonlinear case,
then relations (2.8.14) can be treated as follows: interaction of the spinor and
vector fields according to nonlinear equations (1.4.1) gives rise to the massive
vector field Al(tn) (z) with the mass M, = 2(m? + 47?n?)Y/2, n € Z (in other
words, the nonlinear interaction of the fields v (x), A,(x) generates the mass
spectrum). Let us emphasize that the effect described is nonlinear because in
the case of the linear Maxwell equations the Casimir operator 0,0" has the

zero eigenvalue (this is seen from (2.8.12), where A,(Ln) = 0 under e = 0).

Since solutions (2.8.12), (2.8.13) depend analytically on m, solutions of
the massless classical electrodynamics equations are obtained from (2.8.12),
(2.8.13) by putting m = 0.

This case deserves a special consideration because the invariance group of
equations (1.4.1) under m = 0 is the 15-parameter conformal group (Theorem
1.4.2). The general solution of the two-dimensional Dirac equation under
m = 0 has been constructed in [155]

o(@) = (v-b+iy-c)pi(z,w3) + (v b—iy-c)pa(z*,w3), (2.8.15)

where @1, @9 are arbitrary four-component functions whose components are
analytical functions of z =b-x +ic-z and z* =b-x —ic- x, respectively.
Substitution of (2.8.15) into (2.8.8) yields the following expression for u(J):

u(@d) = w(z,ws)+w(z" ws)

—f—e{z*/gl(z,wg)dz—l—z/gg(z*,uJ3)dz*},
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where g1 = @1(y - k)(1 — iy - by - ¢)p2, g2 = @a(y - k)(1 + iy -by-c)er.

Substituting the above formulae into the Ansatz (2.8.5) we come to the
multi-parameter family of the exact solutions which contains five arbitrary
complex-valued functions

Y(x) = (y-k{(y-b+iv-c)pi(z k-x)+ (y-b—iy-c)
X2 (2", k- x)},

Au(z) = ku{w(z, k-x)4+w(z" k- x) (2.8.16)

+e(z*/gl(z, k-x)dz—i—z/gg(z*, kx)dz*)}

To obtain C(1, 3)-ungenerable family of solutions of system of PDEs (1.4.1)
with m = 0 we employ the solution generation procedure. The formulae for
generating solutions of the classical electrodynamics equations (1.4.1) by the
four-parameter special conformal transformation group have been obtained in

[133)]

Yrr(x) = o 2 (x)(1— -y O)r(a’),
Arru(z) = 072(33){9“”0(:0) +2(x,0, — x,0,) (2.8.17)
+20 - zx,0, — x - 20,0, — 0 - Oz,2,) LAY (2"), (2.8.18)
where 2, = (z,, — 0,2-1)0 N (z), 0(x) =1-20-2 +0-0 z -z, 0, are arbitrary
real constants.

Substitution of expressions (2.8.16) into (2.8.17) gives rise to the C(1,3) -
ungenerable family of exact solutions of system (1.4.1) with m = 0. We omit

the corresponding formulae because of their awkwardness.

2. Exact solutions of system of nonlinear PDEs (2.8.4). To obtain
exact solutions of equations (2.8.4) we apply the Ansatz

Y(x) = (v-a—v-d)exp{if(k-z)}x,

(2.8.19)
Ap(x) = (ap — dp)gi(k - z) + kyuga(k - ).

Here {f,g1,92} € C*(R,RY), x is an arbitrary four-component constant
column.
The Ansatz (2.8.19) reduces equations (2.8.4) to the system of three ODEs

for f(w), g1(w), g2(w)

f=—eg, G =-2X\g195, ¢392 = (e/2\)x(v-a—r~-d)x. (2.8.20)
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On eliminating the function go from the second equation we get the second-
order ODE for ¢;
g1 =—(r*/Ngi”, (2.8.21)
where 7 =27"%ex(y-a—y-d)x.
The above equation is integrated in elementary functions, its general solu-
tion having the form [197]

1/2

g1@) = 0y V2 ((Crw + Co) = 2N). (2.8.22)

In addition, ODE (2.8.21) with A > 0 possesses the one-parameter family
of singular solutions

g1(w) = e2|7| |\ 2w + Co) /2. (2.8.23)

In (2.8.22), (2.8.23) C}, (5 are real constants, ¢ = £1.
Substituting formulae (2.8.22), (2.8.23) into the second equation of system
(2.8.20) yields

1
g2(w) = CiTA ! ((C’lw + 02)2 — 7'2/)\> ,
g2(w) = =7|A @I |IA T 2w + Cy)

Integrating the first equation of system (2.8.20) we get the explicit form
of the function f(w)

flw) = 6(—)\)1/2 arctan(T_l(_)\)l/Q(Clw + 02))’
Fw) = —elA T2 In(2r|A 7w + Cy).

Substitution of the above formulae into the Ansatz (2.8.19) gives rise to
the multi-parameter families of the exact solutions of system (2.8.4)

the case A € RY, X #0

() = (y-a—vy-d) exp{—ie(—)\)l/2 arctan<7_1(—)\)_1/2

X[ (k- @) + Ca] ) b

—1/2
Aulz) = ela, - d)CrP{(Crk w4 Co)? = 72271 /

—1
+CrrAT e {(Crk -3+ Co)2 = P
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the case A <0
¥(z) = (y-a—v-d)exp{—ielA| 2 (2r]\| "%k -2 + Co) }x,
Ay(z) = ela, — du){Q‘TH)\’_l/Zk X+ 02}1/2 — 7Nk,
{2l o)
where 7 = 271/2ex(y-a — v - d)y, Ci, Cy are real constants.
Let us note that the solutions obtained are singular with respect to the

coupling constant A\. That is why they cannot be obtained in the framework
of the perturbation theory by expanding with respect to a small parameter A.

5. Exact solutions of the Maxwell-Born-Infeld equations. By the
Maxwell-Born-Infeld equations we mean the Maxwell equations

8t5:r0tﬁ, divﬁzO,

2 _ ~ 2.8.24
0yB=—-rotE, divB=0 ( )

supplemented by the constitutive equations suggested by Born and Infeld (see,
e.g. [142])

—

D=7E+nB, H=71B-nE. (2.8.25)
Here E, H are field intensities, é, D are inductions,

T = {1+B*—E*— (BE)*}7'/2,

n = (BE)r

Till now, up to our knowledge, there are no papers containing exact so-
lutions of system (2.8.24), (2.8.25) in explicit form. We will construct multi-
parameter families of exact solutions of system of nonlinear PDEs (2.8.24),
(2.8.25) using the following simple assertion.

Lemma 2.8.1. The general solution of system of PDEs (2.8.24) is given by
the formulae

B =rotu, D =rot,
(2.8.26)

H =04, E = -6,
where @ = (uy,ug, us), W= (w1, ws, ws) are arbitrary smooth vector-functions.
To prove the lemma we make use of the well-known fact that the general
solutions of equations
divi'=0, rotp=0
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are given by the formulae
7 =rot R, p = grad Ry,

where R,, Ry are arbitrary twice differentiable functions. >

According to Lemma 2.8.1, the Maxwell-Born-Infeld equations are repre-
sented in the form (2.8.26), where @, W are smooth vector-functions satisfying
the first-order system of nonlinear PDEs

rot W = —7{0u + [(Oy)(rot @)|rot i},

(2.8.27)
Oy = T{rot @ — [(9,@)(rot @) 0y},

with 7 = {1 + (rot @)% — (9,@)% — [(0y) (vot @)]?}~1/2.

Thus, the over-determined system of fourteen equations (2.8.24), (2.8.25)
for twelve functions F,, H,, D,, B, is reduced to the system of six nonlinear
PDEs for six functions u,, wq.

To construct exact solutions of (2.8.27) we apply the Ansatz [170]

i =ap(t, b, ¢T) = dp(wo, wi,ws). (2.8.28)

Here p € C?(R3,RY); @, g, ¢ are arbitrary constant vectors satisfying the
conditions

Since rot @ = —&py, + by, the equality (8;@)(rot @) = 0 holds. Conse-
quently, system (2.8.27) takes the form

(2.8.29)

where
7= (9l + 2, — ¢l + 172
The compatibility condition 0;(rot @) = rot (0yw) when applied to (2.8.29)
yields
O (—Tapuw,) = rot [T(—Cpuw, + E@wz)]
or
a(l — Sow#‘Pw“)_gﬂ{(l - SOw#‘Pw“)DSO + ‘Pwuwuww“@wV} =0.
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Here summation over the repeated indices in the pseudo-Euclidean space
R(1,2) is used.
Consequently, provided ¢(w) satisfies the nonlinear scalar PDE

(1 = Qo Lo ) B@ + Pupyion, PunPur = 0 (2.8.30)

with 1 — ¢y, @ur # 0, formulae (2.8.26), (2.8.28), (2.8.29) give a particular
solution of system of nonlinear PDEs (2.2.22), (2.8.25).

Wide classes of exact solutions of nonlinear equation (2.8.30) were con-
structed in [137]. Inserting these into formulae (2.2.24) and (2.2.26) we get
the following multi-parameter families of exact solutions of the Maxwell-Born-
Infeld equations:

E = —G(nei+ ho),

H = (1+8)"Y2[hb— (T + hy)é],

B = hib—@éT + ho),

D = —a(1+hd)"V2(Ed+ hy),

E = —(Cit/w)d(l+ Cow)™/2,

H = (C1/w)[-bET)+ abi)](1+ Cow* — C?)~1/2,

B = (C1/w)[-b(ET)+ &bD)|(1 4 Cowh)™1/2,

D = —(Cit/w)d(l+ Cow' — C?)~12

E = F(1/9)a{C7'(t — bZ) " coth[Cy(t + bT) 4 Co]}1/?
x{2C)(t — b ) 4 sinh 2[Cy (t + bE) + Co]}
x cosh™2[C(t + bT) + Ca),

H = F27%282C,(t — b@) — sinh 2[Cy(t + bT) + Cs}
w OV (t = b2) Y2 {sinh 2[C (t + b E) + Co]} /2,

B = F(1/0)FCT (t —bD) "' coth[Cy(t + bF) + Co)} /2
x{2C(t — bZ) — sinh 2[C} (t + bF) + Ca]}
x cosh™2[C1(t + b ) + Cal,

D = 72732a{20,(t — bF) +sinh 2[C1 (¢ + bT) + Co]}
xC7 Y2 (t — b2) "2 {sinh 2[Cy (t + b %) + Co]} Y2,

E = 3(1/2)a{20;" + CCsexp{Cs(t - b7)} }



194 Chapter 2. EXACT SOLUTIONS

. S —1/2
X{Cgexp{C’g t—ba:)}+203 (t+bx)} ,
(

i = F(1/2)&{205" - CoCy exp{Cs(t — 57)}}

X{CQ@XP{Cg t—bx)}—}—?CS (t +gf)}_1/2a

E = :F(1/2){ —CgCgeXp{Cg(t—bm)}}
Sy —1)2
X{C’Qexp{C'gt—ba:)}—i-QC (+bf)} ,

D = F(1/2)a {203 + C2C3 exp{C3(t — q)}}

-, 4 -~ _y-1/2
x{~Coexp{Cs(t —b3)} + 205 (¢ + 7))

where h; = hi(t + b)) € C2(R',R") are arbitrary functions; Cy, Ca, C3 are
arbitrary real constants; w? = w3 — w? —w? =12 - (bD)? — (Z7)2.

Other classes of exact solutions of system of PDEs (2.8.24), (2.8.25) are
obtained by putting

rotd =0, wy =0 (2.8.31)

n (2.8.27).
Resulting from (2.8.31) equations (2.8.27) take the form

rotw = —{1 — (grady)2} 1/ 2grade,
= ) (2.8.32)
u = grad(te + v),

where {¢(Z),v(Z)} € C?*(R3,R!) are arbitrary functions.
Since div (rotw) = 0, from (2.8.32) it follows that

div {[1 — (grad ¢)*|~*grade} = 0,
whence
[1 - (grad ¢)?]7*/2{[1 — (grad ©)*]A@ + Puyz,Pra@a, } = 0.

The above equation with (grady)? # 1 is equivalent to the elliptic analogue
of PDE (2.8.30)

(1 — (grad@)*) A@ + Puyz, Py Pay, = 0. (2.8.33)
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In [137] the following two classes of exact solutions of nonlinear PDE
(2.8.33) were constructed

o(@ = Cim{(@F+Co)?+Fe+0?)”
(@7 + o+ Gz + a2+ cp)),
(#2)1/2
o@ = [ (it e,
wo

where C,, a =1,2,3, wq are arbitrary real constants.
Inserting the above formulae into (2.8.26), (2.8.32) we get two multi-
parameter families of exact solutions of the Maxwell-Born-Infeld equations

B =0, H =0,
D = C{a@z+Cy) +b(bE+ C3)}(@T + Co)? + (b + C3)% 71,
E = C{a@z+Co) +b(b7+ C3)}[(@T + Cy)?

+(bT+ C3) V2 (@T + Co)? + (b + C3)? + CH V2%

—(1/C)E(@*) 2,
= @)1+ CR @),

b O oy
I

where C1, Cs, Cs are arbitrary real constants, Cy # 0.
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CHAPTER 3

TWO-DIMENSIONAL
SPINOR MODELS

In this chapter nonlinear spinor PDEs with two independent variables xg,
x1 invariant under infinite-parameter groups are considered. Such a broad
symmetry makes it possible to obtain changes of variables which linearize equa-
tions considered and to construct their general solutions. Partial linearization
of the nonlinear Thirring system of PDEs is carried out.

3.1. Two-dimensional spinor equations invariant

under infinite-parameter groups

Invariance of PDEs under study with respect to some infinite-parameter Lie
groups makes it possible to construct their exact solutions containing arbitrary
functions. Of special interest are two-dimensional equations possessing such a
property since many of them can be integrated in closed form. Methods used
to construct the general solutions of the two-dimensional d’Alembert [123],
Liouville [145], Born-Infeld [145], Monge-Ampeére [145, 146], gas dynamics
[129], massless Thirring [249, 277] equations are, in fact, based on the unique
symmetry of the equations enumerated.

It is worth noting that most of the equations which are integrable by the
inverse scattering method also possess broad symmetry. They are invariant
under infinite-parameter Lie-Béacklund groups [7, 190, 233].

We will show that the list of integrable two-dimensional PDEs can be
supplemented by the following equations:

(iwau - Aw(%%))w = 0; (3.1.1)
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{ (17 0u — ey At =0, (3.1.2)

EM?”AM - a#aI/AV = —GIEVMP;

(i3 +70)00 + imdr — AWl + ) V) =0, (3.13)

In (3.1.1)-(3.1.3) ¢ = ¢(xp, x1) is a four-component complex-valued func-
tion-column; Ag(xo, 1), Ai(rg,x1) are real-valued functions; p,v = 0,1;
A, e are constants.

Dirac matrices are chosen in the form

0 109 0 o1
Y0 = > M= .
—’iUQ 0 —01 0

Let us note that PDE (3.1.1) is a two-dimensional analogue of the Dirac-
Heisenberg equation [180, 184], system (3.1.2) is a two-dimensional system of
massless classical electrodynamics equations, PDE (3.1.3) is a two-dimensional
Galilei-invariant equation for a massless particle with the spin s = 1/2 (see
also the Section 4.1).

Symmetry properties of equations (3.1.1)—(3.1.3) are described by the fol-
lowing assertions.

Theorem 3.1.1[146, 293]. System of PDEs (5.1.1) is invariant under the
infinite-parameter transformation group

G = (0¢ ® 0,) &G,

where O¢ is the group of linear transformations of the space (0, 0% 42, 4p*)
preserving the quadratic form [°|? + |[¢?|2, its parameters being arbitrary
smooth functions of & = mo + x1, |Y°|, [¥?|; O, is the group of linear
transformations in the space (P, 1* 3 93*) preserving the quadratic form
12 + |¢32, its parameters being arbitrary smooth functions of n = xo —
z1, [, [3); the group G is given by the formulae

xo + 21 xro — T

zh = ;( JE | f;2<z>dz),
1 To + T1 Ty — T1
) = 2( / fo2(z)dz — / fl_z(z)dz>, (3.1.4)

V0= fo
V2= fo

zo+ z1)Y0, ¥ = fi(zo — x1)Yt,

(
(zo + 21)V?, V3 = fi(wo — x1)Y3,
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In (3.1.4) fo, f1 are arbitrary smooth real-valued functions.
Proof.  After writing component-wise we represent (3.1.1) in the form
i@ — 0y’ = 2 + 7 )y,
i@+ 00yt = 2M(W°P + [? ),
i(00 — 00)y* = 2M(1'* + [¢*)e?,
i@+ 00y = 22(W°P + [W? )y,
In the cone variables £ = xg 4+ x1, 1 = ©g — x1 the above system reads
00 = AP+ [97)y°,
0t = AP+ 0P 515
0 = MY+ [°2)9?,
0 = A([YOP + [ )e?,

the group G being given by the formulae

/fo dz n _/f1 2,
(3.1.6)
Y0 = fo(&)yP, ¥ = fi(n)y?,
Y =f0(§)¢2 VP = fi(n)y?.

Applying to both parts of the first equation of system (3.1.5) the operation
of complex conjugation we have

=iy = A9+ [0PP)p0
whence
wO&nw*O + ¢*Oan¢0 =0

or

é)77|¢0| = 0.

Similarly,
Bl =0, 9yle?| =0, Oelv’| =0.

From the equalities obtained it follows that system of PDEs (3.1.5) is invariant
under the group O¢ ® O,,.
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Let us prove that system (3.1.5) admits transformation group (3.1.6). To
this end we make in (3.1.5) the change of variables according to formulae
(3.1.6) thus obtaining the following equations:

00" = (|92 + [ 2) for2(ioy® = A2 + [0 P)e?),
i = WO+ [P = fufd (i0et = MR + P ).
0y = A" P+ (PP = foff (1007 = A9+ 107 P)e?),
it = MR + [P = fufd(i0ew® = (WO + [ P)e?),

whence the validity of the theorem follows. >
Theorem 3.1.2. System of PDEs (3.1.2) is invariant under the infinite-
parameter transformation group of the form

Goo = (0 ® 0,))& P(1,1)kU(1),

where P(1,1) is the extended Poincaré group, U(1) is the group of gauge trans-
formations

P = PTexp{—ief},
A = A+ 0nf
with f = f(x0,21) € C3(R?,RY).

Theorem 3.1.3. System of PDEs (3.1.3) is invariant under the infinite-
parameter transformation group having the following generators:

under k £1/2
Py =00, P1=0,
Dy = 200y + 2101 + k,
Dy = 21000 + 101 + k + (1/2)(1 — v074),
G = wi(w0)or — (1/2)w1(z0)(y0 + ya) 11,
Q= (70 +71) (72102(350) + ’st3($0));

under k =1/2

A = wo(x0)y + o (o) x101 + (1/2)0(20)
—(1/2)1ibo(w0) 1 (Y0 + Ya)71,
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G = wi(z0)0r — (1/2)w1(z0) (0 + Ya) 715
Q= (70 +4) (72102(1’0) + ’73w3(950)),
D = 2x00) + 2101 + 1 — (1/2)v974.

Here wy, ..., ws are arbitrary smooth real-valued functions.

Theorem 3.1.2 is proved in the same way as Theorem 3.1.1. To prove
Theorem 3.1.3 it is necessary to apply the Lie method.

Let us note that symmetry properties of equations (3.1.1)—(3.1.3) are not
exhausted by the invariance under the local symmetry groups described above.
As shown in [146] system of PDEs (3.1.1) is invariant under the group of
nonlocal (integral) transformations

ZTo — X1

W0 = ooy’ exp{—u (612 = I 1* + (l6s]* — 1)!¢3\2)dn},

o+ 1

Pl = 91¢1eXp{_i/\ / (60 = 1) w2 + (6] = )% d }
rog— T1

Y? = 02w2exp{—z'A / (0 = 1) + (165 - rw“dn},

To + X1

W = 03¢3exp{—z'>\ / ((;90|2_1)\¢0|2+(]92‘2 1/;22 df ,

where {6, ...,03} c CL.

3.2. Nonlinear two-dimensional Dirac-Heisenberg equations

In this section we will construct the general solution of system (3.1.1) with
the help of the nonlocal linearization method [145, 146]. In other words, a
nonlocal change of variables reducing (3.1.1) to a system of linear PDEs will
be suggested.

The form of the change of variables is implied by the structure of the
group of integral transformations given at the end of the previous section. We
introduce new dependent variables ©°(&,7), ..., ¢3(&,n) in the following way:

W= soOeXp{—M/(ls01|2+|s03|2)dn},
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vho= plexp —i/\/(lsoo\2+ls02\2)d$},
—M/(w? + |¢3|2)dn}, (3.2.1)

—¢A1/0¢ﬁﬁ~+|w2ﬁ)d5}.

.5) we get a system of linear equations for

P = plexp

PP = plexp

= A N —

Substituting (3.2.1) into (3.
0

N
ancpo =0, 6§<p1 =0,
On* =0, 85g03 =0.
Integration of the above equations yields the following expressions for
ot uw=0,...,3:

(3.2.2)

?=U%¢), ¢ =U'(n),
p?=U%(¢), ¢ =U(n),
where UF € C1(R!,C!) are arbitrary functions.
Substitution of formulae (3.2.3) into (3.2.1) with subsequent change of

independent variables & — xg 4+ x1, n — xo — x1 gives the general solution of
the nonlinear Dirac-Heisenberg equation (3.1.1)

(3.2.3)

To — X1

PO(z) = U%(zg + xl)exp{—i)\ / <IU1|2 + |U3| )dT},

To+ 21
e :Ul(xo—xl)exp{—i)\ / <|U0 2 +|U? Q)dT},

o 1 (3.2.4)
V2 (x) = U?(z0 + xl)exp{—i)\ / (!Ul 2 4+ |U3\2)d7},

To+ 21
w3(a:):U3(g;0—x1)eXp{—i)\ / <|U0|2+|U2‘2)dr}.

The result obtained enables us to construct in explicit form solution of the
classical Cauchy problem for system of PDEs (3.1.1)

(900 = My e0) ) =

3.2.5
’(ﬁa(o,l‘l) = fo‘(:zl), xr1 € ]Rl, ( )
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where f* € C*(R,C!), a=0,...,3.
Imposing on the solution (3.2.4) the initial conditions of the Cauchy prob-
lem (3.2.5) we get functional relations for determination of U*, ©u=0,...,3

—Z

fz) = Uo(z)exp{—i)\/(\U1|2~|—|U3|2>d7},
fiz) = Ul(—z)exp{—z’)\/z(|U0|2+|U2|2)d7'},
z) = U2(z)exp{—i)\ ]Z(\U1|2+|U3|2)dr},
£z = U3(—z)exp{—z’)\/z(|U0|2+|U2|2)d7'},

whence it follows
—T)P+ 1 (=) dT},
(1@ +172(r) dT},
—T)P+ 172 (= \Z)df},

US(—2) = f3(2)exp{i (7R +17%(r) }

Substitution of the above equalities into (3.2.4) gives the solution of the
Cauchy problem (3.2.5)

Tr1 — X
W(z) = fo(x1+:vo)exp{M / (\f1|2+!f3|2)d7},
T+ g
T+ Zo
Plx) = fl(fcl—a:o)exp{—M / (!f°|2+|f2!2)d7},

1 — Xo
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1 — To
Po) = P +xo>exp{z’A [ (se+ !f3|2)d7},
1+ Zo
T+ To
w?,(x) = f3(g;1 — ) exp{—i)\ / (|f0|2 i |f2’2>d7-}-
L1 — Zo

Thus, the Cauchy problem (3.2.5) with f* € CY(R*,C!), a=0,...,3 has
the unique solution.

In the case involved we have succeeded in integrating a nonlinear system
of PDEs due to the fact that it is equivalent to the linear system (3.2.2). In
some cases the nonlocal linearization method makes it possible to construct
wide classes of exact solutions of essentially nonlinear PDEs. This is achieved
by imposing such additional constraints on the equation under study that the
system obtained is linearizable. A peculiar example is the generalized Thirring
model

iy = mo + A\ |v|?u,
(3.2.6)
vy = mu + Aa|ul?v,
where u = u(z,y), v = v(z,y) are complex-valued functions, m, A;, Ao are
real constants.

Provided A; = Ay = A, system of PDEs (3.2.6) coincides with the classical
Thirring model that is integrable by means of the inverse scattering method
[249, 277]. As established by David [66] the generalized Thirring model (3.2.6)
is also integrable by the mentioned method and, therefore, has soliton solu-
tions.

Here we restrict ourselves to the case

A=A, Aa=-A
and consider the following system:

iy = mu + Av|?u,
(3.2.7)
vy = mu — Au|?v.

We will show that there exists a map of the set of solutions of the linear
Klein-Gordon equation
Wyy +mPw = 0 (3.2.8)

into the set of solutions of system of PDEs (3.2.7).
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To this end we apply the following Ansatz [299]:

u=mn exp{iG + (7:71'/4)}7

(3.2.9)
v = Fyexp{iG — (ir/4)}

where Fy, F5, G are some real-valued functions.
Substitution of (3.2.9) into (3.2.7) yields an over-determined system of four
nonlinear PDEs for £, Fy, G

Fiy = —mFy, Fy, =mlk,
Gy = \F?, G, = —\F5.
Since
(Gx)y = 2)\F1F1y = —2)\mF1F2 = —2)\F2F2m = (Gy)x>

the above system is compatible and its general solution can be represented in
the form

F=w(r,y), F=-m tw(r,y),
T Y
G = )\/w2(7', y)dr — )\m_2/w§(A,7')dT,
A B
where A, B are some real constants and w(z,y) is an arbitrary solution of
(3.2.8).

Thus, each solution of the linear Klein-Gordon equation (3.2.8) gives rise
to the exact solution of the nonlinear system (3.2.7) of the form

x Y
u = wexp{(iﬂ/él) +z’)\/w2(7, y)dT—i)\m_Q/wg(A,T)dT},
A B

Y
/ wz(A, T)dT}.

x
vo= —m lw, exp{(—iﬂ/ll) + i)\/UJQ(T, y)dr — idm >
A B

Due to invariance of system (3.2.7) under the one-parameter group of gauge
transformations

u' = uwexp{if}, v = vexp{if}, 6 € R!
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the solution obtained can be rewritten in the following equivalent form:
z Y

u = wexp{iA/wQ(T, y)dTi)\m_2/w§(A,7')dT},

. B, (3.2.10)

v = im tw, exp{i)\/wQ(T, y)dT—i/\mQ/wz(A,T)dT}.
A B

The above formulae can be interpreted as a linearizing nonlocal transfor-
mation, since functions (3.2.10) satisfy system of PDEs (3.2.7) iff the function
w(zx,y) satisfies the linear Klein-Gordon equation (3.2.8). However in this way
only a part of solutions of system under study is obtained. Therefore, we can
speak about partial linearization of the generalized Thirring model (another
example of partial linearization is considered in Section 2.8).

3.3. Two-dimensional classical electrodynamics equations

The change of variables (3.2.1) proves to be efficient when constructing the
general solution of the system of nonlinear PDEs (3.1.2).

Writing the first equation (3.1.2) component-wise and passing to the cone
variables &, 1 we come to the following system of PDEs for the functions

WO>Em), .. 3 (& n):

00 = (e/2)(Ao + A1)y,
et = (6/2)(%0 - %1)%% (3.3.1)
i0p® = (e/2)(Ao + A1),
0 = (e/2)(Ao — Ar)?,

where
Ay = 4,((1/2)( +m), (1/2)(€ = n)).

On making the change of variables
W = (& m) exp{—(i€/2) /(Ao + 21)6177},

po= wl(ﬁ,n)exp{—(ie/@/(ﬁo—ﬁl)df},
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P = ¢2(§,n)exp{—(i6/2)/(ﬁo+ﬁ1)dn}, (3.3.2)
PP = s03(§,n)exp{—(i6/2)/(ﬁo—ﬁl)df},

we rewrite (3.3.1) in the following way:

677g00 =0, agcpl =0,
6ng02 =0, agcpg =0.

The general solution of the above system is given by formulae (3.2.3).
Consequently, the general solution of equations (3.3.1) is of the form

PO = Uo(f)exp{—(ieﬂ)/(flo+ﬁ1)dn},

Pt = Ul(n) exp{—(ie/%/(ﬁo —ﬁl)di},
(3.3.3)
P2 = UQ(E)eXp{—(ie/Q)/(ﬁo+ﬁl)dn},

3 = U3(n) eXP{—(ie/Q)/(Ao —Al)df},

where U* € C1(RY,CY), 4 =0,...,3 are arbitrary functions.
Substituting expressions (3.3.3) into the remaining equations of system
(3.1.2) we get an over-determined system of PDEs for Ag, A;

01(01 Ao + 0o A1) = e([UP + [ + [0 +|U%2),

(3.3.4)
D001 Ao + Do r) = e([U° = U2 + [U2[2 = |UP}?).

Introducing the new dependent variable
w = O0hAg + JyA1

we rewrite equations (3.3.4) as follows

dew = e([U P +U*OP),  dgw = e([U' )2 + U (m)]?),
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whence

3 n
w = e/<|UO(z)]2 +|UA))dz + e/(|U1(z)|2 +1U3(=)P ) d-.

Consequently, to determine Ag(zg, 1), Aj(zo,z1) it is necessary to inte-
grate PDE

To+ 21
Aoy + Army = e / (1) + [U2(2)]) d
o — X1

ve [ (0GR +IEP)d

whose general solution is of the form
X0+ X1 2
A = ¢ [ [(00©F + 03 R)dedz + v,

To— X1 2

A= e [ (R + 0t R) dnds — ou

(3.3.5)

with an arbitrary function f = f(xg,21) € C3(R? R%).
Substitution of (3.3.5) into (3.3.3) gives rise to the final expressions for the
functions ¥%(z), ..., ¥3 ()

(40} - i)l

To+ 1T 2

x0m~m | [0 @F + 10k ©F) ez

Zo — X1 2221

- //mwmhwmwﬂmmwﬁ}

(50) - (S ol v o

Lo — X1 2
x0m+m [ (0 R + w2l dndz
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To + T1 22 21
N / //(!Uo(ﬁ)\er|U2(g)|2)d§dz1dZ2>},

Choosing arbitrary functions U#, u =0, ..., 3 in proper way we can obtain
special classes of solutions possessing some additional properties.
If, for example, we choose in formulae (3.3.3), (3.3.6)
d 1/2
U'u(z) =cr df eXp{_Z2}> y b= 07 27
z

Ul(z) =U3(2) =0, f=0,

(3.3.7)

where C?, C? are complex constants, then the corresponding wave function
Y (z) is localized in the neighborhood of the point g = x;. Consequently,
solution (3.3.6), (3.3.7) is a solitary wave propagating with the velocity v = 1.

Substitution of expressions (3.3.7) into (3.3.5) yields the following formulae
for Ap(x), Ai(x):

To+ 21
Aglz) = e(|C°P +|C*P) / exp{—72}dr,
A(z) = 0,
whence it follows that the electro-magnetic field
Fu = 0,A” — 0, A"

is localized in the neighborhood of the point 1 = x¢ and vanishes rapidly as
|z1] — +00.

Thus, we can interpret (3.3.6), (3.3.7) as a wave function of a particle mov-
ing in the electro-magnetic field F},,, which is localized in the neighborhood
of the line 1 = xp.

In conclusion, we note that the method described above has been used in
[293] to construct the general solution of the following two-dimensional system
of nonlinear PDEs:

(i'y,uau - e'V,uAH - )\W(JWW)WJ =0,
8,,0”14# - 0"9,A, = —e&yuw, w,v=0,1,

which can be represented in the form
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~ o — 21
(B} = (B0 el [ (00r + 0P}
V@V _ [PV T e e )
{tm} - {ig(x)}exp{_z [ (P <£>|)5},

functions Ag(z), Ai(z), ¥°(z),...,1¥3(z) being given by formulae (3.3.5),
(3.3.6) correspondingly.

3.4. General solutions of Galilei-invariant spinor equations

Let us rewrite system (3.1.3) in the equivalent form by introducing new func-
tions F(z), f(x)

waso = —F
%1 = i)‘f$171'¢ - 71('70 + '74)F7 (3'4'1)
foo = @+ Py,

Consider now the second equation of system (3.4.1) as a system of ODEs
with respect to x1. Since this system is linear, it is possible to apply the
standard method of variation of an arbitrary constant [197]. The general
solution of the homogeneous part of the system in question is given by the
formula

Y(x) = exp{idy1f(z)}e(wo),

where p(z¢) is an arbitrary four-component function. Consequently, the gen-
eral solution of the second equation from system (3.4.1) has the form

1
Y(z) = eXP{iA'Vlf(x)}<<P(x0)+'71 / exp{—iAy1f (2o, 2)}
(3.4.2)

x (0 4 v4) F'(wo, Z)dz>

Multiplying both parts of the first equation from (3.4.1) by the matrix
Yo + 74 we have
(0 +7a)F' = = (70 + 74) Vo
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whence

(Y0 +v4)F = —exp{—idy1 f} (70 + 74) (& + iMV1 fao ).

Consequently, formula (3.4.2) takes the form

z1

P(r) = eXp{ile(w)}<90(xo) + 71 (70 +74) / exp{2iAy1
(3.4.3)

x f(zo,2)} (<P(370) + iA71 fao (%0, Z)@(xo))dz> :

Substitution of the above expression into the third equation of system
(3.4.1) yields the nonlinear ODE for a function f(z)

for = (A1 cosh2)\f 4+ Ay sinh 2)\f)1/2k, (3.4.4)

where
Ay =0(y0 +ya)e, A2 =1ip(Y0 + 1)ne.
The general solution of (3.4.4) is given by the quadrature

f(@o, 1)
(A cosh 2)\z + Ay sinh 2X2) Y2k dz = 21 + C(xy), (3.4.5)

C(zo) being an arbitrary smooth real-valued function.
Thus, the general solution of nonlinear system of PDEs (3.1.3) has the form
(3.4.3), function f = f(xp, 1) being determined by implicit formula (3.4.5).
Using formulae (3.4.3), (3.4.5) it is not difficult to obtain the general solu-
tion of the linear equation

(iv0 + )0 + im0 — N)(x) =0,

which is of the form

1) under X\ # 0

w(@) = exp{idmai} (o) + (1/20) (0 + 1) exp{2iAna1 1o (wo) ),

2) under A =0
P(x) = p(xo) + x171 (Y0 + 72)$(20)-
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Reduction of the nonlinear Dirac equation (2.4.1) by means of the Ansatz

77/}('%') = (p(fv w):

(3.4.6)
E=o0+ 23, W=2T2

invariant under the two-parameter group with generators 0y — J3, 9; yields
the two-dimensional system of PDEs

(i(0 + 13)e + 1202 — A(W)" )b = 0, 7 = 1/2k, (3.4.7)

which can also be integrated by means of the above described trick [152, 304].
Rewriting system of PDEs (3.4.7) in the equivalent form (3.4.1) we have

Yo = ifuree + 72070 +3)F, (3.4.9)
fo = M) (3.4.10)

Integration of system (3.4.9) by the method of variation of an arbitrary
constant with respect to w yields the following expression for ¢:

w

p(€,w) = expliaf} (9(6)+72(Vo+73)/exp{i'72f(§, z)}

0

X F(&, z)dz),

where O(€) is an arbitrary four-component function-column.
As due to (3.4.8) the equation

(Y0 +73)0e = (0 +73)F

holds, we can exclude from the above equality the function F'

w

p(,w) = explinaf} <9+72('Vo+73)/6Xp{2i72f(€, z)}
0 (3.4.11)

X (@ +ife(€, Z)’Y2@)dz>.
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The only thing left is to substitute (3.4.11) into (3.4.10). As a result, we
get an integro-differential equation for f = f(£,w)

w w r
fo= )\<A+B/coshZfdz—i—C/sinhZfdz) , (3.4.12)
0 0
where
A =080,

B = 07270 + 73)© — ©72(0 +73)0,
C= i(@(’m +73)0 — O (10 + 73)@)
The general solution of equation (3.4.12) has been constructed in [304].

Since its explicit form depends on relations between B and C, we have to
consider four inequivalent cases.

Case 1. B==+C, B#0
a) r#—1
f=+(1/2)n(e £22B7 (r + 1)1 (A + Bg)"+),

-1
dr = w;

9(§,w)
/ {g + 2B~ (r+ 1)~ (A+ Br)"!
0

f = +(1/2)In( £ 208" In(A + Bg)),

9(&,w) .
“1In = w.
0/ {5 +2AB" In(A+ BT):| dr = w

Case 2. B2 > (0? & B = a(€) cosh23(¢), B = a(¢)sinh 23(€)
a) r#—1
1/2

cosh2(f + ) = [1 + (6 + 2)\05_1(7“ + 1)_1(A + ag)r-‘rl)ﬂ ’

g(§,w)

~1/2
{1 + (a +2 M+ 1) A+ on)’"“)2

dr = w;
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cosh2(f + ) = [1+ (= + 220 In(4 + ag)) | v
9(& w) 2
[1 + (E +2Xa tn(A + aT)) } dr = w.

0

Case 3. B2 < (? & B = a(£)sinh28(§), B = a(€) cosh 23(€)
a) r#—1

sinh2(f + 8) = [~1+ (s + 227 (r+ 1)1 (A + ag)m)?] 2

g(§,w)

97—1/2
[—1 + (s +2xa M (r+ 1) A+ aT)r+1>

dr = w.

b) r=-1

sinh 2(f + 3) = [*1 + (8 +2xa tn(A + ozg))? 1/27
9(§,w)

o7 —1/2
|:—1 + (5 +2Xa! In(A + om‘)) } dr = w.

Case4. B=C=0
f=2w.

In the above formulae parameter € takes the values —1, 0, 1.

Thus, we have constructed the general solution of system (3.4.7). Substi-
tution of the obtained expression for the four-component function ¢ = p(§,w)
into Ansatz (3.4.6) with r = 1/2k yields a class of exact solutions of the
nonlinear Dirac equation (2.4.1). And what is more, this class contains four
arbitrary complex functions of £ = xg+ x3 (components of the function ©(¢)).
Such arbitrariness enables us to solve a wide class of Cauchy problems for the
system of nonlinear PDEs (2.4.1).



CHAPTER 4

NONLINEAR
GALILEI-INVARIANT
SPINOR EQUATIONS

In the present chapter we investigate linear and nonlinear systems of PDEs
for the spinor field admitting the Galilei group G(1,3). Wide classes of non-
linear first-order spinor PDEs invariant under the group G(1,3) and its ex-
tensions, groups G1(1,3) and Ga(1,3), are described. All Ansétze for the
spinor field ¢ (¢, ¥) invariant under the G(1, 3) non-conjugate three-parameter
subgroups of the Galilei group are obtained. With the use of these Ansétze
the multi-parameter families of exact solutions of a nonlinear Galilei-invariant
spinor equation are constructed. In addition, we briefly consider the second-
order spinor PDEs invariant under the group G(1,3).

4.1. Nonlinear equations for the spinor field invariant

under the group G(1,3) and its extensions

In spite of the fact that the Galilei relativity principle is known for more than
300 years, the concept of the Galilei group has arisen only recently (1950—
1970). It is even more surprising, if we take into account that Sophus Lie has
discovered this group as early as in 1889. It was Lie who established that
the one-dimensional linear heat-transfer equation (which up to the constant
factor coincided with the Schrédinger equation) was invariant with respect to
the translation group, Galilei transformation, scale and projective transforma-
tions. Simultaneously, he discovered a projective representation of the Galilei
group G(1,1).

Bargmann and Wigner [18, 191] have rediscovered projective representa-
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tions of the Galilei group and showed the fundamental role played by these in
the quantum theory. Since Bargmann’s and Wigner’s works the Galilei group
is intensively used by specialists dealing with mathematical physics problems.

A Galilei-invariant equation for a particle with the spin s = 1/2 was sug-
gested in [172, 212]. Systematic study of the first-order equations invariant
under the group G(1,3) was begun by Lévy-Leblond [212, 213] and Hagen,
Hurley [178, 186]. The algebraic-theoretical derivation and detailed investiga-
tion of the new classes of linear Galilei-invariant equations for particles with
arbitrary spins were carried out in [114]-[116], [118, 119, 130]. Some nonlinear
Galilei-invariant systems of PDEs were considered in [130, 259, 296].

A Galilei-invariant equation for a particle with the spin s = 1/2 can be
represented in the form [296]

{=i(70 + 74)0; + 1700 + m(y0 — v4) }(t, &) = 0, (4.1.1)

where 0, = 9/0t, 0y, = 0/0x,, a = 1,2,3, m = const, ¥ = (¢, ¥) is a
four-component complex-valued function (spinor), # € R?, t € RL.

In the process of derivation of equation (4.1.1) the Dirac’s heuristic trick
was used. Namely, one looked for a first-order system of PDEs with con-
stant matrix coefficients for a spinor (¢, ) whose components satisfied the
Schrodinger equation

(4imy — 0 0g)*(t, ) =0, a=0,...,3, (4.1.2)

whence it immediately followed that up to equivalence the equation required
had the form (4.1.1) (to obtain (4.1.2) one has to act with the operator —i(yp+
v4)0¢ + 1Ya0q + m(y0 — 74)) on system (4.1.1). Let us note that the more
traditional notation of the equation for a Galilean particle with the spin s =
1/2

{i(l + 70)815 + i'}/aaa + m(l - 70)} w<tv f) =0

is obtained if we multiply (4.1.1) by the matrix 4 and change the dependent
variable ¢ — 1 = 271/2(1 4 ~4)1.

1. Local symmetry of system of PDEs (4.1.1). The Lie symmetry of
PDE (4.1.1) for m # 0 is well-known. In particular, in [119, 130, 259] it was
established that (4.1.1) is invariant under the 13-parameter generalized Galilei
group Ga(1,3) (it is also called the Schrédinger group and denoted Sch(1,3)).
We will prove the assertions describing the maximal (in Lie sense) invariance
group admitted by equation (4.1.1) for both cases m # 0 and m = 0.
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Theorem 4.1.1. The maximal local invariance group of equation (4.1.1)
with m # 0 is the 14-parameter group G = Gy(1,3) @ I(1),> where G2(1,3)
is the 13-parameter generalized Galilei group having the generators

Py = &, P, = 8, M = 2im,

Jab = 24O — 204 — (1/2)Va Vs

Go = 104+ 2imzq + (1/2) (0 + 74)Va, (4.1.3)
D = 2t0+ 2,0, + 2 — (1/2)v074,
A = tD —t20; + imzazq + (1/2) (70 + Y1) VaZa

and I(1) is the following one-parameter group
a:L =z, Y, )= ePy(t, 7).

In the above formulae a,b=1,2,3, a # b, 6 = const is a group parameter.
The proof is carried out by means of the Lie method. According to [236]
the operator

Q = &olz,¢",9)0; + Lalz, ¥", 1) 04

(4.1.4)
+n® (xa (A ¢)awa +n™ (.T, Y, w)&/,*a

generates an invariance group of PDE (4.1.1) iff the following relations hold

Q{—i(v0 + )t + ivYatbz, +m(y0 — Ya)} ‘ . =0,
L

Q{i(g + DU —ivavs, +m( — i)Yt} ’ . =0,
L

where Q is the first prolongation of the operator Q. By the symbol [L] we
designate the set of solutions of equation (4.1.1).

Relations (4.1.5) yield the following determining equations for the coeffici-
ents of the operator Q:

= —(EL + bu')’“ + CuV’Yu'YV + du'YH'M + e)w + Q" + 0,

U
n = =@ + b+ YT+ T yr 4 e )Y+ QY 4 U,

3Since equation (4.1.1) is linear, it admits an infinite-parameter group @’ = 1 + 0¥ (¢, Z),
where 0 is a group parameter and ¥ is an arbitrary solution of the system of PDEs (4.1.1).
Such a symmetry gives no essential information about the structure of the solutions of the
equation under consideration and therefore is neglected.
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0180 +2do = 01&1 = 0262 = 053, Dabo = 0,

O0i6a = 2dg = —4coa,  Op€a = —0abp = 4Cap,

Oge = 0t0c&p, (a,b,c) = cycle (1,2,3), b, =0, (4.1.6)
me =0, m(Oi+4do) =0, O (a—do— (1/2)0ua) =0,

Opa — (1/2)0,04& — 2imd&y =0,  0udp = 0,

0 =0,02=0, (70+74)2=-6(y0 —74),

Va2 = =5, m(v0 — 1) =mO(v0 + 1),

where 7 is the four-component function {n°,n',7%,7%}", ¥ is an arbitrary

solution of the system of PDEs (4.1.1), 2, © are complex (4 x 4)-matrices,
indices a, b, c take the values 1, 2, 3 and what is more a # b.

Since m # 0, from (4.1.6) it follows that e = 0, f = —2dy and besides
dyp = dp(t). Due to this fact the equations for functions &y, &1, &2, &3 are
rewritten in the form

0aéo =0, 0o = —4do(t), b€ = —0a&p, a#Db,
0161 = 0o = 0383 = —2do(t), 0:0.& =0, a#Db,

whence it follows that 9,0,§, = 0 (no summation over a) and what is more
the equalities

80,8650 = _aaacgb = _acaagb = 6cab§(z = 8bacga = _ab8a§c>

where (a,b,c) = cycle(1,2,3), hold. Consequently, 0,00, = —0q0p& = 0
which implies that the functions £, are linear in the variables x1, x2, 3. Due
to this fact it is not difficult to integrate the system of PDEs (4.1.6). Its
general solution under m # 0 has the form

€0 = A1t? + 2Ast + As,

&a = Bapxy + (A1t + Ag)xg + Cat + Dy,

a = 1imAi1xexe + 2imCyry + 2A1t + 2A9 + Ay,

cap = (1/4)Bap,  do = (1/2)(A1z4 + Ch),

coa = —(1/4)(A1xq + Cy), do = —(1/2)(A1t + Ag),
bop=b,=e=0, Q=0, 60=0,

where Aqy,...,A4, Baw, C,, D, are arbitrary real constants, By, = —Bpg,
a,b=1,2,3.
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Substitution of the above results into (4.1.4) shows that the most general
infinitesimal operator () admitted by the equation under study is a linear
combination of operators (4.1.3), I = )*Oypa+1** Ope- and Q' = W (t, Z)Opa+
U*(t, Z)Oy+a. Consequently, operators (4.1.3) together with the operators
I, @' form the basis of the maximal invariance algebra admitted by the system
of PDEs (4.1.1). The theorem is proved. >

Note 4.1.1. Operators Py, P,, M, Ju, G, form a basis of the Lie algebra
of the Galilei group which is called the Galilei algebra AG(1, 3).

Note 4.1.2. Operators Py, P,, M, Ju, G, D form a basis of the Lie algebra
of the extended Galilei group G1(1,3) which is called the extended Galilei
algebra AG(1,3).

Theorem 4.1.2. The maximal local invariance group admitted by (4.1.1) with
m = 0 is the infinite-parameter Lie group having the generators*

A = ¢0(t)0r + po(t)ada + (3/2)¢0(t)
+(1/2)$o(t) (70 + V4)VaTas
Go = ¢a(t)0a+ (1/2)(70 + 74)VaPa(?),
Do = @a(t)0 + (1/2)@a(t)(1 — y074),
T = (10 +71)ps(1), (4.1.7)
Joo = Eabesialt) (Sccab + (1/4)%%)
+(1/2) (70 + 74)VaPs+a(t) 162,
My = {C19}*Ope +{CTY"}Oyra,
My = {Cov274¢"}*Ope + {C372751} Dyra,
Mz = {Cs(v2 +7371)¢" }0ye +{C5(72 +7371) ¥} Oyra,

where o(t), pi1(t),...,ps(t) are arbitrary smooth functions, ps = dps/dt,
s =0,...,8, the symbol {¢}* denotes the a-th component of 1, C1, Ca, Cs
are arbitrary complex constants and

1, (a,b,c) = cycle(1,2,3),
€abe =4 —1, (a,b,c) =cycle(2,1,3),
0, in the remaining cases.

Proof. The determining equations for coefficients of the infinitesimal opera-
tor of the invariance group of equation (4.1.1) are of the form (4.1.6) under

4See the footnote on the page 217.
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m = 0. The general solution of system of PDEs (4.1.6) with m = 0 is given
by the following formulae:

§o = wo(t) —204(t), &a = CabcToPsre(t) + (t)Ta + Palt),
a=(3/2)po(t) +C1, bo=-e=w5(t) = (1/2)zaps+a(t),
ba =0, cap = (1/4)eabep5+c(t),

do = —2000 = —(1/2)($0(1)Ta + Pa(t) + abe@sse(D)3s )

Q = Coyy2ys + C3(72 +1371),

where {C1,Cq,C3} C C5 @o(t),...,ps(t) are arbitrary smooth functions.
Substituting the above result into (4.1.4) we come to the conclusion that
the most general infinitesimal operator admitted by equation (4.1.1) under
m = 0 is a linear combination of operators (4.1.7) and Q' = ¥(t,Z)dyo +
U*(t, Z)Oy+a. Consequently, the operators listed in (4.1.7) together with the
operator @)’ form the basis of the maximal (in Lie sense) invariance algebra of
(4.1.1). The theorem is proved. >

Note 4.1.3. The algebra (4.1.7) contains as a subalgebra the infinite-dimen-
sional centerless Virasoro algebra with the following basis operators:
G = Aco(t™) =170 + nt" 11,0, + (3n/2)t" !
+(1/2)n(n = 1)t" (30 + 74)Vaa;

which satisfy the commutation relations

[an Qm] - (m - n)Qn—i-m—lu n,m S Z.

The Virasoro algebra is a Kac-Moody-type algebra which plays an impor-
tant role in the theory of two-dimensional dynamical systems (see, for example,
(67, 276, 286]).

Note 4.1.4. On the set of solutions of system of PDEs (4.1.1) with m = 0
two inequivalent representations of the Lie algebra of the generalized Galilei
group are realized

1) Po=0; Py=0q,
Ga = t0a + (1/2)(0 + 714)Va:
Jab = a0y — 260 — (1/2)7aV, a # b,
D = 2t0; + 404 + 2 — (1/2)v0V4,
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A=tD — t28t + (1/2)(70 + 74)’7@37(1;

2) Po=0, Py=0q,
Go =104+ (1/2) (70 + 74)Vas
Jab = a0 — p0a — (1/2)vavp, a # b,
D =10y 4+ x,04 + 3/2,
A =2tD — 20, + (70 + 1) Yaa-

Further, we adduce transformation groups generated by the operators
(4.1.3). To obtain a one-parameter transformation group generated by op-
erator ) (4.1.4) it is necessary to solve the following Cauchy problem (the Lie
equations):

dt' . dz!, o
E = fo(tlawlﬂﬂ/ 7¢/)7 dT = fa(t/,x’,z// 71//)7

d /o d Ve

;b’r = na(t/’ SZ",, w/*’ d}/)’ th_ — n*a(t/’ f’, d}/*’ ¢/)’ (418)

t(0) =t, 24(0) =4, ¥0) =9 P*U0) =y

Substituting into (4.1.8) functions §,, n%, n** corresponding to the opera-
tors (4.1.3) and integrating the equations obtained we arrive at the following
transformation groups:

t =t 4 0,
P {x;:$a+9a, (4.1.9)
Y, 7)) =p(t, D);
=t
xl, = (5ab cos 0 + ap0.01 sin 6
J o (4.1.10)

+0,0,072(1 — cos 0)>acb,
1/1/(t/, f/) = exp{_(1/4)5ab09a7b’70}¢(t7 f),

=t
), = T4 + bat,
G : V(T = exp{—2im(9a$a + (t/2)0a0a> (4.1.11)

—(1/2)(0 + 1) Vaba }(t, );

t' = te*,
D - { l‘; — $a€90’ (4.1.12)
wl(t/, f’) = exp{—290 + (1/2)00’7074}1#(15, f),
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' =1t(1—6pt) ",
), = xq(1— 0ot) 71,
A ', F) = (1 —6pt)? exp{—im90(1 — Oot) Lz 414 (4.1.13)

—(1/2t) In(1 — 6ot) (t’YO’M + (0 + 74)%%) }w(t, );

t'=t,
M : =, (4.1.14)
w/(t/, f/) — e—?im@od)(t’ f)’

where P = 00FPy + 04FPa, J = (1/2)eapcbadpe; G = 0.Ga, 0o, 0, are group
parameters, 0 = (6,0,)"/2.

One can check by a direct computation that equation (4.1.1) is invariant
under groups (4.1.9)—(4.1.14).

Note 4.1.5. Transformation groups corresponding to the operators (4.1.7) are
given in [160].

2. Non-Lie symmetry of system of PDEs (4.1.1). As earlier (see Section
1.1) we designate by M the class of the first-order differential operators with
complex matrix coefficients

Xy = Ao(t, f)@t + Ab(t, f)ab + B(t, f)

acting on the space of four-component complex-valued functions ¢ = ¥ (¢, ).
Below we adduce the assertions describing the symmetry of equation (4.1.1)
in the class Mj.

Theorem 4.1.3. System of PDEs (4.1.1) with m # 0 has 34 linearly-indepen-
dent symmetry operators belonging to the class My. The list of these operators
is exhausted by the generators of the generalized Galilei group (4.1.3) and by
the following 21 operators:

M, = I, M, = il,

Wo = (1/2)(v0 + )0 — (im/2)(0 — V4),

Wa = (1/2)2ae((1/2) (0 + 79) (18e = %eds) + imme),
Sa = Y0709 + (Y0 + 74)7a0r — im(Y0 — V4)Va;

Ty = (1/2)ae((1/2) (0 = 70) (00 = eds) + 170 )

Ry = tWy+xz,W,+ (3/4)(’}/0 + 'y4),
Ry = 2Ty +20,Wo + cape (25 + (1/2)m7) + (3/2)%,
No = %aSa+ 7071
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No = tSq+ 2eapctsWe + (Y0 + 74)Vas
Ko = 2z,Ro— (xpa)Wa + €abe (tﬂchc + (1/2)twve + (o + 74)1’5%)
T, + (3/2)ta,
where [ is the unit (4 x 4)-matrix.

Theorem 4.1.4. Basis of the infinite-dimensional vector space of symmetry
operators of system (4.1.1) with m = 0 belonging to the class My can be chosen
as follows

L = I, I, = il, As, Goo, Do, T, Joo,
Wo = (v0+7)(050 + ©30a),
See = 21((0 + 74)7a0: + 70710 ) + (1/2)(0 + 1) Va2h
P = ¢5(200 — (Y0 — 1)) + (1/4)(2%a + Cabere) 25,
Qe = ©p(70 + 74)Zabas
Rw = W}lo{%bc((’m +74) e + 70’74%&) + (1/2)%}
—(1/2) (70 + Y4)YaPa Vo
Neo = o5 ((70 + 74)Ya®aOt + 0747004
+(1/2)(1+707) ) + (1/2)28" (30 + 7)o a,
Koo = @3} (‘(70 + 74) (2p75) 0o + 20 (Y0 + Y4) 2504

+2z4 (70 + ’74) + 8abc-’rb’)/c>)
Loo = Eabeps’ (Y0 + 74) (xbac + (1/4)%%)-

Here A, ..., Joo are operators listed in (4.1.7), gpﬁf, uw=0,...,3, N=
6,...,13 are arbitrary smooth functions of ¢, an overdot means differentiation
with respect to t.

Proof. We give the main idea of the proof omitting very cumbersome in-
termediate calculations. According to the definition of a symmetry operator,
to describe all linearly independent symmetry operators of equation (4.1.1)
belonging to the class M it is necessary to construct a general solution of the

operator equation
[L, X] = (Roat + R,0, + R)L,

where L = —i(v0 +74)0¢ + 17400 + m(~0 —74); Ro, R4, R are variable (4 x 4)-
matrices.
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Computing the commutator and equating coefficients of linearly-indepen-
dent operators 02, 8,04, 0,0, 0, O, yield a system of matrix PDEs for Ag, A,
B, Ry, R,, R. Eliminating matrix functions Ry, R,, R we arrive at the
over-determined system of PDEs for 80 functions Af”, ALY, B* (by A* we
designate the entries of the matrix A) p,v = 0,...,3 which general solution
gives rise to a complete set of symmetry operators of equation (4.1.1). >

The complete set of symmetry operators of equation (4.1.1) belonging to
the class M7 does not form a Lie algebra. But it contains some subsets which
have very interesting algebraic properties. In particular, the basis generators
of the Galilei group Py, P,, Jap, Ga, M are even basis elements and the
operators Wy, W, are odd basis elements of a superalgebra. This superalgebra
can be considered as a superextension of the Galilei algebra AG(1,3) [305].

A detailed account of symmetry properties of system of linear PDEs (4.1.1)
in the class of differential operators of the order higher than 1 and in the class
of integro-differential operators can be found in [119].

3. Nonlinear spinor equations invariant under the group G(1,3).
In this subsection we will obtain a complete description of Galilei-invariant
systems of PDEs

{=i(v0 +74)0; + i7a0a + m(yo — va) Yt = F (¥, 1), (4.1.15)

where F(¢*, 1) is a complex-valued four-component function. In addition,
all the functions F'(¢*,1) such that equation (4.1.15) admits wider symme-
try groups (in particular, the generalized Galilei group Ga(1,3)) will be con-
structed.

Theorem 4.1.5. The system of nonlinear PDEs (4.1.15) is invariant under
the Galilei group iff

F, ) = (fu+ (o + ) o) ¥, (4.1.16)

where f1, fa are arbitrary smooth functions of wq = b, wo = i) + Pyaa).
Proof. Tt is convenient to represent a four-component function F'(1*, ¢) in
the form F' = H(¢*, 1)1, where H is a variable (4 x 4)-matrix.

At first, we select from the class of equations (4.1.15) those which are
invariant under the rotation group O(3) C G(1,3). Acting by the first prolon-
gation of the generator of the group O(3)

Q = apaOp — (1/4){apva ot} Ope — (1/4){ap Yo 150"} Opar,
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where a,, = —ap, are real constants, on (4.1.15) we arrive at the following
relation for H = H(¢*, v):

Q{—i(v0 + 7)Yt + VaVe, +m(0 — a)Y — H} =0.
0 (4.1.17)
Here [L] is the set of solutions of PDE (4.1.15).
Designating
Qab = —(1/2){7a 1} * Oy — (1/2) {05759 }* Do,
we rewrite equation (4.1.17) as follows
QuH + (12, H] = 0. (4.1.18)

Expanding the matrix H in the complete system of the Dirac matrices

H o = a()™, )+ bu(*, P)y" + e (97, P)yHy"

(4.1.19)
+d#(¢*v 1/1)747“ + 6(7/)*7 1/))’}/4

and substituting it into (4.1.18) we get

Qav(@l + byy" + ey y" + dyyayt + eva)
= bt (gua'Yb - gub'}’a) + du'74(g,ua7b - gulﬂ/a)
—(Gar VoY + GopVa Vo — Gau V6 Vo — GbvYa V)

Equating the coefficients of linearly independent matrices we arrive at the
following system of PDEs:

Qv = Qape = Qavbo = Qapdo = 0,

Qabbr = be(geadkb — JebOka)s

Qabdr = de(geaSkb — 9ebOka), (4.1.20)
QabCok = Coc(geadkb — GebOka),

QabChec = Cmn(gandllfﬁz + gbmdgfz - gamdllfﬁ - gbn5§fn)-

In (4.1.20) 6%¢ = 8,,16nc — OpkOme, @, b, ¢, k,m,n =1,2,3.
Integration of system (4.1.20) is carried out in the same way as integration
of (1.2.6)—(1.2.9). That is why we omit intermediate computations and give
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the final result

a = Ei(¥), bo = Eao(ff), do = E3(%), e = Eu),
bp = Vv Bi(7) + ¥y Ba(y) + v o0 Bs(),
) + YT Co(§) + 7 1072769 Cs (§), (4.1.21)

L <

cow = Y CL(y
dy = VInD1(§) + Y Da(§) + Y v0v2 19 Ds(i),
cap = P wCu(§) + ¥ 7w Ca(#) + v 072728 Co (§),
where By, Bs,...,E4 are arbitrary smooth complex-valued functions; ¥ is a

complete set of functionally-independent invariants of the group O(3) which

can be chosen in the form § = (1, YT, PTyah, Pyah, P a0)).
Substitution of (4.1.19), (4.1.21) into (4.1.15) gives rise to the following

class of O(3)-invariant spinor equations:
{—i(v0 4+ 74) 0 + 17000 + m(yo — Ya) }¥
= {E1 + Y0 E2 +7074E3 + ¥4 E1 + Yo (¥ va 0 By
+9 4729 Ba + v 072708 Bs) + Y4Ya (V1701 D1 (4.1.22)
+91 74729 D2 + Y 072740 D3) + Y0va (Y701 Ch
T 47,9 Co + +T 1072729 C3) + Va1 (YT a1 Ca
+ T v Cs + @/)TVO’mwwaﬁ}w-

Formulae (4.1.22) are substantially simplified if we use identity (1.2.18)
rewritten in the form

(Y17a%2)Yat2 = (WIha)y0t2 — (Yr1eh2)tbe — (P174t2)yatho.

Here 11, 19 are arbitrary four-component functions.
Due to the above identity equation (4.1.22) takes a more compact form

{—i(v0 + 74)0¢ + 17204 + m(y0 — V) }¥

(4.1.23)
= (h1 + h2vo + h3Y0v4 + hava)?,

where h; = hi(y1, y2, Y3, Y4, ¥s5), © = 1,...,4 are arbitrary smooth complex-
valued functions.

Next, acting with the first prolongation of the generator of group (4.1.11)
on (4.1.23) and using the Lie invariance criterion we get the following equations
for H = h1 + hayo + h3yova + haya:

QuH + (1/2)[H, (0 +74)7] =0, a=1,2,3, (4.1.24)
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where Qa = —(1/2){(70 + 7)7a¥}*Ope — (1/2){(7 + V1) 12t} Oye-

Computing commutators in the left-hand sides of system (4.1.24) and
equating to zero the coefficients of linearly independent y-matrices we come
to the system of PDEs for hy, hs, hs, hg

Qoh1 =0, Quha=0, hy="hy, h3=0. (4.1.25)
Integration of the above equations yields
hi = fi(wi, wa), ha=hy= fo(w1, w2), h3=0,

where wy = 9, wa = YT + Py

Generally speaking, the group G(1,3) is not the maximal invariance group
of equation (4.1.15) with F' of the form (4.1.16). Below we give without proof
the assertions describing functions F' = F(1*, ¢) such that the system of
PDEs (4.1.15) admits wider groups.

Theorem 4.1.6. Equation (4.1.15) is invariant under the group G1(1,3) =
G(1,3)xD(1), where D(1) is the one-parameter group of scale transforma-
tions, only in the following cases:

1) fi = @+ Pr) O F (@) 2R (T + ) ),

fo = (1 + ya) @D o (9) 2 (1 + dray)?), (4.1.26)
D(1) being of the form
t = te%o, xh = xaeeo,
W, 7) = exp{fo(—k + (1/2707) }e(t, ), (4.1.27)
under k # 1/2;
2) fi =il +vuy), o= W) RO+ Puy),
D(1) being of the form (4.1.27) under k = 1/2;

3) m=0, fi="+Pup)/* A0 +dup) ),

fo = W1 + ) V2 fo () (T + Prag) ), (4.1.28)
D(1) being of the form
t'=te, ! =g, W, T)=e oy, 7). (4.1.29)

Theorem 4.1.7. Equation (4.1.15) is invariant under the generalized Galilei
group Ga(1,3) only in the following cases:
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1) f1, fa are of the form (4.1.26) under k = 3/2, the groups of scale and
projective transformations are given by formulae (4.1.27) (with k = 3/2) and
(4.1.13);

2) m =0, fi1, fo are of the form (4.1.28) under k = 3/2, the group of
scale transformations is of the form (4.1.29) with k = 3/2 and the group of
the projective transformations has the form

t'=t(1—6pt)"", 2 = x4(1—6pt) 2,

a

(', &) = (1 - 0ot)® exp{bo(1 — Bot) ™ (v0 + Ya)VaTa U (t, Z).

4.2. Exact solutions of Galilei-invariant

spinor equations

The present section is devoted to reduction and construction of the multi-
parameter families of exact solutions of the nonlinear Galilei-invariant systems
of PDEs

{=i(v0 +74)0 + i7a0a + m(y0 — v4) — f1 — fa(yo +72)} =0,  (4.2.1)

where f; = f;(, ¥ + ).

1. Ansitze for the spinor field. Since a linear representation of the Galilei
algebra is realized on the set of solutions of the system of PDEs (4.2.1), we
can look for Ansétze reducing (4.2.1) to systems of ODEs in the form

Y(t, ) = A(t, Z)p(w), (4.2.2)

where ¢ = ¢(w) is a complex-valued four-component function. A variable
(4 x 4)-matrix A(t, ) and a real-valued function w = w(t, ¥) are determined
by equations (1.5.22), (1.5.20), where operators @1, @2, @3 are the basis
elements of some three-dimensional subalgebra of the Galilei algebra AG(1, 3).

A classification of the G(1,3) non-conjugate subalgebras of the algebra
AG(1, 3) has been carried out in [267] (we use a more convenient classification
given in [100]). Each three-dimensional subalgebra (Q1, Q2, Q3) satisfying
condition (1.5.10) gives rise to an Ansatz of the form (4.2.2) which reduces
the G(1, 3)-invariant system of PDEs (4.2.1) to a system of ODEs for ¢ (w)
(Theorem 1.5.1).
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It should be noted that the subalgebraic structure of the algebra AG(1, 3)
in the case m # 0 differs essentially from the one in the case m = 0. That is
why the cases m # 0 and m = 0 lead to principally different sets of Ansétze
for the spinor field.

Since the system of nonlinear PDEs (4.2.1) with m = 0 admits the infinite-
parameter Lie group with generators Goo, Joo from (4.1.7) [292], which con-
tains the group G(1, 3) as a subgroup, it makes no sense reducing it by means
of subgroups of the Galilei groups. That is why we restrict ourselves to the
case m # 0 (Galilei-invariant Ansétze for the case m = 0 are constructed in
[160]).

At first, we will write down the complete list of inequivalent Ansétze for the
spinor field invariant under the G(1,3) non-conjugate three-dimensional sub-
algebras of the algebra AG(1,3) and then consider an example of integration
of the over-determined system of equations (1.5.22), (1.5.20).

1) (P, P, P),
Y(t, T) = ¢ (3);
2) (Jig + aPy, P, P),
¥(t, &) = exp{(t/20)n172}e (3);
3) (Py+iam, P, Py),
Y(t, ) = exp{—iamt}y (z3);
4)  (Jia, Po, P3),
U(t, T) = exp{—(1/2)n1 72 arctan(z1 /2) o (] + 23);
5) (Ji2 +aPy+ BGs, Py, Ps),
W(t, &) = exp{(2im/3)Ba"t(Bt* — Baws) — (Bt/a)ns + (t/20) 1172}
X (ﬂt2 — 2ax3);
6) (Ji2+aGs, P, P),
¥(t, &) = exp{(1/2at)z3(y172 — 20m3 — 2imaws) }o (1);
7)) (Ji2 + aGs, Gi, Ga),
U(t, F) = exp{—(im/t)(a} + 23) — (1/t)(mz1 + 1222)}
x exp{(1/2at)xs(2iamaxs + ans —y172) }e (t);
8) (Jia+ aPs, Pi, Po),
U(t, ¥) = exp{—(1/2a)z3m2}p (1);
9) (Ji2+ aPs, G1, Ga), (4.2.3)
U(t, B) = exp{—(im/t)(z] + 23) — (1/t)(mz1 + n22)}
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x exp{—(1/2a)z3y172} (1);
10) (P, Py, Ps),
P(t, T) = ¢ (1);
11) (Gy, P, Ps3),
Y(t, ) = exp{—(im/t)a? — (1/t)zrni o (1)
12) (G1+ aPy, Ga, Ps),
U(t, T) = exp{—im[t 'zd + (t — a) "'z} — t Laomy
+(a—t) e} (t);
13) (G1+aPy, Go + Py, Gs),
b(t, 7) = expliml(a — )23 + (8 — )" 1a3 — t1a]
Ha—t) i+ (8= 8) wane — ¢ aans}e (b);
14) <G1 + CYP(), Pg, P3>,
b(t, ) = exp{ (2im/3)a~24(E — 3az1) — (t/a)m } (1)
15) (Ji2 +iam, Py, Ps),
U(t, ¥) = exp{liam — (1/2)m172] arctan(z1 /2) }o (2] + 23);
16) (Ji2 +iam, Py + im, Ps),
U(t, T) = exp{ifmt + [iam — (1/2)y172] arctan(z1 /z2) }o (23 + 23);
17) (G1+ aPy, Go+ aPy + Py + 7P3, Gs — pG1 — 6Go — ad Py),
U(t, T) = exp{—(im/t)z? — (1/t)z1m} exp{f(im/t)(axl + tay)?
x[t(t = B) — 0?71+ (1/7t)(am + tn)ws f exp{imu? (f(8)[(t — B)

~a?]) " = O (067 — 7o + ) —s) fo 0)

In the above formulae «, (3, p, § are arbitrary real parameters; 7, =
(1/2)(v0 + v4)Ya, @ = 1,2, 3; ¢ (w) is an arbitrary four-component function;

w = T(ax; +trs) + (t(t —-pB)— a2):r:3, T =ap+ 396,
F(t) = 7(alpt — ad) + 6t7) — t(t(t - B) - a?).

As an example, we construct the Ansatz N 11 from (4.2.3). Substitution
of Q1 = t0z, +2imaxy + (1/2)(v0 +74)71, Q2 = Ory, @3 = Oz, into the system
of PDEs (1.5.22), (1.5.20) gives the following equations for A(t, &), w(t, Z):

Opy A = Dy A = 0,

, (4.2.4)
£y, A+ (2imay + (1/2)(90 +7a)n ) A =0,
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Orow =0, Opw=0, t0yw=0. (4.2.5)

The first integral of system (4.2.5) has the form w = ¢. Next, from (4.2.4)
it follows that A = A(t, z1) and in addition

68;41 - _(1/t)<2imxl + (1/2) (70 + 74)71>A.

Integrating the above equation we get the expression for A.

2. Reduction of nonlinear equation (4.2.1). We will carry out reduction
of PDE (4.2.1) to systems of ODEs provided m # 0. Substitution of Ansétze
(4.2.2) into (4.2.1) gives rise to equations of the form

d
Alt, a?)L<w, o0, df) — 0. (4.2.6)

Since detA(t, Z) # 0, the above equation is rewritten as follows

. dy
L<w7§0 y P dw) =0.

Below we give explicit forms of systems of PDEs for ¢ = ¢ (w) corre-
sponding to the Galilei-invariant Ansétze for the spinor field (¢, ¥) listed in
(4.2.3)

) iy +mly -y = F,

)i+ ((1/20) (0 + )78 + m(h0 — ) )@ = F,
3) s+ (Oém(’Yo +74) +m(0 — 74))90 = F,

) 2wy + ((i/2)w™ 2y +m(v0 — 1)) = F,

) —2iayse + (m(% — ) +a Bw(yo + 1)
+(i/20) (0 + )73 0 = F,
6)  —i(y0+74)¢ + (m(r0 — 7a) + (i/20w) ova

—a(y0+ 7)) = F,

7) =il +70)¢ + ((i/20w)707 — (i/w) (0 + 1) + m(30 = 1) )2

=F,
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8) —i(y0 + )¢+ (m(v0 — 1) — (i/20)v0) e = F,

9) Z(’YO +v4)¢ + (m(% — 1) —iw (Yo + ) — i(204)_170’74)<ﬂ

10) —i(y0 +74)$ + m(yo — va)p = F, (4.2.7)
11) =il +7)¢ + (m(o —4) = (i/20) (0 + ) )¢ = F,
12) —i(y0 + 1)@ + (m(v0 = 4) = i(2w — @) 2w(w — a)] !

X (70 +’Y4))<P =F,

13) —i(yo+74)¢ + (m(70 — 1) — i[3w? = 2(a + B)w + af]
(=B (o +m) e =F,

)
14) —2iay1p + (m Yo — Y4) + ma” w(% + 74))90 = 13,

15) 2w 2750+ (1w liamy + (1/2)7] + m(r0 — ) ) = F,
16) 2w/ %50 + (zw Y2liamyr + (1/2)72] + m(vo — 74)
+mB(y0 + 7))o = F,
17) =it +7)¢ + (i20f ()] + ala+ prjw = 270
x (90 +74) = (i/w) (0 +74) + (10 — 1) )¢ = F.
Here a dot over ¢ means differentiation with respect to w,

F={f1(pp, ¢'0+@1p) + (0 + 1) f2 (P, 9T + Pr0) Yo,
T=ap+8, f(w)=r7la(pw— ad)+ 6w?] — [w(w — B) — a?|w.

3. Exact solutions of nonlinear equation (4.2.1). We will construct
the multi-parameter families of exact solutions of nonlinear Galilei-invariant
system of PDEs of the form (4.2.1) with the power nonlinearity

{—i(% +72)8% + 17200 + m(0 — 1) — AT + @z?wp)l/%}u} =0, (4.2.8)

where A\, k are constants, by means of the Ansétze for the spinor field ¥ (¢, ¥)
invariant under the G(1,3) non-conjugate three-dimensional subalgebras of
the Galilei algebra AG(1,3).

According to the results obtained in the previous subsection substitution
of Ansiitze (4.2.3) into (4.2.8) gives rise to systems of ODEs (4.2.7) with F =

ApTo + @rap) /.
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ODEs 6-13 prove to be integrable due to the following assertion.
Lemma 4.2.1. The quantities

=@ +r1)ew, Ir=@(0+7)pw?,
?(v0 +va)e, Iy = @0+ 1) w?,
Lo =¢(o +74)e, T =00 +74)pw,
Lo = §(70 +74)¢ (W* — aw),

Iz = @(v0 +11)pww — a)(w —B)
are the first integrals of the systems of PDEs 6,7,...,13, respectively.

Proof is carried out by a direct check. >

According to the above lemma, the systems of nonlinear ODEs 6-13 are
linearized. And what is more, the linear systems obtained are integrable in
quadratures. This fact enables us to construct the general solutions of the
reduced ODEs 6-13 from (4.2.7). These solutions are represented in the fol-
lowing unified form:

N(w) = (1/2){/n(w)(v0 +74) + gn (@) (1 +v072) }x; (4.2.9)

(
where N = 6,...,13, x is an arbitrary constant four-component column,
= (1/2m)Aw ™ — (i/2aw)]gs,
w2 exp{—(i/16)(a®mw) "t 4+ iWy (k,w)};
(1/2m)AwV* — (i/2aw)]g7,

BN

S

)
=
&
I

> %
/\/\/\/\/\/\/E\f\/‘\/‘\/‘\/\/\
M N N N N N N N N N N N

frlw) =
grlw) = w! exp{~—(i/16)(onmw)_1 +iWa(k,w)};
few) = (1/2m)[A + (i/2a)]gs,

exp{i(1 + 402 X?)(16a%m) " 'w};
(1/2m) [ Aw ™Y + (i/2a)] g,

S

gw) = (1/w)expliw(16a’m)~! + iWy(k,w)};

folw) = (y/2m)expl(i/am)iu},

go(w) = exp{(i/4m)\2w}; (4.2.10)
fiw) = (A/2m)w'/? gy,

gw) = w2 exp{iWi(k,w)};

fiaw) = (/2m)(@® — aw) ™ gps,

Q
fary
[\
—
€
~—

w
(W? — aw) /2 exp{z)\Q (4m) 1/ l/kdz}
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fa@) = (/2m)lw(w —a)(w = B g,
g13w) = [ww—a)w-pB)?

w

X exp{(iS\Q/élm) /[z(z —a)(z— ﬁ)]_l/kdz}.

In (4.2.10) X = A(xTx + vyax) /2",

s k(k —n) twk=—n)/k  under k # n,
Wn(k,w):(A2/4m){ (h=n)~w under & 7 n

In w, under k£ = n.

Substitution of the above results into the corresponding Ansétze for the
spinor field 1 (t, &) yields the following classes of exact solutions of nonlinear
equation (4.2.8):

U(t, 7)) = exp{xs(2at) (179 — 20m3 — 2iamasz) b (t),
G(t, ©) = exp{—imt™ ' zaxa — t naza} exp{(20t) 37172} 07 (1),
U(t, F) = exp{—(20) 'wamr2}es (1),
U(t, B) = exp{—imt ™! (z] +23) — ¢~ (zim + w2m2)}
x exp{—(20) " xzmiy2 )9 (1),
Y(t, T) = 10 (t), (4.2.11)
Y(t, ) = exp{—imt 122 —t Lz Yo (1),
Y(t, ) = exp{—imt a3 —t Tazomy} exp{im(a —t) " 1a?

+(a—t) T Fera (¢),
W(t, ¥) = exp{—im[t™z] + (t — ) 't + (¢ — §)'ad)]
—tragns + (o — ) e + (B — ) teane s (1)

To obtain G(1, 3)-ungenerable families of exact solutions of system of non-
linear PDEs (4.2.8) it is necessary to apply the procedure of generating solu-
tions by transformations from the symmetry group of system of PDEs (4.2.8).

Using Theorem 2.4.1 it is not difficult to obtain the formulae of generating
solutions by transformation groups (4.1.9)-(4.1.14)

t/:t—|—90,
Ty = Ta + Oa;

{T/J[](t, f) = wf(tlv f/)v
P
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Yrr(t, ) = exp{(1/4)eapclao¥e s (t's '),
=t
J o xl, = (5ab cos O + 450,01 sin b

+0,0,072(1 — cos 9)):%;
Vri(t, 7) = exp{ 2im (0uza + (t/2)0a0a)

G +(1/2)(70 + 74)%9(1}%(75/, '),
=t
xl = xq + O,t;
Yir(t, T) = exp{200 — (1/2)00r0va}1 (¥, 7'),
D t = te2bo,
z! = waef;
Yrr(t, ©) = (1 — Gpt) 2 exp{z’m@o(l — Oot) g1y
A +(1/26) (1 = o) (t107 + (0 + 4)Yaa) U1 (¢, &),

t'=t(1 —0t)" 1,
2! = x4(1 — Opt) "L
¢H(t, f) — eQimeO@Z)[(t/, f/)’
=t
{ :Ciz = Ta,
where 0y, 0, are arbitrary parameters, § = (9(16@)1/ 2,
Applying the solution generation formulae to (4.2.11) and making some
rather cumbersome computations yield the G(1, 3)-ungenerable families of ex-
act solutions of nonlinear equation (4.2.8). Below we present one of them

W(t, &) = (1/2) exp{im(20aza + 10a0)} exp{ —(1/2T)apz (2imay2,
+(70 + 74)%%)}{(’70 + 74) (fn(T) + 911(T)%9a)

+911(T) (1 +707) fx:

where 2z, = x4 +t0, + 74, T =t +70; {64, Tu} C R! are arbitrary parameters;
d is an arbitrary constant unit vector; the functions f11(7"), g11(7) are given
in (4.2.10).

It is worth noting that all solutions (4.2.11) have a singularity at the point
m = 0. Consequently, it is impossible to obtain solutions of massless equation
(4.1.1) putting in (4.2.11) m = 0.
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4.3. Galilei-invariant second-order spinor equations

As noted in Section 4.1 the substitution
W(t, &) = {30 + 1) + 17ada + M0 — 1)}V (E, ) (43.1)
reduces equation (4.1.1) to a system of splitting Schrodinger equations
(4im0Oy — 0q04) ¥ (t, T) = 0, (4.3.2)

where U® are components of the spinor V.

Thus, the problem of integration of system of linear PDEs (4.1.1) is reduced
to the integration of the scalar Schrodinger equation. That is why system of
the second-order PDEs (4.3.2) can also be used to describe a Galilean particle
with spin s = 1/2. However equations (4.3.2) describe particles with different
spins because they are invariant under the Galilei group having the generators

PO = 8t) Pa = Uaq,
Jap = =240y + 204 + Sap, a # b, (4.3.3)
Go = t0y + 2imaxy + Na,

where S, 7, are arbitrary constant matrices of the corresponding dimensions
which satisfy the commutation relations

{Saba Sc ] = _5adSbc - 5chad + 6achd + 5dea07
(4.3.4)
[naa Sbc] = 5ac7lb - 5ab770a [77aa nb] =0.

To obtain from (4.3.2) a system of PDEs describing a particle with spin
s = 1/2 one should impose an additional constraint on the set of solutions of
(4.3.2). For example, if equations (4.3.2) are considered together with (4.1.1)

(4im0y — 0a04)9(t, ¥) = 0,

(4.3.5)
{=i(70 +74)0r + i7a0a + m(y0 — Y4) (¢, T) = 0,

then the maximal (in Lie sense) invariance group of the system obtained is the
generalized Galilei group having the generators (4.1.3). This assertion follows
from the fact that the set of solutions of system (4.3.5) coincides with the set
of solutions of equation (4.1.1).

Imposing on solutions of system (4.3.2) the weaker nonlinear constraint

O (%0 + 7)) = da($7a¥) (43.6)
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we get another example of a Galilei-invariant system of PDEs for a particle
with spin s = 1/2. Let us note that additional constraint (4.3.6) is an algebraic
consequence of equation (4.1.1). Therefore, the set of solutions of system
(4.3.2), (4.3.6) contains all solutions of equation (4.1.1).

By a direct check we can become convinced of the fact that the system of
PDEs (4.3.2) is not invariant under the generalized Galilei group with gener-
ators (4.1.3). The same assertion holds for nonlinear equations of the form

(4im8; — 9a0a)) + F(4*,1) = 0, (4.3.7)

where F' is a complex-valued four-component function.

Theorem 4.3.1. The system of PDEs (4.3.7) is invariant under the Galilei
group with the generators Py, P,, Jup, Ga, M from (4.1.3) iff

F={fi+ (o +v4)f2}9, (4.3.8)

where fi, fa are arbitrary smooth functions of w1 = ¥, wy = YT + hyaa).
Furthermore, the class of PDEs (4.3.7) contains no equations admitting the
group Go(1,3) with generators (4.1.3).

Proof.  Invariance of system (4.3.7) with respect to the group of translations
(4.1.9) is evident. Consequently, to prove the theorem we have to study the
restrictions imposed on the four-component function F'(¢*, ¥) by the require-
ment that (4.3.7) admits the Lie groups with the generators Ju,, G,. Acting
by the first prolongation of the operators Ju;, G, on (4.3.7) and applying the
Lie invariance criterion we get an over-determined system of linear PDEs for
F(¢*, v). If we rewrite the function F' in the equivalent form H (¢*, 1),
where H(1)*, 1) is a 4 X 4-matrix, then the system of PDEs in question takes
the form

(a0} Do + (132707} Oger ) H = [rams, H],
{(v0 + 74)Ya¥}*Ope + {(75 + wz)ﬁw*}aawm)ﬂ (4.3.9)
= [H’ (70 + '74)'7(1]-

Here {9}“ is the a-th component of ¢, [ , ] is the commutator.

Equations (4.3.9) coincide with (4.1.18), (4.1.24), whose general solution
after being substituted into the equality F(¢*, ) = H(¢*, ¥)y gives rise to
formula (4.3.8).

On applying the Lie method we come to the conclusion that the necessary
and sufficient conditions for system (4.3.7), (4.3.8) to be invariant under the
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group of projective transformations (4.1.13) are as follows

(10w, + w20, —2/3)fi =0, i=1,2,
(70 +74) (ivaf?a +m(y0 — 74))1/1 =0.

Since the last equation is not a consequence of system (4.3.7), (4.3.8),
equation (4.3.7) is not invariant with respect to the generalized Galilei group
having generators (4.3.1). The theorem is proved. >

According to the above theorem, to obtain a Ga(1, 3)-invariant nonlinear
generalization of system (4.3.2) we have to study the wider class of PDEs

(4zm8t - aaaa)?P - F(w*7 wa w*a w) = 07 (4310)

where the notation ¢ = {9y, 9,1} is used.
1

Here we adduce only one example of the equation of the form (4.3.10)
invariant under the group Ga(1,3) with generators (4.1.3)

(4imd; — 9uda) + (1/3)(0) M { (10 +74)0 — 17a0a ) 000}
x{=i(v0 +7)9% + 17ada + ml30 = 1) J

(@) (i + falyo + ) ) ¥ =0,
where f; = fi[(¥ ¢ + F410)3(1p) 2], i = 1,2 are arbitrary smooth functions.
There exist second-order PDEs invariant under the Galilei group which

are principally different from (4.3.2). For example, in [114, 119] the following
G (1, 3)-invariant system of PDEs

(1920 — m)(t, ) = (1/2m)(1 = 70 — i74)BaBath(t, )
was obtained. It is invariant under the Galilei group with the generators

PO = 815, Pa = Ua,
Jab = —xaab + .Tbaa + (1/2)'7(17&17 a 7é b,
Gq = t0q — imaa + (1/2)(1 + iv4)Ya-



CHAPTER 5

SEPARATION
OF VARIABLES

In this Chapter we present the basis of the symmetry approach to the sepa-
ration of variables in systems of linear PDEs. A generalization of the Stackel
method of separation of variables [75, 268] for the case of systems of differen-
tial equations is suggested. Separation of variables in some Galilei-invariant
PDEs is performed.

5.1. Separation of variables and symmetry of systems

of partial differential equations

The Dirac equation (1.1.1) is called separable in Cartesian coordinates if it
has exact solutions of the form

Y(z) = Vo(zo)Vi(z1)Va(z2)V(23)X, (5.1.1)

where V,, are nonsingular (4 x 4)-matrices, x is a constant four-component
column.

It is well-known that there exists a deep relation between variable sepa-
ration and symmetry properties of PDEs [149, 201, 226]. This relation can
be characterized in the following way: a solution with separated variables is a
common eigenfunction of some set of commuting symmetry operators of the
equation considered. To demonstrate the main steps of applying the method
of separation of variables within the framework of the symmetry approach we
will consider an example. A particular solution of (1.1.1) is looked for as a
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solution of the following over-determined system of PDEs:

(Yu0u —m)p(x) =0, (9o — A1) (x) =0,

(5.1.2)
(01— X)Y(z) =0, (02— A3)yp(z) = 0.

Integration of the last three equations of system (5.1.2) yields
P(x) = exp{A1zo + Aaz1 + Azza e (z3).

Substitution of the above expression into the first equation from (5.1.2)
gives rise to the system of ODEs for the four-component function ¢ (w)

1y30 + (—m + 1A170 + A1 + i)\3’yg)(p =0,

whose general solution reads

¢ (w) = exp{iys(—m + iA170 + idoy1 + iAgy2)w}X.

Hence we conclude that the general solution of (5.1.2) is of the form (5.1.1)

P(x) = exp{Aizo}exp{raz1}exp{Asxa}

) . . . (5.1.3)
x exp{ivy3(—m + iA170 + iAoyt + iA32)x3 )X

Comparing (5.1.1) with (5.1.3) we come to a conclusion that the solu-
tion with separated variables (in Cartesian coordinates) is the eigenfunction
of operators 0y, 01, J2 which form a commutative subalgebra of the invari-
ance algebra of the Dirac equation. Consequently, classification of commuting
symmetry operators is a part of the method of separation of variables.

From the above example it is seen that the solution with separated variables
contains arbitrary parameters A1, A2, A3 which are called separation constants.

Now we turn to the problem of variable separation in arbitrary systems of
linear first-order PDEs

{L(2)0, + M(z)}u(xz) =0, (5.1.4)

T
where u = (uo(:c), ul(z),. .. ,um_l(:r)) ;= (z0, T1,...,Tn-1); {n,m} CN;
L,, M are (m x m)-matrices (M is supposed to be nonsingular).

In what follows, a block (n1 N7 x ngNg)-matrix B, whose entries are (N} x
Ny)-matrices By, p=1,...,n1, v =1,...,n9, is designated for brevity as



5.1. Separation of variables and symmetry 241

B = || By |l;L 1% Such a notation is very convenient and simplifies consid-
erably all manipulations with block matrices. For example, a product of two

block (n1Ny x naNy)- and (n2Na2 X nzNs)-matrices

B = HBWHZLSip C= HCWHZQ:{;L

is a block (n1 N1 x ngN3)-matrix

BC = HBuaCavHZl:lTuLg:lv
where summation over the repeated indices from 1 to no is understood. More
details about operations with block matrices can be found in [173].

In the theory of variable separation in linear PDEs with one dependent
variable a very important role is played by the Stéckel matrices C' = |lcu ||,
detC' # 0, where ¢,, are smooth functions depending on the variable z,
only. Separable PDEs admit rather natural and simple description in terms
of the Stéckel matrices [201]. It is believed that the above matrices when
properly generalized should be of importance for variable separation in multi-
component systems of linear PDEs as well [227].

Below we present an approach to variable separation in systems of linear
PDEs (5.1.4) which uses essentially a generalized block Stéckel matrix intro-
duced below.

Definition 5.1.1. Block (nm x nm)-matrix C' = HCW(x#)m;l:O, where
Cy(z,,) are square (m x m) matrices, is called the Stéckel matrix if the fol-

lowing conditions are fulfilled:

1) detC #0,
2) [Cuw, Capl + [Cup, Car] =0

Evidently, provided m = 1, the above definition coincides with the usual
definition of the Stdckel matrix (see e.g. [201, 227]).

Definition 5.1.2. A set of smooth real-valued functions z, = z,(z), p =
0,...,n — 1is called a coordinate system if the condition det [|0;, 2, ()| Z;jl:o
# 0 is satisfied.

Now we are ready to give a precise definition of separation of variables in
systems of linear PDEs which has been suggested for the first time in [169].

Definition 5.1.3. Let (m x m)-matrix functions V,(z,), ¢ = 0,...,n—1
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satisfy the system of n matrix ODEs

dV,

WZ = (CMO(ZU)+CNG(ZM))\G)VM7 /,L:O7_”7n_1’

G = (5.1.5)
Zy = GM

Ao =0

where C' = ||CW(2M)HZ;1:0 is a Stéckel matrix, Aq,...,A,—1 are arbitrary
parameters taking values in some open domain A C R"™1, I is the unit (mxm)-
matrix, 0, are arbitrary fixed real constants. We say that the system of linear
PDEs (5.1.4) is separable in the coordinate system zo(z), 21(z),...,2n—1(2)
if there exist such a (m x m)-matrix A(x) and such a Stéckel matrix C' that

substitution of the Ansatz

n—1

u(z) = A(x) H V(2 A) X (5.1.6)
n=0

where V,,(2,), 1 =0,...,n — 1 are solutions of system of ODEs (5.1.5) and x
is an arbitrary m-component constant column, into (5.1.4) yields an identity
with respect to XeEA.

Our aim is to solve the following mutually related problems:

e to describe separable systems of PDEs (5.1.4) in terms of the correspon-
ding Stackel matrices,

e to establish a correspondence between separability of systems of PDEs
and their symmetry properties.

Solution of the first problem is necessary for general understanding of the
mechanism of variable separation in systems of linear PDEs and for classifica-
tion of separable systems. Solving the second problem we obtain a practical
tool for finding coordinate systems providing variable separation in a given
system of linear PDEs.

Before adducing the principal assertions we make an important remark.
It is readily seen that if a system of linear ODEs (5.1.4) is separable in a
coordinate system z, = z,(x), then the equation

{L4(2)0z, + M'(x)}w(z) =0,

obtained from (5.1.4) by means of the change of variables
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/—

is separable in the coordinate system z 2z, and what is more, the solution

n
with separated variables (5.1.6) reads
n—1 .
w(z) = H V2, N)x.
n=0

Consequently, when classifying separable systems we can consider separa-
tion in Cartesian coordinates z, = x, only and choose A(z) = I. With this
remark the solution with separated variables (5.1.6) takes the form

n—1

u(z) = H Vi@, X)X (5.1.7)
©n=0

Theorem 5.1.1. Equation (5.1.4) is separable iff there exists a Stackel matriz
C satisfying the condition

Lu(2)Cy (@) = — 0,0 M (). (5.1.8)

Proof.  The necessity. Let system of PDEs (5.1.4) be separable. Then,
according to Definition 5.1.3 there is such a Stéckel matrix C that solutions
V() of the matrix system of ODEs

dV,

ﬁ - (CH‘)(%) + Cua(x,u)/\a)vw w=0,....,n—1,

G = (5.1.9)
Ty = GM
A =0

after being substituted into (5.1.7) give rise to an exact solution of the initial
system of PDEs (5.1.4) with an arbitrary A € A.
Inserting (5.1.7) into (5.1.4) with account of (5.1.9) we get

Lo(Coo + C'Oa)\a) ViV« Va-1x
—I—L1V0<Clo + C1a/\a> VoVg .-t Vooix + ... (5.1.10)
+Ln71‘/0‘/1 e Vn72(Cn710 + Cnfla)‘a>x + MX = 0.

Using properties of the Stackel matrix C' it is not difficult to prove that
the matrices A, (x,) = Cuo(ry) + Cua(p)Aa, p = 0,...,n — 1 are mutually
commuting.
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Indeed,

[A;u AI/] = [Cuﬂa CI/O] + )\a([cum CI/CL] + [C/J,(JJ CI/O])
+/\a)\b([c,uaa Cub] + [Cuba Cl/a]) =0.

Since V,(z,) are solutions of the Cauchy problem (5.1.9), they can be
represented by the following converging series [197]:

Zp Ty T
Ve=1+ /AM(T)dT—l— /AH(T)/AM(Tl)dTldT—F..., w=0,....,n—1
6, 0, 6,

Hence, it follows that [A,, V,] = 0 under p # v. With this fact relation
(5.1.10) is rewritten in the form

n—1
(Lu(Cho + Cpuara) + M) T] Vi = 0, (5.1.11)
n=0

Since x is an arbitrary m-component constant column and matrices V), are
invertible, the above equality is equivalent to the following one:

L, (Cuo+ Cuada) + M = 0.

Splitting the equality obtained with respect to A, we arrive at the conditions
(5.1.8).

The sufficiency. Let V), be solutions of (5.1.9) with a Stéckel matrix C
satisfying (5.1.8). Inserting the Ansatz (5.1.7) into (5.1.4) and taking into
account the relations [A,, V,,] =0, u # v we get the equality (5.1.11). Hence
it follows that the function (5.1.7) satisfies the initial system of PDEs (5.1.4)
identically with respect to X € A. The theorem is proved. >

Let B = ||Bu(x)] 2;1:0 be the inverse of the Stdckel matrix C =
1y () Lo ey

BuaCov = CpaBay = 01

Then, multiplying (5.1.8) by B,, on the right and summing over v we arrive
at the following representation of the matrices L,:

L,=—MBy,, pn=0,...,n—1. (5.1.12)
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Consequently, Theorem 5.1.1 admits an equivalent formulation: the sys-
tem of linear PDEs (5.1.4) is separable iff the matriz coefficients L,, M are
given in the Stickel form (5.1.12). Thus, we have proved an analogue of the
well-known theorem about variable separation in PDEs with one dependent
variable [201, 227].

Theorem 5.1.1 provides a description of separable systems of PDEs via
the corresponding Stéckel matrices but it gives no method for construction
of solutions with separated variables for specific equations. As stated above,
the most effective method for separating variables in systems of linear PDEs
is utilization of their symmetry properties. We will show that our definition
of variable separation in a system of PDEs is consistent with its symmetry
properties. Furthermore, we will obtain a simple description of a solution
with separated variables in terms of the first-order symmetry operators of the
system under consideration

First,we will prove an auxiliary lemma.

Lemma 5.1.2. Let || B, ()| Z;/l=0 be a block nonsingular (nm x nm)-matriz.

n—1

pw—0- Then matriz functions

The inverse of it is designated as ||Hp,(x)|
B, (x), Bu(x) satisfy the system of PDEs

1) [B,ua, B,/g] + [BM% Bya] =0,
2) [Bua, Bl,} — [B,/a, BM] + BuﬂagBya — Bl,gaﬁBua =0, (5.1.13)
3) B,maaBl, — BmaaB“ + [BH, Bl,] =0,

iff matriz functions H,, (x), H,(z) = —H,, B, satisfy the system of PDEs

1) [Hyua, Hypl + [Hyup, Hoa] =0,
2) Oy Hyuo — OpyHyo + [Hua, Hy) — [Hya, Hy) =0,  (5.1.14)
3) 0,H, — 0,H, + [H,, H,] =0,

In (5.1.18), (5.1.14) subscripts u, v, «, [ take the values0,1,2,...,n—1.

Proof. Consider an over-determined system of PDEs
(B0, + By)u=Au, p=0,...,n—1 (5.1.15)
According to Theorem 1.5.3 the above system is compatible iff conditions

[B#aaa + B, Bygaﬁ + Bl,] =0 (5.1.16)
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hold true. Computing commutators in the left-hand sides of (5.1.16) and
equating to zero coefficients of the linearly independent operators 0,0, 0., I
we get equations (5.1.13). Consequently, the system of PDEs (5.1.13) provides
the necessary and sufficient compatibility conditions for system (5.1.15).

Next, multiplying both parts of (5.1.15) by Hg,, on the left and summing
over u we have

oyu = Hyy (N, — By)u. (5.1.17)

The compatibility criterion 9,(0,u) = 0,(0,u) for the system (5.1.17)
yields the identities

O (Hya(ha = Ba)u) = 0, (Hya(Aa = Ba)u),

whence it follows that (m x m)-matrices H,,(z), H,(x) = —H,, B, satisfy
the system of PDEs (5.1.14). The lemma is proved. >

Theorem 5.1.2. Let the system of PDEs (5.1.4) be separable. Then, a so-
lution with separated variables u(x) is a common eigenfunction of commuting
first-order differential operators QQ1, Qo,...,Qn_1 which are symmetry oper-
ators of system (5.1.4).

Proof.  As earlier, we designate by the symbol B = || B, (z)| Z;/I:O the in-
verse of the Stéckel matrix C' = ||C’W(xu)|]2;1:0. Due to the properties of
the Stéckel matrix C, the matrix functions H,, = C,(z,), H, = 0 satisfy
system (5.1.14). Hence it follows (Lemma 5.1.2) that the matrix functions
B (x), B,(x) = 0 satisfy equations (5.1.13). Consequently, the operators
Q. = B0, commute.

By definition the solution with separated variables u(x) = Hz;é Vi, X)x
satisfies the system of PDEs

Oyu = (C(]u(l'u) + C’ua(xu))\a)u. (5.1.18)

Multiplying both parts of (5.1.18) by Bau(x) on the left and summing over
we obtain

BopOuu = (800l 4 daaXa)u. (5.1.19)

Putting in (5.1.19) « = 0,1,2,...,n — 1 we arrive at the relations

By, 0,u = wu,
e (5.1.20)
By Oyu = Au, a=1,...,n—1.
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But according to (5.1.12) By, = —M‘lLu, iw=0,...,n—1, whence
[BaypOp, M~ L0y, + 1] = =[Bap0y, Boudy) = 0.

Now we will show that @), are symmetry operators, which will complete
the proof. Indeed,

(Qa: L8y + M) = [Qa, M(M™'Ly0, + 1))
= M[Qa, MLy + 1) + [Qas MJ(M ™' Lu8, + 1)
= (Bap8uM + BaM)M (L0, + M) = Rq() (L0, + M),

the same which is required. The theorem is proved. >

Note 5.1.1. A class of solutions with separated variables of a given system of
linear PDEs can be considerably extended if we define these by formula (5.1.6)
without imposing additional constraints on the matrix functions V,,(z,, X) A
peculiar example is the four-component complex-valued function:

(&) = exp{—iAi1 (0 + V4)z1} exp{—(Ag + (1/2)7074) 1113:2}4,0 (x2/x3),
(5.1.21)
which is a solution with separated variables in the coordinate system zy =
x1, z1 = Inzg, 29 = x9/x3 of the spinor equation:

(5abc’Ya’Ybac +m/xy + f(x2/x3)(70 + 74))1#(:?) =0, (5.1.22)

where m = const, f is an arbitrary real-valued function.

The function (5.1.21) is a “generalized” eigenfunction of the symmetry
operators Q1 = 01, Q2 = x101 + 2202 + (1/2)y9y4 of the system of PDEs
(5.1.22) in a sense that it satisfies the following equalities:

Q1Y = M(v0 +7a), Q2 = Aot

and what is more, the operators Q1 and Q2 do not commute.

However such a class of solutions with separated variables is too large to
be described by means of the classical symmetry of the equation under study.
To give a symmetry interpretation of these solutions it is necessary to study
conditional symmetry of systems of linear PDEs [149, 152]. Unlike the clas-
sical case, the determining equations for conditional symmetry operators are
nonlinear. By this reason, a systematic description of solutions with sepa-
rated variables (5.1.6) without imposing additional constraints on the form of

-

functions V),(z,, ) seems to be impossible.
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According to Theorem 5.1.2, a solution with separated variables in the
sense of Definition 5.1.3 has to be looked for as an eigenfunction of some
commuting symmetry operators of the equation under study. Consequently,
we can formulate the following symmetry approach to the problem of variable
separation in systems of linear PDEs of the form (5.1.4):

e at the first step, the symmetry properties of (5.1.4) in the class M; of the
first-order differential operators with matrix coefficients are investigated;

e at the second step, the (n — 1)-dimensional commutative subalgebras of
the symmetry algebra are classified;

e at the third step, a compatible over-determined system of PDEs
(LpOy + M)u =0,

(5.1.23)
Qo = (Bau(x)0y + Ba(x))u = Agu, a=1,...,n—1,
where Q1, Qq, ..., Qn—1 are commuting symmetry operators (Lie or non-
Lie ones) of equation (5.1.4), is transformed to a separated form

02w = (Cro(z) + Chal(zp)Aa ), (5.1.24)

by a proper change of variables

2= zu(2), w(z) = A7 (@)u(z). (5.1.25)

If it is possible to implement the above three steps, then due to The-
orem 5.1.2 the initial system of PDEs (5.1.4) is separable in coordinates
zy = zu(x), p = 0,...,n—1 and solution with separated variables has the

—

form (5.1.6), where V,(z,, A) are (m x m)-matrices satisfying systems of ODEs

dV,
diz:: = (C’uo(zu) + Cya(z#))\a)Vu, w=0,....,n—1

(no summation over p).

The most difficult problem to be solved in the framework of the above
approach is a choice of an appropriate change of variables (5.1.25). A regular
method for finding such a change is known only for the case, when operators
Q. are Lie symmetry operators. Otherwise, we have to solve a nonlinear
problem in order to get an explicit form of the “new” variables z, = z,(x)
and the matrix function A(z).
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In the next two sections we will apply the approach suggested to some
Galilei-invariant PDEs.

5.2. Separation of variables in the Galilei-invariant

spinor equation

The problem of variable separation in the Dirac equation (1.1.1) was studied
intensively by many researchers [12, 13, 48, 59, 196, 227, 256], a number of
important results were obtained. Nevertheless, they did not succeed in creating
the complete theory (as it was the case for the Hamilton-Jacobi equation) of
variable separation in equation (1.1.1).

Analyzing the methods applied we come to the conclusion that the most
effective ones are those based on symmetry properties of the Dirac equation.
V.N. Shapovalov and G.G. Ekle in [256] described solutions of the system of
PDEs (1.1.1) with separated variables which were eigenfunctions of triplets of
mutually commuting first-order symmetry operators (a complete description
of such operators is given by Theorem 1.1.3). They have obtained 29 in-
equivalent (P(1,3) non-conjugate) triplets of mutually commuting first-order
symmetry operators, each one giving rise to a solution of the Dirac equation
with separated variables.

In addition, we can construct a solution with separated variables by using
symmetry operators of the order higher than one. In particular, a number
of papers (see [12, 13] and references therein) are devoted to the application
of the second-order symmetry operators to variable separation in the Dirac
equation.

At the same time, the problem of variable separation in spinor PDEs in-
variant under the Galilei group has not been studied yet. In the present
section we will carry out separation of variables in the system of linear PDEs
for the spinor field (4.1.1) by using its Lie and non-Lie symmetry described
by Theorems 4.1.1, 4.1.3.

To apply the approach developed in the previous section we have, first of
all, to describe inequivalent triplets of mutually commuting symmetry opera-
tors of equation (4.1.1). To this end, we need the following assertion.

Theorem 5.2.1. Let Q1 = 5‘)+Q§”), Q2 = Q§@+Q§”) be linear combinations
of the first-order symmetry operators of equation (4.1.1) with real coefficients

and besides Qgé), Qg) be linear combinations of Lie symmetry operators and
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Q1 , 2 ) be linear combmatzons of mon-Lie ones. Let the operators (Q1, @2

commute, then ClQl + CQQ(Qn = 0 with some non-vanishing simultaneously
real constants C1, Cs.

Proof.  The proof of the assertion demands very involved computations,
therefore only a general scheme of it will be given.

We declare the operators t, z, to be of the degree +1, the operators
Oty Oq, im to be of the degree —1, the operators I, 7, to be of the degree
0. In addition, we assume that the zero operator 0 has an arbitrary degree.
With such assumptions the set of the symmetry operators of equation (4.1.1)
separates into the three classes

1) operators of the degree —1
By, Po, Wo, Wi Se, g
2) operators of the degree 0
Jav, Gay D, My, Ma, Ro, Ra, No, Ng;

3) operators of the degree +1
A, K,.

It is easy to see that the relation

[Q(n), QO] = Q(n + 1), (5.2.1)

where Q(k) is a symmetry operator of the degree k, holds. Representing the
operators ()1, Q2 in the form

Qi = Qi(—1) + Qi(0) + Qi(+1), i=1,2

and using (5.2.1) we get

(@1, Q2] = [Q1(=1), Q2(=1)] + [Q1(=1), Q2(0)] + [Q1(0), Q2(—1)]
+[Q1(+1), Q2(—=1)] + [Q1(0), Q2(+1)] + [Q1(+1), Q2(0)]
+[Q1(+1), Q2(+1)] + [Q1(0), Q2(0)] + [Q1(—1), Q2(+1)]

|+
=Q(=2)+Q(=1) + Q(0) + Q(+1) + Q(+2) = 0.

From the above equalities we obtain the following relations:

Q(=2) = Q(-1) = Q(0) = Q(+1) = Q(+2) = 0.
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Consequently, [Q1(—1), Q2(—1)] =0 or
[0S Wo + aOW, + 698, + DT, + dSV Py + dV P,
aPWo + aPW, + 628, + DT, + dY Py + dPP,) = 0.

Computing the commutator in the left-hand side of the above equality
and equating coefficients of linearly independent operators we arrive at the
conclusion that there exist such real constants Cy, C5 that

Claél) + CQCL[()Q) =0, C’la,(ll) + Cza((f) =0,

5.2.2
Cibi) + Cob?) = 0, Cre) + Cpcl?) = 0, ( )

where a = 1,2,3, and what is more C% + C3 # 0 (without loss of generality
we may choose C # 0).
Due to (5.2.2) the equality

0=0Q(-1) = [Q1(-1), Q2(0)] + [Q1(0), Q2(—1)]
takes the form
[ (1), C1Q1(0) + C2Q2(0)] + [0 Po + aa P, Q1(0)] = 0

with some real constants ag, a1, a9, ag.
Computing the commutator and equating coeflicients of the linearly-inde-
pendent operators we arrive at the condition

C1Q1(0) + 205" (0) = 0.

Similarly,
QM (+1) + CoQ8 (+1) = 0,

Thus, we have established that there exist such non-vanishing simultane-
ously real numbers C1, Cs that

M + Q8" = (@ (-1) + Q" (0) + Q" (+1))
+Co (@7 (=1) + @57(0) + Q4" (+1)) = 0.

The theorem is proved. >

Note 5.2.1 As established in [198, 256] the above assertion holds true for
the first-order symmetry operators of the Dirac equation.
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Theorem 5.2.1 simplifies substantially the problem of classification of in-
equivalent triplets of the mutually commuting symmetry operators of equation
(4.1.1). Since we look for a solution with separated variables as a solution of
over-determined system of PDEs (5.1.23), triplets of the symmetry operators
(@1, Q2, Q3) and (Q1, Q2, C1Q1 + C2Q2 + C3Q3) with C3 # 0 are equiva-
lent. Hence, by using Theorem 5.2.1, it follows that triplets of the mutually
commuting symmetry operators belong to one of the following classes:

{4 {4 l
L@ +Q", @Y, ), c0s

M 0 b (5-2.3)
IL (@17, @37, Q37),
where we designate by the symbol fo) a linear combination of the Lie sym-
metry operators and by the symbol an) a linear combination of the non-Lie
symmetry operators.

By the arguments used while proving Theorem 5.2.1 we establish that the

operators Qg@ + an), (212) and ng) commute iff

0 A n) A
[ g)vQé)]:[ 5)7 g)]zo,

0 A n) A
@, Q1 = 10", Q"1 =0, (5.2.4)
@, Q1 =0.

Consequently, to classify Ga(1,3) inequivalent triplets of commuting sym-
metry operators of equation (4.1.1) we can make use of the results of subal-
gebraic analysis of the Lie algebra of the generalized Galilei group Ga(1,3)
which has been carried out in [16, 100].

According to [16, 100] there are 5 three-dimensional and 14 two-dimension-
al G2(1, 3) non-conjugate commutative subalgebras of the algebra AGs(1,3).
Solving for each of them equations (5.2.4) we get the following assertion.

Theorem 5.2.2. The list of G2(1, 3) non-conjugate triplets of commuting first-
order symmetry operators of equation (4.1.1) is exhausted by the following
ones:

—

(G + aPy, P, Ps),
(G1 + aPy, Ga, Ps),
(
(

w

G1—|—05P1, G2+ﬁp27 P3>7
Ji2, Py, oWy 4+ a1 Ng + asWs3 4+ a5 + (553),

\V)
—_— — — —

o
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5)  (Ji2, A+ Py, aWs + BNo + 6(Ts + K3)),
6) (Ji2, D, aWs + BR3 + 6Np),
7)) (Ji2, G3 + Py, aWs3 + B(Ry + T3) + §.53),
8) (Ji2, P3, aWy + a1 Ws + aoTs + asSs + IN3),
9) (G, Py, aaW, + BNs + 8S1),
10) (G1+ Po, Ps, agW, + B(2Wy — N3) + 651),
11) (Py, Py, aWo + aaWa + BT + 6aSa),
12) (P1, Py, aWo + aaWa + BT + 6aSa),
13) (Ji2+ Ps, Py, aWy + an W3 + aoT3 + §S3),
14) (G3+ Py, Py, agWy + (11 — N2) + 0.53),
15) (Gy+ Py, Jia+ A+ Py, aWs + B(Ts + Ny + K3)),
16) (Ji2 + Py, P3, aWy + ay W3 + aoTs + a3Ss),
17) (G114 P1+ aPs, G, agW, + B[(1 + « )52 + Ny
—aRo] + 0(N1 + aNs)), (5.2.5)
18) (G1+ P+ aPs3, Go+ BP3, asW, + 6(N1
—26Wy — $2S1 — BRy + a3S2 + aN3)
+p[Na — BS5 — aBS1 — aRy + (1 + a?)Sy — BN3)),
19) (Po+ aWo + agWy + oLy + 6aSa, P1, Pa),
20) (Py, P1 + aWy+ agWy + B.To + 0454, Pa),
21) (Po+ aWy+ agWa + BaTa + 0454, P2, Ps),
22) (G1+ aWy + agWy + B.T4 + 6454, P, Ps),
23) (G1, Py + agW, + BN3 + 651, Ps),
24) (G + Py + oWy + agW, + 8,14 + 64Sa, P2, P3),
25) (G1+ Py, Py + agW, + B(Ts — N3) + 651, Ps),
26) (G1+ P1+ agW, + BN3 + 652, Ga, Ps),
27) (G1+ P, Go + agW, + 351, Ps),
28) (Gy+ P1, G2, P3s + a,W, + BN1),
29) (Jiz + oWy + oW + BTy + 6aSa, Po, Ps),
30) (Ji2, Po+aWo + a1 W3 + a2T3 + a3Ss + BN3, Ps),
31) (Ji2, Po, P3 + aWp + a1 No + aaW3 + a3T3 + 353),

where a, g, B, Ba, 6, da, p are arbitrary real constants.
We have not succeeded yet in relating each triplet from the list (5.2.5)
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to some coordinate system providing variable separation in system of PDEs
(4.1.1) (so far it is not clear whether such a relation exists). Another problem
is that there exist different triplets yielding the same coordinate system. For
example, triplets 8 and 9 from (5.2.5) give rise to solutions of (4.1.1) with sep-
arated variables in Cartesian coordinates ¢, x,. In such a case we adduce the
most simple triplet of symmetry operators corresponding to a given coordinate
system.

We have obtained 16 coordinate systems providing variable separation in
equation (4.1.1). As an example, we will consider a procedure of variable
separation in the case when all elements of the triplet

Qo = Eao(t, ©)0; + fab(t, f)ab + Ua(t, f) (5.2.6)

belong to the Lie algebra admitted by the equation under study.
Since the above operators commute, there exists such a change of variables
[159]
2y =2,(t, %), p=0,...,3,

775(2) - A(tv fW(ﬂ f)’

where A(t, Z) is some invertible (4 x 4)-matrix, that operators (5.2.6) take the
form @, = 0,,. And what is more due to Theorem 1.5.1 the initial equation
(4.1.1) on the set of solutions of the system of PDEs

(5.2.7)

Q(ﬂ[’ = )‘a@E (5.2.8)

is rewritten as follows

Ro(20)12 + Ri(20; A1, A2, A3)Y = 0

with some matrices Ry, Rj.
Thus, the system of PDEs (5.1.19) rewritten in the new variables z,, 1¥(2)
takes the form

Ro(20)1z + R1(20; M1, A, A3)th = 0,
Vsy = Ao, a=1,2,3

i.e., the variables z, separate.
On integrating the above systems of ODEs and substituting the result into
(5.2.7) we get the solution of equation (4.1.1) with separated variables.
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Provided one element of the triplet of symmetry operators is a non-Lie one,
there is no general approach to the problem of transforming system (5.1.23)
to the ”"separated” form

Rlu(zﬂ)qzzu + RQ#(Z,U«; A1, Az, )\3)772 =0, p=0,...,3, (529)

(no summation over p is carried out), where Ry,, Ry, are some (4 x 4)-
matrices. Each triplet containing non-Lie symmetry operator demands specific
and very involved computations.

In the case considered, the problem is a little bit simplified since two el-
ements of the triplet are Lie symmetry operators. Transforming these to the
form Q, = 0,,, a = 1,2 we get two new variables z(t, ), 22(t, ). The
third new variable is always zp = t. So it is necessary to guess the fourth
variable z3 = z3(t, ¥) and the (4 x 4)-matrix A(¢, ¥) transforming the system
of PDEs (4.1.1) to a separated form (5.2.9). Omitting details of derivation
of the corresponding formulae we present the final result: triplets of commut-
ing symmetry operators, coordinate systems providing variable separation and
corresponding systems of separated ODEs of the form (5.2.9).

1) <P07 P1>P2>7
At,Z) =1, zy=uw3, 21 =1t 2=1x1, ~z3=2,
V2o + {A173(0 + v4) — A2y371 — Azy3ye + imz(vo — va) b = 0,
/lzz)Za, = )\aw, a = 17273;

2)  (Jig, Po, P3),
A(t, 7) = exp{—(1/2)227172},
2 = (af + 23)1/?,
bz + {71 (Y0 + 71) — A2z 172 — Az
+imm (o — ) + (1/2)z75 3 =0, 4z, = Aty a=1,2,3;

z1 =t, z9=arctan(xs/z1), 23 = T3,

3) (Gi1+ aPy, Pa, P3),
A(t, T) = exp{2imzoz1 + (i/3)amzs + (1/2) 2171 (70 + 1)},
2=z —t2/20, 2z =t/a, 2=z, 23=13,
o + {7 (AL = 2imz0)71 (0 + 74) — A2my2 — Asns
+Himmn (o + 7} =0, i, = At a=1,2,3;

4) <G1 =+ O¢P1, GQ, P3>,
A(t, T) = exp{imzoz3 + (1/2)z2(70 +74)72 + (1/2)z1 (70 + ya) ™1
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+im(zo + a)z%},
=t zn=x1/(t+a), z=x2/t, 23=uxs3,
—i(v0 + 74) ¥z + {—(1/2)(20 + @) "' (70 + 74) + (4/2)25 " (Y0 + 74)
iy (2o + )ty + i)\QZ(J_I’YQ + i3s3 +m(vo — ya) } =0,
sza = Aa/(/;’ a = 17 2737
5) (G1+ aPy, Go + 3P, G3),
A(t, T) = exp{im[(20 + )23 + (20 + )25 + 2023
+(1/2)(v0 + v4)YaZa}
20 = t, 21=$1/(t+0é), 22:x2/(t+ﬁ), 23:x3/t,
—i(Y0 + Ya)¥zy + {Ml(zo + )7y +ida(zo + B) " Iye
Fixszg s+ (1/2) (20 + @)+ (20 + B) 1+ 25 ) (0 + )
+m(o =70 j =0, s, = Aeth, a=1,2,3;
6) (No+ aWy, Ji2, Py),
A(t, ) = exp{—(1/2)y17323} exp{—(1/2)717222},
2=t 2z =@ +22+22)V% 2z =arctan(zy/z1),
z3 = arctan|zz(2? + 22) 712,
wZ() - >‘1¢7 'lng = _)\21/}7
Yz = {((a/2)2f1 - 71) (/\1(70 +74) 4 im(y0 — 74))
+A327 o — 21_1}1/;,
Py = {(1/2) tan 23 + Ao(cos 23) 273 — (@/2) (M (0 + 74)
—im(yo0 — 74))72 - )\372}1%
7) (N3 +aWs, Jia, P3),

Alt, @) = exp{imzoz] + (1/2)(70 + )21} exp{—(1/2) 117222},
=t 2= @2+22)Y2/t, 2z =arctan(za/z1), 23 = 13,

20(70 + Ya) Y3020 + {(70 + 74)73 + A320Y074 + imzoy3 (Y0 — Y4)
+(/2) (A3(70 + ) — 2im’73) - /\1}1; =0,
’721521 + {(1/2)Z1_171’72 + /\321_1'71}1Z =0,
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10)

11)

17;22 = _)\21/;’ 1/;23 = )\31;5

(G1, Py, No+¢S51), =41,

A(t, &) = exp{—c(y0 +va)z3(1 + 20) " /*} exp{imzo23 + (1/2)2073
x (14 20) 7% (v0 + va)s} exp{—(g/2) 72 arctan zo }
x exp{imzozs + (1/2)z1(70 + 74)71 ),

0=t z1=x1/t, z9=1x9, 2z3=u3(1+ t2)71/2,

(1+20)2 (30 + vtz + {(1 4+ 28)2(220) (0 + va)m
+(eX1zgt + Aazo)yoya — im(1 + 22)Y2 (70 — va)71 — A3} = 0,

Vo = =M, ey = Aot

Uy + {2imzzys — (M — eXa) 1273 — A3 Y2} = O;

(D, Ji2, No),

A(t, Z) = exp{(1/4) (70 + 72)71} exp{—(1/2)y0v420 + 2In 21 — 220}
x exp{—(1/2)v17323} exp{—(1/2)717222},

20=(1/2)Int, 2z = (2% + 2+ 23)V2"Y2

z = arctan(zo/21), 23 = arctan|zs(x? 4+ 23) 712,

e = MO, oy = =Xt

by = {=(1/4) (y0 + 1)1 (1 +2M\1) — im(y0 — ya)m + im
+(im/Hm (v + 7a) + Asz1 o},

Yoy = {A372 + (1/2) tan z3 + Ao (cos 23)727y3 13

(D, Ji2, W3),

A(t, 7) = exp{—(1/2)y07420 } exp{—(1/2) 17222},

20=(1/2)Int, 2z = (24 22)/% 2, 2, = arctan(zy/z1),

23 = mgt™ /2,

e = MO, sy = —Aot),

(0 + 1) P2 + {(1/2)27 71 (0 + 74) — Aezi 2(30 + )
—2X373 — 2imAoya Y = 0,

(Yo + 7a) =5 — {2imys + 2A3}¢) = 0;

(A+ Po, Ji2, No),
A(t, ) = exp{imz} tan zy — 2In(cos zo)}{exp{(1/2)'yofy4
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x In(cos z0)} + (1/2) 21 sin zo(cos z9) ™3 (0 + 74)71}

x exp{—(1/2)v17323} exp{—(1/2)v17222},
20 = arctant, 2z = (22 + 23 + 22)/2(1 +¢2)71/2,
z = arctan(zo/z1) 23 = arctan|zs(x? 4+ 23) 712,
77bzo = )\1¢; Q1)22 = —)\2%
- { -1 . 1 ~
Vo =1—21 + A0 + 7)1 —imyi(vo — ) + Az 7074}@0,
;= {(1/2) tan z3 — Ag(cos z3) "' y2ys + Agy2}b;

12) (A + Py, Ji2, W3),

Alt, @) = exp{im(z% + zg) tan zp — 21In(cos ,2:0)}{exp{(l/Q)%fy4
xIn(cos 20)} + (1/2)(y121 + 72s) sin 20(cos z0) "/}
x exp{—(1/2)717222},

zp = arctant, 21 = (;,3% + x%)I/Q(l + tz)—1/27

z9 = arctan(ze/x1), 23 = T3,

1LZU = >\11/~)7 %522 = —)\21;,

(o + 7a)72%s + 1(222) (0 + 74)72 + Aoz (70 + 7)1
+2(X3 — imy172) Yo =0,

(1/2)(v0 + 74)1[123 — {3+ im’y3}q/~) =0;

13) (Gs+ Ry, Ji2, S3),

A(t, T) = exp{2im[2023 + (1/6)25] + (1/2)20(70 + 74)73
—(1/2)717222},

2=t 2z =@?+22)% 2z =arctan(zy/1),

23 = x3 — (1/2)12,

Ve = MU, sy = —Aotb,

Vs = {(221) 71 = Aoz iy + A3 y2 ),

Py = {M1 (0 + )73 — imys(v0 — v4) — 2imzs(Y0 + 74)7s
+A37074 )¢

14) (Ji2+ P3, Py, S3),
A(t, T) = exp{(1/2)7172(23 — 22)},

=1t 2z =(x?+a)Y? 2 =arctan(zs/z1) + x3, 23 = T3,
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&zo = >\11/~)7 1[)25 = )\31/;7
Vo = {(221) 71 — Aoz My + A2 1,
Yz = {=A2 + A37071 — M (70 + 74) 73 — imy3 (0 — Ya) }o;

15) (Jiz2 + Py, P3, Wy),
A(t, &) = exp{—(1/2)y17222},
=t 2= (x% + x%)lm, z9 =t + arctan(xze/z1), 23 = w3,
wZo = >‘2¢7 ¢Z3 = )\31/)7
(Yo + va) 1%z + {Zfl’m (—2>\1 — Xa(v0 +ya) +im(yo — 74))
+(—(221)71’71 + 2\ — )\373>(70 + 74)}1; =0,
(70 + 74)Pz, + {2M1 + Aa(y0 + 1) — im0 — )} = 0;

16) (Gy + P», P3, S1),
A(t, T) = exp{imzizo + (21/2)n (30 + 1)},
z0=1t, z1=uz1/t, zo0=uw0—11/t, 23=u3,
—i(70 + )11z + {=1(220) " (0 + ) + X zg '+ iAa27s
+m(yo =)} =0, Puy =M, by = Nt
U2y = {N273 + A31273 10

In the above formulae «, [ are arbitrary real parameters, A;, A9, A3 are
separation constants.

Note that coordinate systems given in the formulae 1-5 correspond to the
Lie symmetry of the system of PDEs (4.1.1) and the ones given in the formulae
6-16 correspond to its non-Lie symmetry.

5.3. Separation of variables in the Schrodinger equation

The problem of separation of variables in the two-dimensional Schrédinger
equation
WU+ Ugy gy + Uggzy = V(T1,T2)u (5.3.1)

as well as a majority of classical problems of mathematical physics can be
formulated in a very simple way (but this simplicity does not, of course, imply
existence of an easy way to its solution). To separate variables in equation
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(5.3.1) we have to construct such functions R(t, Z), wi(t,Z), wa(t, ) that the
Schrodinger equation (5.3.1) after being rewritten in the new variables

20 =t, z1 = wi(t,T), 20 = wa(t, ),
; 1= w1t D), 2=t D) (5.3.2)

separates into three ordinary differential equations (ODEs) by means of the
substitution v = ¢g(20)¢1(21)p2(22). From this point of view the problem of
separation of variables in equation (5.3.1) is studied in [37, 38, 179, 257].

But of no less importance is the problem of describing the potentials
V(x1,x2) for which the Schrédinger equation admits variable separation. Thus
by a separation of variables in equation (5.3.1) we imply two mutually con-
nected problems. The first one is to describe all such functions V' (z1, z2) that
the corresponding Schrodinger equation (5.3.1) can be separated into three
ODEs in some coordinate system of the form (5.3.2) (classification problem).
The second problem is to construct for each function V(x1,z2) obtained in
this way all coordinate systems (5.3.2) enabling us to carry out separation of
variables in equation (5.3.1).

As far as we know, the second problem has been solved provided V' = 0 [38]
and V = axy? + fr52[37]. The first one was considered in a restricted sense
in [257]. Using the symmetry approach to classification problem the authors
obtained some potentials providing separability of equation (5.3.1) and carried
out separation of variables in the corresponding Schrédinger equations. But
their results are far from being complete and systematic. The necessary and
sufficient conditions imposed on the potential V(z1,x2) by the requirement
that the Schrodinger equation admits symmetry operators of an arbitrary
order are obtained in [231]. But so far there is no systematic and exhaustive
description of potentials V' (x1, z2) providing separation of variables in equation
(5.3.1).

To have a right to claim a description of all potentials and all coordinate
systems, which make it possible to separate the Schrédinger equation, it is
necessary to have a definition of separation of variables. It is natural to utilize
Definition 5.1.3 adapted to the case of a second-order PDE with one dependent
variable. Consider the following system of ODEs:

.dpo
— = Uyt T, A
? dt 0(;@0, 1, 2),
d2901 dp1
U — A, A 5.3.3
dw% 1 wla@lydwlv 1,12 |, ( )
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d*py dpo
= Y= AL A
dw% U2 (CUQ, P2, dWQ y ALy A2 |y

where Uy, Uy, Us are some smooth functions of the corresponding arguments,
{1, A2} C R! are arbitrary parameters (separation constants) and what is
more

rank [|OU,,/Oal =g oy = 2 (5.3.4)

(the last condition ensures essential dependence of the corresponding solution
with separated variables on Aj, A2, see [201]).

Definition 5.3.1. We say that equation (5.3.1) admits a separation of vari-
ables in the coordinate system ¢, wi(t,Z), wa(t,Z) if there exists such a func-
tion Q(t, ) that substitution of the Ansatz

u = Q(t,7)po(t)p1 (Wl(ta f))s@ (WQ(ta f)) (5.3.5)

into (5.3.1) with subsequent elimination of the derivatives ¢, $1, $2 according
to equations (5.3.3) yields an identity with respect to ¢g, ¢1, P2, Y1, P2, A1,
A2. Thus, according to the above definition to separate variables in equation
(5.3.1) we have

e to substitute the expression (5.3.5) into (5.3.1),
e to eliminate the derivatives ¢g, @1, @2 with the help of equations (5.3.3),

e to split the equality obtained with respect to the variables g, @1, @2,
b1, Y2, A1, Ao considered as independent.

As a result, we get some over-determined system of PDEs for the functions
Q(t, @), wi(t, @), wa(t,Z). On solving it we obtain a complete description
of all coordinate systems and potentials providing separation of variables in
the Schrodinger equation. Naturally, the words complete description make
sense only within the framework of our definition. So if one uses a more
general definition it may be possible to construct new coordinate systems and
potentials providing separability of equation (5.3.1). But all solutions of the
Schrodinger equation with separated variables known to us fit into the scheme
suggested by us and can be obtained in the above described way.

1. Classification of potentials V (z1,z2). We do not adduce in full detail
computations needed because they are very cumbersome. We will restrict
ourselves to pointing out main steps of the realization of the above suggested
algorithm.
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First of all we make a remark, which makes life a little bit easier. It is
readily seen that a substitution of the form

Q — Q =QUi(w1)¥s(ws),
we — wh =0 (w), a=1,2, (5.3.6)
)\a - )\;:Aa()\laA2>7 a:1727

does not alter the structure of relations (5.3.3), (5.3.4), (5.3.5). That is why
we can introduce the following equivalence relation:

(wla w2, Q) ~ (Wi, wé? Ql)’

provided (5.3.6) holds with some ¥,, Q,, A,.
Substituting (5.3.5) into (5.3.1) and excluding the derivatives ¢o, @1, @2
with the use of equations (5.3.3) we get

1(Qrpop192 + QUop1p2 + Quirpopips + Quarpopip2)
+H(AQ) o192 + 2Qu, Wiz, PoP192 + 2Qu, Wz, POL1P2
+Q<(Aw1)<ﬁ0¢1ﬁp2 + (Aw2)pop192 + Wiz, Wiz, LoU1p2

+woz,waz, Pop1Us + 2wlzaw21a¢0¢l¢2> = VQpop192,

where the summation over the repeated index a from 1 to 2 is understood,
A=02 +02,

Splitting the equality obtained with respect to the independent variables
©1, P2, P1, P2, A1, A2 we conclude that ODEs (5.3.3) are linear and up to
the equivalence relation (5.3.6) can be written in the form

d

z% = (AlRl(t) + )\QRQ(t) + RO@))‘POv

d2901

dw% = (}\1311(&)1) + )\2312((«01) + BOl(‘*ﬂ))‘Ply

d2

5 9022 ()qBQl(WZ) + Ao Bog(wo) + BOZ(W2)>‘P2
w3y

and what is more, functions wi, ws, @ satisfy an over-determined system of
nonlinear PDEs

1) wigwaz, =0,

2)  Bio(w1)wig,wie, + B2a(w2)waz,wayz, + Ra(t) =0,



5.3. Separation of variables in the Schrodinger equation 263

3) 2waz,Quy, + Qiwe + Awg) =0, (5.3.7)
4) (BOI(WI>W11'bw1:vb + BOQ(WI)WszWZmb)Q +iQ¢ + AQ
+R0(t)Q — V(a:1, $2)Q =0,

where a,b =1, 2.

Thus, to solve the problem of separation of variables for the linear Schrédin-
ger equation it is necessary to construct a general solution of the system of
nonlinear PDEs (5.3.7). Roughly speaking, to solve a linear equation we have
to solve a system of nonlinear equations! This is the reason why so far there
is no complete description of all coordinate systems providing separability of
the four-dimensional d’Alembert equation [226].

However in the present case we have succeeded in integrating the system
of nonlinear PDEs (5.3.7). Our approach to its integration is based on the
following change of variables (hodograph transformation)

zo=1t, 21 = Zl(t,wl,wz), 2o = Zg(t,wl,wg),
vl =1, V2 = X2,
where zg, z1, 22 are new independent and vy, vy are new dependent variables,
correspondingly.
Using the hodograph transformation determined above we have construc-

ted the general solution of equations 1-3 from (5.3.7). It is given up to the
equivalence relation (5.3.6) by one of the following formulae:

1) wi=A{t)z1 + Wit), wy = B(t)as + Wal(t),
Q(t,7) = exp{~(i/4) ((4/A)z} + (B/B)a3) - (i/2)((W1/A)zs
+ (Wa/B)az) };
2) x=W(t)e sinwg + Wi(t), w2 = W(t)e*! coswy + Wa(t),
Q(t, %) = exp{ (W /4W) (1 = W) + (2 — W2)?)
+ (i/2) (Wr1 + Waws) |
3) x1 = (1/2)W(t)(w} — wd) + Wi(t), x2 =W (t)wiws + Wa(t), (5.3.8)
QUL T) = exp{ (W /aW) (w1 = W1)? + (w2 — Wh)?)
+ (i/2) (Wi + W2$2)};
4) x1 = W (t) coshwi coswa + Wi(t), x2 = W(t)sinhw;sinws + Wa(t),
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Q(t, T) = exp{ (W /aW) (w1 = W1)? + (w2 — Wh)?)
+ (i/2) (Wrz1 + Wawa) |-

Here A, B, W, Wi, Wy are arbitrary smooth functions of t.

Substituting the obtained expressions for the functions ), w1, ws into the
last equation from the system (5.3.7) and splitting with respect to variables
x1, xo we get explicit forms of potentials V' (z1,x2) and systems of nonlinear
ODEs for unknown functions A(t), B(t), W(t), Wi(t), Wa(t). We have suc-
ceeded in integrating these and in constructing all coordinate systems provid-
ing the separation of variables in the initial equation (5.3.1) [316]. Integration

has been carried out up to the equivalence relation which is introduced below
in Notes 5.3.1-5.3.3.

Note 5.3.1. The Schrodinger equation with the potential
V(a:l, 1‘2) = klxl + k'QfL'Q + kg + Vl(kgxl — klxg), (539)

where ky, ko, k3 are constants, is transformed to the Schrodinger equation
with the potential

V(2 2h) = Vi (koo — kr2hy) (5.3.10)
by means of the following change of variables:
t=t, I =z+tk,
(5.3.11)
u' = wexp{(i/3)(k} + k3)t3 + it(kiz1 + koxo) + ikst}.

It is readily seen that the class of Ansétze (5.3.5) is transformed into itself
by the above change of variables. That is why potentials (5.3.9) and (5.3.10)
are considered as equivalent.

Note 5.3.2. The Schrodinger equation with the potential
V(z1,22) = k(22 + 23) + Vi(z1/20) (23 + 23) 71 (5.3.12)
with k = const is reduced to the Schrédinger equation with the potential
V'(z1,x9) = Vi(z)/xh) (P + 27) ! (5.3.13)
by means of the change of variables

V=alt), @=p07F o =uexp{int)al+ad)+i@)},
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where (a(t), B(t), y(t), 5(75)) is an arbitrary solution of the system of ODEs

J-4yt =k, p-4yf=0, a—F=0 +4y=0

such that § # 0.

Since the above change of variables does not alter the structure of the
Ansatz (5.3.5), when classifying potentials V' (x1,z2) providing separability
of the corresponding Schrodinger equation we consider potentials (5.3.12),
(5.3.13) as equivalent.

Note 5.3.3. It is well-known (see e.g. [177, 232]) that the general form of the
invariance group admitted by equation (5.3.1) is as follows:

where § = (01,09, ...,0,) are group parameters and U(t,Z) is an arbitrary
solution of equation (5.3.1).

The above transformations also do not alter the structure of the Ansatz
(5.3.5). That is why systems of coordinates ', 2, 24 and t, z1, za are
considered as equivalent.

Below we give without derivation a list of potentials V' (z1,x2) providing
separability of the Schrodinger equation (5.3.1) (some details can be found in
[316]).

1. V(z1,x9) = Vi(z1) + Va(z2);

(a) V(z1,29) = k1z] + kawy? + Vo(wa), ko #0;
i V(zy,x9) = kyx? + koxd + kzx? + kaxy 2, kskg # 0,
ki + k3 #0, ki # ko
. V(zy,z0) = klx% + k2331_2, kiko #£ 0;
iii. V(xl, xg) = kll‘l_Q + k2$2_2;

(b) V(a:l,xg) = klx% + VQ((L‘Q);
1. V(:cl,xg) = kl:li% + kgx% + k3$2_2, kiks # 0, ki # ko;
ii. V(zy,20) = k122 + ko3,  kiko # 0, ki # ko;
i, V(21,20) = k127 + kawy 2, k1 # 0;

2. Viar,ae) = Vilat +03) + V(14 ) o+ 3) 7
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T1

(a) V(z1,22) = Va (3172) (% + 22)7Y

(b) V(z1,22) = (22 + x%)_l/Q(kzl + kgazlx;?) + k3x52, k2 + k:% #0;

3. V(wn,m2) = (Vi(wn) + Va(wn) ) (@} + )L,

where w% — w% =211, Wwiwy = T9;

4. V(ry,20) = (Vl(wl) + Vg(wg)) (sinh2 w1 +sin? wy) 7,
where coshw coswy = x1, sinhwj sinwsy = x9;
5. V(.%‘l,.l‘g) =0.

In the above formulae V7, Vs are arbitrary smooth functions, k1, ko, k3, k4
are real arbitrary constants.

It should be emphasized that the above potentials are not inequivalent in
a usual sense. These potentials differ from each other by the fact that the
coordinate systems providing separability of the corresponding Schrédinger
equations are different. Moreover, in some cases the form of coordinate systems
depends essentially on the signs of the parameters k;, j =1,...,4.

Next, we consider in detail separation of variables in the Schrédinger equa-
tion with the anisotropic harmonic oscillator potential V (1, 22) = k122 +kox3
and the Coulomb potential V (x1,z2) = ki (23 + 23)~ /2.

2. Separation of variables in the Schrodinger equation with the
anisotropic harmonic oscillator and the Coulomb potentials. Here we
will obtain all coordinate systems providing separability of the Schrodinger
equation with the potential V (1, x2) = k122 + koz3

g+ gy + Ugozy = (k127 + koxd)u. (5.3.14)

In the following, we consider the case k1 # ko, because otherwise equation
(5.3.1) is reduced to the free Schrodinger equation (see Note 5.3.2) which has
been studied in detail in [226].

Explicit forms of the coordinate systems to be found depend essentially on
the signs of the parameters k1, ko. We consider in some detail the case, when
k1 <0, ka > 0 (the cases k1 > 0, k2 > 0 and k1 < 0, k2 < 0 are handled in
an analogous way). This means that equation (5.3.14) can be written in the
form

g + Ugy 2y + Uggzy + (1/4)(a®23 — b?23)u = 0. (5.3.15)
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where a, b are arbitrary non-zero real constants (the factor 1/4 is introduced
for further convenience).

As stated above to describe all coordinate systems ¢, wi(t,Z), wa(t,T)
providing separability of equation (5.3.14) it is necessary to construct the
general solution of system (5.3.8) with V(z1,29) = —(1/4)(a?2z3 — b*z3). The
general solution of equations 1-3 from (5.3.7) splits into four inequivalent
classes listed in (5.3.8). Analysis shows that only solutions belonging to the
first class can satisfy the fourth equation of (5.3.7).

Substituting the expressions for wi, ws, @ given by the formulae 1 from
(5.3.8) into the equation 4 from (5.3.7) with V (21, 22) = —(1/4)(a?2? — b?z3)
and splitting with respect to x1, xs yield

Boi(w1) = a1wi + aswi, Boa(wa) = Biwi + Bows,

(AJA) — (AJA)? — 401 A* + a® = 0, (5.3.16)
(B/B) — (B/B)? — 48,B* — v* = 0, (5.3.17)
01 — 201 (A/A) — 2(20161 + ) A* = 0, (5.3.18)
6y — 26,(B/B) — 2(2B162 + B2) B* = 0. (5.3.19)

Here a1, ao, By, (2 are arbitrary real constants.
Evidently, equations (5.3.16)—(5.3.19) can be rewritten in the following
unified form:

@/y) — (@/y)? —day* =k, 5—23(y/y) — 220z + B)y* =0.  (5.3.20)

Provided k = —a? < 0, system (5.3.20) coincides with equations (5.3.16),
(5.3.18) and under k = b? > 0 with equations (5.3.17), (5.3.19).

First of all, we note that the function z = z(t) is determined up to addi-
tion of an arbitrary constant. Indeed, the coordinate functions w, have the
following structure:

We =Yg+ 2, a=12.

But the coordinate system ¢, wi, ws is equivalent to the coordinate system
t, w1 +C1, wy+Co, Cy € R Hence it follows that the function z(t) is equiv-
alent to the function z(t) + C' with arbitrary real constant C. Consequently,
provided a # 0, we can choose in (5.3.20) § = 0.

Case1l.a=0
On making in (5.3.20) the change of variables

w=ygly, v=z/y (5.3.21)
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we get
w=w?+k, U+ ko=208y. (5.3.22)

First, we consider the case k = —a? < 0. Then, the general solution of the
first equation from (5.3.22) is given by one of the formulae

w = —acotha(t+C1), w=—atanha(t+Cy), w==+a, C; € R
whence

y(t) = Cysinhta(t + Cy), y(t) = Cycosh™ta(t+ Cy),

. (5.3.23)

y(t) = Cyexp(£at), Cy e R".

The second equation of system (5.3.22) is a linear inhomogeneous ODE. We

substitute its general solution into (5.3.21) and get the following expressions
for z(t):

z(t) = (Cscoshat+ Cysinhat) sinh™! a(t +Cy)
+(B8C3 /a*) sinh ™2 a(t 4 Cy),

z(t) = (Cscoshat 4+ Cysinhat)cosh™ a(t + Cy) (5.3.24)
+(8C3/a?) cosh™2 a(t + C1),

z(t) = (Cscoshat+ Cysinhat)exp(+at)
+(AC4/40%) exp(4at),

where {C3,C,} C RL.
The case k = b> > 0 is treated in a similar way, the general solution of
(5.3.20) being given by the formulae

y(t) = Dasin™'b(t + Dy),
2(t) = (Dscosbt + Dysinbt)sin~ b(t + Dy) (5.3.25)
+(8D3/b?) sin 2 b(t 4+ D),

where D1, Do, D3, D, are arbitrary real constants.

Case 2. a#0, =0
On making in (5.3.20) the change of variables

y=expw, v=2z]/y

we have
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W—w? =k+aexpdw, U+ kv=0. (5.3.26)
The first ODE from (5.3.26) is reduced to the first-order linear ODE
(1/2)(1@(1? —p(w) =k + cexpdw
by the substitution w = [p(w)]*/?, whence

p(w) = aexpdw + yexp2w — k, v e R

The equation @ = [p(w)]'/? has a singular solution w = C' = const such
that p(C') = 0. If w # 0, then integrating the equation v = p(w) and returning
to the initial variable y we get

y(t)
/ r Nart +ym2 — k) Y2dr =t + Cy.

Taking the integral in the left-hand side of the above equality we obtain
the general solution of the first ODE from (5.3.20). It is given by the following
formulae:

under k = —a?2 <0

~1/2
y(t) = O (oz + sinh 2a(t + C’1)> ,

—1/2
y(t) = Oy (oz + cosh 2a(t + C’l)) / , (5.3.27)
—1/2
y(t) = Coa+exp(x2at))
under k = 5> >0
—-1/2
y(t) = Dy(a+sin2b(t+Di)) (5.3.28)

Here C1, Cy, Dy, Do are arbitrary real constants.
Integrating the second ODE from (5.3.26) and returning to the initial vari-
able z we have

under k = —a?2 < 0

z2(t) = y(t)(Cscoshat + Cysinhat), (5.3.29)
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under k = b2 >0

z(t) = y(t)(Dscosbt + Dysinbt), (5.3.30)

where Cs, Cy, D3, D, are arbitrary real constants.

Thus, we have constructed the general solution of the system of nonlinear
ODEs (5.3.20) which is given by the formulae (5.3.24)—(5.3.30).

Substitution of the formulae (5.3.21), (5.3.23)—(5.3.25), (5.3.27)—(5.3.30)
into the corresponding expressions 1 from (5.3.8) yields a complete list of
coordinate systems providing separability of the Schrédinger equation (5.3.15).
These systems can be transformed to canonical form if we use Note 5.3.3.

The invariance group of equation (5.3.15) is generated by the following
basis operators [315]:

Py=0, I=u0y,, M=iud,, Qc =U(t,T)0y,

Py = coshat 0,, + (ia/2)(xy sinh at)ud,,

Py = cos bt 0y, — (ib/2)(x2 sin bt)ud,, (5.3.31)
G1 = sinh at 0, + (ia/2)(x; cosh at)ud,,

Go = sinbt Oy, + (ib/2) (2 cos bt)ud,,

where U(t, ) is an arbitrary solution of equation (5.3.15).

Making use of the finite transformations generated by the infinitesimal
operators (5.3.31) and Note 5.3.3 we can choose in the formulae (5.3.23)—
(5.3.25), (5.3.27), (5.3.29), (5.3.30) C3 =Cy = D1 =0, D3 = Dgs =0, Cy =
Dy = 1. As a result, we come to the following assertion.

Theorem 5.3.1. The Schridinger equation (5.3.15) admits separation of vari-
ables in 21 inequivalent coordinate systems of the form

wo=t, w =wi(t,T), ws=wat, D), (5.3.32)
where w1 is given by one of the formulae from the first and wo by one of the
formulae from the second column of the Table 5.5.1.

There is no necessity to consider specially the case when in (5.3.14) k1 >
0, ko < 0, since such an equation by the change of independent variables
u(t, 1, x2) — u(t,x2, 1) is reduced to equation (5.3.15).

Below we adduce without proof the assertions describing coordinate sys-
tems providing separation of variables in equation (5.3.14) with k1 < 0, k2 <0
and k1 > 0, k2 > 0 and in the Schrodinger equation with the Coulomb poten-
tial ky(z? + 23)~1/2.
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Table 5.3.1. Coordinate systems providing separability
of the Schrédinger equation (5.3.15)

W1(t,f) wQ(ta f)

-1 -2
x1 (sinh a(t + C’)) +a(sinh a(t + C’)) wo(sinbt) ™1 + B(sinbt) 2
1 _
x1 (cosh a(t + C’)) +a(cosh a(t + C’)) o + sin 2bt)~1/2
x1 exp(£at) + aexp(+4at) To
~1/2
x1 (a + sinh 2a(t + C)) /
~1/2
x1 (a + cosh 2a(t + C’)) /
Z1/2
x (a + exp(i2at))

z1

Here C, «, 3 are arbitrary real constants.

Theorem 5.3.2. The Schridinger equation
g + Ug 2y + gy + (1/4)(a®2? 4+ b?23)u =0 (5.3.33)

with a®> # 4b% admits separation of variables in 49 inequivalent coordinate
systems of the form (5.3.82), where wy is given by one of the formulae from
the first and wo by one of the formulae from the second column of the Table
5.8.2. Provided a® = 4b%, one more coordinate system should be included into
the above list, namely,

wo =t, w% — w% =211, wWiws = Xo. (5.3.34)
Theorem 5.3.3. The Schrodinger equation
g+ Uy oy + Ugozy — (1/4)(a®2? + b22)u =0 (5.3.35)

with a® # 4b* admits separation of variables in 9 inequivalent coordinate sys-
tems of the form (5.8.32), where wy is given by one of the formulae from the
first and wa by one of the formulae from the second column of the Table 5.5.3.
Provided a® = 4b%, the above list should be supplemented by the coordinate
system (5.3.34).
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Table 5.3.2. Coordinate systems providing separability
of the Schrédinger equation (5.3.33)

— —

wi(t, ) wo(t, T)

. -1 . —2 . —1 . )
x1 (smh a(t + C’)) —i—a(smh a(t + C’)) x2(sinh bt) ™" 4 [(sinh bt)

x1 (cosh a(t + C))il—i-a(cosh a(t + C’)) x2(cosh bt) ™1 + B(cosh bt) 2

x1 exp(Fat) + a exp(+4at) xgexp(£bt) + [ exp(L4bt)
~1/2

x1 (a + sinh 2a(t + C)) / 2o(0 + sinh 2bt) ~1/2
~1/2

xy (a + cosh 2a(t + C’)) / x2(3 + cosh 2bt)~1/2

Z1/2 —-1/2
x1 (a + exp(i2at)) T2 (5 + exp(int))
X1 T2

Here C, «, 3 are arbitrary constants.

Theorem 5.3.4. The Schridinger equation with the Coulomb potential
WUt + Ugy gy + Upgzy — kl(ac% + m%)_l/gu =0

admits separation of variables in two coordinate systems. One of them is the
polar coordinate system

t=wy, x1=e"'sinwy, xo=e"!cosws

and another is the parabolic coordinate system (5.3.34).

It is important to note that explicit forms of coordinate systems providing
separability of equations (5.3.15), (5.3.33), (5.3.35) depend essentially on the
parameters a, b contained in the potential V(x1,x2). It means that the free
Schrodinger equation (V' = 0) does not admit separation of variables in such
coordinate systems. Consequently, they are essentially new.

3. Conclusion. In the present section we have studied the case when the
Schrodinger equation (5.3.1) separates into one first-order and two second-
order ODEs. It is not difficult to prove that there are no functions Q(t, %),
wy(t, &), p=0,...,2 such that the Ansatz

u=Q(t, 7)o (wo(t, f))gpl (wl(t, f))gog (wg(t, f))
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separates equation (5.3.1) into three second-order ODEs (see [315]). Never-
theless, there exists a possibility for equation (5.3.1) to be separated into two
first-order and one second-order ODEs or into three first-order ODEs. This is
a probable source of new potentials and new coordinate systems providing sep-
arability of the Schrodinger equation. It should be mentioned that separation
of the two-dimensional d’Alembert equation

Ut — Uge = V(2)u

into one first-order and one second-order ODEs gives no new potentials as
compared with separation of it into two second-order ODEs. But for some
already known potentials new coordinate systems providing separability of
the above equation are obtained [312, 314].

Table 5.3.3. Coordinate systems providing separability
of the Schrédinger equation (5.3.35)

wl(tf) w2(t7f)

x1 (sin a(t + C)>_1—|—a<sin a(t + C’))_2 w2 (sinbt) ~! + B(sin bt) 2

x1 (ﬂ + sin 2a(t + C'))il/2 To (6 + sin 2bt)~1/2
1 €2

Here C, «, 8 are arbitrary constants.

Let us briefly analyze the connection between separability and symmetry
properties of equation (5.3.1). It is well-known that each solution of the free
Schrodinger equation with separated variables is a common eigenfunction of
its two mutually commuting second-order symmetry operators [226]. And
what is more, separation constants A;, Ay are eigenvalues of these symmetry
operators.

We will establish that the same assertion holds for the Schrédinger equation
(5.3.1). Let us make in equation (5.3.1) the following change of variables:

= Q(t, DU (t,wi(t,7), wa(t, 7)), (5.3.36)

where (Q, w1, wy) is an arbitrary solution of the system of PDEs (5.3.7).
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Substituting the expression (5.3.36) into (5.3.1) and taking into account
equations (5.3.7) we get

Q(iUt + [Usywr — Bot(w1)Ulwiz,wiz, + [Uwsws — Boz2(w2)U]
(5.3.37)
Xnga(,UQxa> = 0.

Resolving equations 2 from the system (5.3.7) with respect to wig, w1z,
and way, waz, We have

Wiggwiz, = (1/8)(Ra(t)Bai(wn) — Ri(t)Bas(ws)),
warwoz, = (1/8)(Ri(t)Bua(wn) = Ra(t)Bui(wr)),

where § = By (w1)Baz(w2) — Bia(wi)Bai(w2) (§ # 0 resulting from the condi-
tion (5.3.4)).

Substitution of the above equalities into equation (5.3.37) with subsequent
division by @ # 0 yields the following PDE:

iU + (1/6)Ra (1) (312(w1)[Uw2w2 — Bo2(w2)U] — Baa(w2)
X [Usyor — Bor(@)U]) + (1/6) Ra(t) (Bt (2) Uiy, (5.3.38)
—Bo1(w1)U] — Bi1(w1)[Uspws — 302(w2)U]) =0.

Thus, in the new coordinates ¢, w1, ws, U(t,wi,ws) equation (5.3.1) takes
the form (5.3.38).

By direct (and very cumbersome) computation one can check that the
following second-order differential operators

Xy = (1/0)Baa(ws)(02, — Bow(wr)) — (1/8)Bia(w1) (82, — Boa(ws)),
Xy = —(1/6)Bai(w2) (02, = Boa(w1)) + (1/8)Bua(wi) (92, — Boz(w2))
commute under arbitrary Bog, Bapy, a,b=1,2, i.e.,
(X1, Xo] = X1Xo — XX =0. (5.3.39)

After being rewritten in terms of the operators X, Xo equation (5.3.38)
reads

(i@t ~Ri(H)X) — Rg(t)X2>U = 0.
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Since the relations
[i@t - Rl(t)Xl - Rg(t)Xg, Xa] == O, a = 1, 2 (5340)

hold, operators X1, X are mutually commuting symmetry operators of equa-
tion (5.3.38). Furthermore, the solution of equation (5.3.38) with separated
variables U = ¢g(t)¢1(w1)p2(w2) satisfies the identities

XU =XMU, a=1,2. (5.3.41)

Consequently, if we designate by X{, X} the operators Xi, X, written in
the initial variables ¢, #, u, then we get from (5.3.39)—(5.3.41) the following
equalities:

[i0; + A — V(x1,22), X!] =0, a=1,2,
(X1, X5] =0, Xlu=Mu, a=1,2,

where u = Q(¢, )0 (t)¢1(w1)p2(ws2).

This means that each solution with separated variables is a common eigen-
function of two mutually commuting symmetry operators X}, X} of the Schro-
dinger equation (5.3.1), separation constants A1, A2 being their eigenvalues.

So, we have exposed two possible approaches to variable separation in
linear PDEs which are based on their symmetry properties. The first one is
to start with a set of commuting symmetry operators of the equation under
study and to finish with the Ansatz (5.1.6) [12, 226, 255]. Another approach
suggested for the first time in [169] is closer to the original understanding of
the separation of variables in PDEs. A desired form (5.3.5) of the Ansatz for a
solution with separated variables is postulated and then it turns out that the
solution obtained can be related to a set of mutually-commuting symmetry
operators of the equation under consideration.

Both approaches have their merits and drawbacks. We think that the
utilization of the first approach is the only way to separate variables in multi-
component systems of PDEs. But to separate variables in PDEs with one
dependent variable it is preferable to apply the second approach, since a com-
putation of symmetry operators is an extra step which is not, in fact, necessary
for obtaining solutions with separated variables. Another benefit of the ap-
proach in question is its simplicity, only some basics of the standard university
course of mathematical physics are required for understanding and implement-
ing it.



276 Chapter 5. SEPARATION OF VARIABLES

One more merit is that the second approach in contrast to the first one can
be easily generalized in order to separate variables in nonlinear PDEs [314].
Using such a generalization we have classified in the paper [300] all nonlinear
d’Alembert equations

ul’oxo - uxla:l = F(’LL),

which separate into two first-order ODEs
¢1=Ri(p1), ¢2 = Ri(p2)
by means of the Ansatz
w(zo, 1) = f(1(x0) + pa(a1)).

It turned out that nonlinear d’Alembert equations admitting variable se-
paration in the above sense are equivalent to one of the following PDEs:

Ou = M\ (cosh u + (sinh 2u) arctan e”) + Ag sinh 2u,
Ou = e+ e 2Y,

Ou = A\ (sinhu — (sinh 2u) arctanh e”) + Ag sinh 2u,
Ou = M\ (2 sinwu + (sin 2u) In tan(u/Q)) + Az sin 2u,
Ou = Aju—+ Aulnu,

where Du = Uyyz, — Uz 2, A, A2 are arbitrary real constants.

This fact enabled us to construct exact solutions of the above nonlinear
PDEs which could not be found by the symmetry reduction procedure.

Let us also mention anti-reduction of PDEs [161, 162] which is also a ge-
neralization of a traditional notion of separation of variables specially designed
to handle nonlinear PDEs.



CHAPTER 6

CONDITIONAL SYMMETRY
AND REDUCTION
OF SPINOR EQUATIONS

In this chapter a non-Lie method of reduction of nonlinear Poincaré- and
Galilei-invariant systems of PDEs to differential equations of lower dimen-
sion is suggested. With the use of this method we construct the wide classes
of conditionally-invariant Ansétze reducing nonlinear P(1,3)- and G(1,3)-
invariant spinor equations to systems of ODEs.

6.1. Non-Lie reduction of Poincaré-invariant spinor equations

In Section 2.3 we have constructed a number of Ansétze for the spinor field
Y (z) reducing P(1,3)-invariant equation

(#9000 = PP, ) = Jolbup, dah)a ) = O (6.1.1)

to systems of ODEs which cannot be obtained within the framework of the
classical Lie approach. Existence of such Ansétze is a consequence of condi-
tional symmetry of equation (6.1.1).

Definition 6.1.1. Equation (6.1.1) is conditionally-invariant under the invo-
lutive set of operators

Qa = fau(w)au + 7](1(!13), a=1,...,N,
if the system of PDEs

(7.0 — f1 — foya)p =0, Quv =0, a=1,...,N (6.1.2)
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is invariant in Lie sense with respect to the one-parameter groups generated
by the operators Q.

Due to Theorem 1.5.1 conditional invariance of PDE (6.1.1) under the
involutive set of operators (), ensures its reducibility and, consequently, can
be used to construct exact solutions of the (6.1.1).

A usual approach to investigation of conditional symmetry of a given PDE
is application of the infinitesimal Lie method. But the problem is that the
determining equations for functions &,,(x), 7a(x) prove to be nonlinear ones.
That is why there is a little hope to describe all conditional symmetries of
multi-dimensional system of PDEs (6.1.1). It should be said that more or
less systematic results on conditional symmetry of PDEs are obtained for two-
dimensional equations only [137].

In the present section we suggest a method making it possible to get both
invariant and conditionally-invariant Ansétze constructed in Sections 2.2, 2.4.
Moreover, applying this method we obtain some essentially new Ansétze for
spinor field ¢ = 1 (z) reducing system of PDEs (6.1.1) to systems of ODEs.

1. Reduction of the nonlinear Dirac equation (6.1.1). Analysis of
Ansatze for the spinor field invariant under the one- and three-parameter
subgroups of the Poincaré group shows that all of them have the following
structure:

(x) = exp{ara(ro+73)}exp{(1/2)007073 + (1/2)03772}
{ gO(Ldl,WQ,w?,),
X
p(wi),
where ¢ is an arbitrary four-component function-column; 6,, w, are some
real-valued scalar functions, the constraint holding

(6.1.3)

QA:0A(xo+x3,:c1,x2). (6.1.4)

Hereafter the subscripts denoted by Latin alphabet letters A, B take the
values 1, 2 and summation over the repeated indices is understood.

The key idea of the approach suggested can be formulated in a rather sim-
ple and natural way: we impose no a priori constraints on the functions 6,
wq, they are obtained from the requirement that substitution of expression
(6.1.3) into (6.1.1) yields a system of PDEs for the function ¢(d) (or a sys-
tem of ODEs for the function ¢(w;)) with coefficients depending on the new
variables wy, ws, w3 only.

In the following we describe all Ansétze of the form (6.1.3), (6.1.4) reducing
the system of nonlinear four-dimensional PDEs (6.1.1) to a system of ODEs.
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Substituting the Ansatz

Y(z) = exp{0av4(10 +73)} exp{(1/2)00707s + (1/2)037172}p(w)  (6.1.5)
into equation (6.1.1) and multiplying the expression obtained by the matrix

exp{—(1/2)00v0v3 — (1/2)037172} exp{—0ava(70 + 73)}

on the left yield

iR1p + iRy = (fl(@% Prap) + fa(Pep, 657490)74)907 (6.1.6)

where Ry = Ry(z), Ry = Ra(x) are (4 x 4)-matrices determined by the fol-
lowing equalities:

Ry = 2e% (—3A9A + 7172(0102 — 3291)> (Yo +73) + [(’703090 + 730300)
x (cosh 0y + Y073 sinh 0p) + 7. (9400 + 20.4(9s00 — Abo) ) (cos b3
+7172 5in03) — 2704 (0400) (0 + 73)} Yoy3 + 296,404 (D000
—03060) (Y0 +73) + [(703093 + 30363)(cosh By + 03 sinh 6)
+74 (0483 + 20,4 (D303 — Bob3) ) (cos Oy + 7172 5in B) — 2700,
x(0403)(v0 + 73)] 72 + 2%0,40.4 (0003 — 303) (0 + V3) V172,

Ry = (3000w + 7305w)(cosh o + Yoy sinh ) + va (Oaw + 20, (O
—aow)) (cos 3 + y1y2sinfs) — 26909A(8Aw)(’yo +73)
+2e%0,,0.4 (0w — Ozw) (70 + V).

Consequently, Ansatz (6.1.5) reduces equation (6.1.1) to a system of ODEs
iff there exist such (4 x 4)-matrices Q1(w), Q2(w) that

Ri(r) = Q1(w), Ra(z)= Qa(w). (6.1.7)

Expanding matrices Q1(w), Q2(w) in the complete system of the Dirac
matrices and equating coefficients of the matrices I, v, S,u, Y4Yu, 74 we ob-

tain from (6.1.7) the over-determined system of nonlinear PDEs for functions
0,, w

1) (8obo)sinh Oy + (9300) cosh Oy — 29,60, — 26,06,
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420,60, (8060 — D360) = f1(w),

2)  (9obo) cosh By + (9300) sinh By — 2¢%°0,,60,, — 2¢%0, .60
+2¢%0,60,, (9060 — B360) = fo(w),

3) (0205 + 202(D505 — O0s) ) cos b3 — (D103 + 201 (D03

—8093)) sin 93 = fg(w),
4) (8103 + 2604 (8303 — 8093)) cos 03 + (8293 + 292(83(93

—6093)> sin 03 = f4(w),

5) 2¢e% (0102 — 02071) + (0pb3) cosh Oy + (9363) sinh Oy
+2e%0,0,, (9003 — 9303) — 2¢%0,0,03 = f5(w),

6) 2¢%0 (8102 - (9201) + (8093) sinh 6y + (8303) cosh 6y
+2¢%0,10.4(0063 — 0363) — 2¢%0.,0,603 = fo(w),

7) (81!90 + 264 (3300 — 8090)) cos 03 + (6290 + 292(8390
—(9090)) sin 03 = f7(w), (6.1.8)

8) (82(90 + 292(8390 — 8090)) cos O3 — (6190 + 264 (83(90
—5090)> sinfs = fs(w),

9)  (ow) cosh By + (3w) sinh Oy — 26”06 ,,0,w + 2e%
XQAHA(aow — 83@) = fg(w),

10) (Osw) cosh @y + (Jpw) sinh Oy — 20,0, + 2%
><0A9A(80w — ng) = flo(w),

11) (81(4) + 264 (83w — 80&))) cos 03 + (82(4} + 202(83&)
—Ggw)) sinf3 = f11(w),

12) <8gw + 265(03w — 80w)) cos 3 — (81w + 26 (03w
—(%w)) sin 03 = f12(w),

where f1(w),..., fi2(w) are arbitrary smooth real-valued functions.

Thus, the problem of construction of Ansétze (6.1.5) reducing the non-
linear Dirac equation (6.1.1) to systems of ODEs is equivalent to the one of
integration of the over-determined system of PDEs (6.1.8). Let us empha-
size that the above system is compatible because Poincaré-invariant Ansétze
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obtained in Section 2.2 are contained in class (6.1.5).

Integration of the system of nonlinear PDEs (6.1.8) is substantially sim-
plified if we utilize an equivalence relation which is introduced below.

First of all, we note that the class of Ansétze (6.1.5) is transformed into
itself if we generate the spinor field (6.1.5) by the 8-parameter transformation
group G C P(1,3) with the generators P,, Ji2, Jo3, Jo1 — Ji3, Jo2 — Jos.

The above assertion is checked by a direct verification. Take, as an exam-
ple, the one-parameter transformation group having the generator Jy3. Ap-
plying formula (2.4.43) with a = 3 to (6.1.5) we get

P(x) = exp{f,(z')va(r0 +73)} exp{(1/2)6(2") 073
+(1/2)0 (") mate (),

where

x(, = rgcoshT + z3sinht, 2z} =z,
rh = x9, w4 = xzcosht + xgsinhT,

/ / — / —
90:90+T, 91:916 T, 92:926 T,

05 =03, o =uw.

Consequently, the group Gy induces in the space of variables x, 0,(z),
w(x) some transformation group Gs. It is not difficult to establish that Gg is
the invariance group of system of PDEs (6.1.8).

Another transformation leaving the class of Ansétze (6.1.5) invariant is the
following one:

0o — 6o + go(w), 03— 05+ g3(w), w— g(w),
0 — 0 +e % (gl (w) cos b3 — ga(w) sin 93), (6.1.9)

Oy — Oy + e (gQ(w) cos B3 + g1 (w) sin 93).

That is why it is natural to introduce the following equivalence relation
E. We say that solutions of system (6.1.5) 0,,(z), w(z) and 0, (z), w'(z) are
equivalent if they can be transformed one into another by

1) a suitable transformation from the group ég, or

2) a suitable transformation of the form (6.1.9).

An easy check shows that E is indeed an equivalence relation. It divides
the set of solutions of the system of PDEs under study into inequivalent classes
which are described by the following assertion.
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Theorem 6.1.1. The general solution of system of PDEs (6.1.8) determined
up to the equivalence relation E is given by one of the following formulae:

01 =0o=0, 6y=In(zrg+x3), 03=Cln(xo+2z3), w= x% - a:%;

—1
0r=—x4 (2(1‘0 + 933)) ;0o =1In(xo +x3), 03=Cln(xo+ x3),

wzx%—x%—x%—x%;

0, =0, 0Oy=—x9 (2(x0 + xg))_l, 0o = In(zo + z3),

03 = Cln(xg + x3), w =23 — 23— x3;

01=0,=0, 6p=0, 03=0C1(xo+x3), w=2x0—1T3

+Cs(zo + 3);

01 =0=0, 60p=Cxy, 635=0, w=Czx+In(xg—x3);

O, =0,W, 6p=0, 603=(C/2)(xg—ax3+4W), w=x0+ 3,
W =122+ mz+ 722 + 152% 4+ m22*,

where z = x1 +ixe and the functions 7;(x) are determined by
one of the formulae a — c¢ given below

71 = Oy (640%(%’0 + 1'3)2 — 1)_161‘6’1,
(1/2)(zo + x3)

70 = Cs eXp{IGCg / (25602¢% — 1)~ [—16025
n cos(2R1 () — cl)] ¢ + iR ((1 /2)(x0 + mg)) }

73 = 1602 (z0 + $3)(1 — 64C2(z0 + .133)2)_1,

Ri(€) = 16C5(1 — 256C3¢2) ™! [16Cs€ + sin (2R (€) — €1 ) |;

T = (16(:E0 + :Eg))_leiCl, (6.1.10)

(1/2)(wo + 3)

79 = Co exp{(1/2) / {008(2}%2({) — Cl) — 1}5_1d§

+iR2((1/2)($0+(L‘3))}, T3 = —(8(1‘04—1-3))*1?

26 Ry (€) + sin(2Ra(€) = C1) +1 = 0;
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10)

11)

=0, m=(C1+iCy)(xo+z3)"t, 7= (4(:L"0 + x3)>_1;
0, = (1/2)t4 4+ Coarctan(z /&2 (i + 2)/?
x exp{—C1 arctan(Z1/Z2)}04 (arctan(:f:l/i‘g)),
0y = C) arctan(i,/Zs), 603 = —arctan(Z;/&3), w = &5 + Z3;
0a = (1/2)t0s + (33 + 23)1/2(C1 (w0 + w5) !
X arctan(Z;/Z9) + wg)aA (arctan(i"l/:ig)),
0o = In(zo +23), 03 = —arctan(#1/7s), w =it + i3;
04 = z1wW4s + 04 (U(z,xo +x3) + U(2", 20 + x3)>, z = x1 + ix2,
Op=03=0, w=xp+ x3;
01 = (x1 sinwg — x5 cos wo) [((1/2)@1 + C'e*m) sin we
—(1/2)wq cos wg} + wy sinwgy + (1/2)w3 cos wo,
02 = (1 sinwg — x2 cos wa) [—((1/2)@('11 + C’e_wl) COS Wa
—(1/2)w9 sin wg} — wy cos wy + (1/2)ws sin we,
Op = w1, 03 =1wsy, w = x1C0SwWs+ Tosinwsy + ws;
0= (1/2)w,, 6p=C(z2+w2), 03=0, w=2zx+w.

In the above formulae T, = x4 +wa; A = 1,2; wy, we, w3, wy are
arbitrary smooth real-valued functions of xo + x3; U is an arbitrary analytic
function of z; C, Ci, Cy, C5 are arbitrary real constants.

Proof.  On introducing new independent variables £ = (1/2)(xz¢ + 23), 1 =
(1/2)(zo — x3) we rewrite system (6.1.8) in the form

1) 9400 = fi(w)e®,

2)  0el — 40404 — 40,0400 + 4f1(w)e? 0,0, = fo(w)e ™,
3) b3 = 201" f1(w) + fa(w) cos bz — f3(w)sin b,

4)  Oaf3 = 202" f1(w) + f3(w) cos B3 + f4(w) sin b3,

5)  Opfs = fs(w)e,

6)  Del3 + 4(0102 — D02b1) + 4f5(w)e”0,0,, — 40,003

= fo(w)e ™, (6.1.11)

7) 916y = 2601 f1(w)e® + fr(w) cos b — fs(w) sin B,
8)  Dably = 209 f1(w)e® + fy(w) cos bz + fr(w)sinbs,
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9) Oyw = fo(w)e®,

10) Oew — 40,040 + 4fo(w)e®0,0, = fro(w)e %,
11) d1w = 261 fo(w)e” + fi1(w) cos b — fia(w) sin O3,
12)  Oow = 202 fo(w)e® + fia(w) cos B3 + f11(w) sin b.

Now we see that the above system contains a subsystem of PDEs 1, 5, 9

Ao = fr(w)e®™, 0y03 = f3(w)e”, dyw = fo(w)e®,

which can be considered as a system of ODEs with respect to the variable 7.
Transforming 6y, 03, w according to (6.1.9) we can put fifg = 0. With this
remark the above system is easily integrated. Its general solution determined
up to the equivalence relation E is given by one of the following formulae:

I. under fi = f5 = fo =0,
bp = F1, 03=F, w=F3;
II. under fi = f5 =0, fg#0,
0o =InF1, w=nF + F, 03 = F5;
III. under fo =0, f1 #0,
Oo = —In(n+Fs), w=1F, 03=f5(F)n(n+ F)+ F3;
IV. under f1 = fo =0, f5 #0,
Oo=—InFy, 03=Fy ' fs5(Fi)n+F;, w=F,
where Fi, F5, F3 are arbitrary smooth real-valued functions of &, x1, xo.
Thus, to prove the theorem we have to consider four inequivalent cases
I-1V. We will integrate system of PDEs (6.1.11) in the case f1 = f5 = fo =0,

the remaining cases are handled in an analogous way.
When proving the theorem, we will use essentially the following assertion.

Lemma 6.1.1. General solution of system of PDEs

ou = Aj(u)cosv — Ag(u)sinwv,
du = Ax(u)cosv+ Aj(u)sinwv,
01w = Bj(u)cosv — By(u)sinwv,
Ov = Ba(u)cosv+ Bi(u)sinv,

determined up to the equivalence relation

u— hy(u), v—v+ha(u), h;€CYR' R
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s given by one of the formulae

1) u = (w1 + w1)2 + (xg + w2)2,

v = arctan((m + w1)(z2 + w2)_1); (6.1.12)

2) u = xjcoswy + xasinwy + wy, v = wo;

3) u=w, v=ws.

Here wy, we are arbitrary smooth real-valued functions of €.

Proof of the above assertion is carried out with the help of rather simple
but very cumbersome computations, therefore it is omitted.

Substituting 0y = F1 (&, z1,22), 05 = Fa(€,21,22), w = F3(&,x1,x2) into
system (6.1.11) we have

—_

OcFy — 40,04 — 40,0, F) = fae 11,

O1Fy = fycos Fy — f3sin Fy,

02 F5 = f3cos Fy + fysin Fy,

OcFy + 4(0102 — 0201) — 40,0, Fy = foe I,

01F1 = frcos Fy — fgsin Iy, (6.1.13)
0o Fy = fgcos Fy + frsin Fy,

OeFs — 40,0, F3 = froe™ 1,

01F3 = f11cos Fy — fio8in Fy,

09 F3 = fiacos Fy + f11sin Fy,

© 00 J O Ot = W N
—_— o — D D D O

where fo, ..., fio are arbitrary smooth real-valued functions of Fj.
According to Lemma 6.1.1 a subsystem of equations 2, 3, 8, 9 has three
inequivalent classes of solutions given by formulae (6.1.12).

Case 1. Fh = — arctan((xl + wy)(xo + wz)_1>, F3 = (21 +wy)?

+ (xg + w2)2.
Substitution of the above expressions into the fifth and sixth equations of
system (6.1.13) yields the following system of PDEs for the function Fj:
HF = Tofr(3F + 55) + i1 fa( + 73), 6114
OsFy = iofs(2}+33) — 21 fs(d3 + 33),

where T, = x4, +w,, A=1,2.
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Taking into account the compatibility condition 0;(92F1) = 02(01F1) we

have f7 =0 or f7 = (1 = const. Hence it follows that up to the equivalence
relation F the general solution of system (6.1.14) can be represented in the
form

Fy = Cy arctan(z /Z2) + ws(§), ws € Cl(Rl,Rl).

From the seventh equation of system (6.1.13) it follows that functions 0y, 65
satisfy the equality

i‘A(U.)A — 49/1) = fl(](j% + i‘g) exp{—Cl arctan(fnl/a}g) - wg},
whose general solution reads
0 = (1/4)ion + W (€, 21, 22)0, (arctan(i /8)), A =1,2,

Here W is an arbitrary smooth real-valued function.
Substituting the above results into the first and fourth equations of system
(6.1.13) we arrive at the following system of two PDEs for W:

TA0W =W + aq exp{—C arctan(Z;/T2) — w3},
(Z901 — £100)W = —O1W + (1/4)w3(23 + #3) (6.1.15)
+o exp{—Cl arctan(il/ig) - wg},

where a, = a4 (72 + 72). Integration of system of linear PDEs (6.1.15) yields
two inequivalent classes of solutions

under C7 # 0
W = (Cs+ Crarctan(in /22)) (3 + #3)"/*
x exp{—C1 arctan(z1/Z2)}, w3 =0;

under C7 =0
W= (wo(€) + C&  arctan(iy /72) ) (5 + 73)1/2, wy =¢.

Here C, Ci, Cy, C3 are real constants, wg € Cl(RI,RI) is an arbitrary
function.

Substituting the results obtained into the corresponding expressions for
6,, w and returning to the initial independent variables z, we get up to the
equivalence relation F the formulae 8, 9 from (6.1.10).
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Case 2. F2 = wz(g), F3 = w3(§).

Up to the equivalence relation £ we can choose F3 = &, Fo = 0. Substi-
tution of these expressions into (6.1.13) gives rise to the following system of
PDEs for Iy, 641, 609:

1) 0cFy — 40,04F) — 4040, = fo(€)e ™™,

2) 9oy — 010y = fo(e 1,

3) OiF1 = fr(6), (6.1.16)
4) 02F1 = [f3(),

5) 1= fio(&e .

From the last three equations we conclude that within the equivalence re-
lation F7 = 0. Integrating the remaining equations and returning to the initial
independent variables we obtain within the equivalence relation F formulae 9
from (6.1.10).

Case 3. Iy = wq(§), F3=x1coswa(§)+ zasinwa(§) + ws(§).
Substitution of the above expressions into equations 1, 4-7 from (6.1.13)
gives rise to the over-determined system of PDEs for functions Fy, 61, 6o

—_

48A9A = 8§F1 - 49A8AF]_ + fzeiFl,
4(8291 — 8192) = 1wy + fﬁeiFl,
O1F1 = frcoswsy — fgsinws, (6.1.17)

0o F1 = fgcosws + f7sinwo,

- W N
T — O O —

ot

wa (g coswe — 1 sinws) + w3

—4(61 coswy + By sinwy) = froe 11,

where fa, fo, f7, fs, fio are arbitrary smooth functions of x1 cos wg +x9 sin we
+ws.

The necessary and sufficient compatibility condition of a subsystem of
equations 3, 4 reads 01(02F1) = 02(01F}), whence it follows that fg = C; =
const. Substituting fs = C} into equations 3, 4 from (6.1.17) and integrating
the equations obtained we have

Fy = O (w3 coswg — x1 sinwy) +wi(€), wy € CHRYRY).

With account of the above formula system (6.1.17) is rewritten in the
following way:

1) 0404 = —(1/4)Chwa(x1 coswy + o sinws) + (1/4)wy
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+C1 (01 sinwy — O3 coswy) + faexp{—C1(x2 cosws
—x1 sinwsg) — w1 },

2) 0201 — 0102 = (1/4)we + fo exp{—C1(x2 cosws (6.1.18)
—x1 sinwsg) — w1 },

3) 01 coswy + Oy sinwy = (1/4)wa(x2 coswe — 1 sin ws)

+(1/4)ws + fio exp{—C1(x2 cos we — 1 sinwg) — w1 }.

Integrating equations (6.1.18) we get up to the equivalence relation E the
formulae 10, 11 from (6.1.10) under C; = 0 and C; # 0, respectively. The
theorem is proved. >

Choosing in an appropriate way parameters and arbitrary functions we
can obtain from (6.1.5) and (6.1.10) Ansétze invariant under the P(1,3) non-
conjugate three-dimensional subalgebras of the algebra AP(1,3) constructed
in Section 2.2. Hence it follows, in particular, that the classical Lie approach
gives no complete description of Ansétze reducing nonlinear PDE (6.1.1) to
ODEs. Additional possibilities of reduction of equation (6.1.1) are the conse-
quence of its conditional symmetry. To become convinced of this fact we will
construct involutive sets of the first-order differential operators

Qo = fau(x)au + na(x)a a=1,2,3,

where &, (x) are real-valued scalar functions, 74(x) are (4 x 4)-matrices, such
that Ansétze (6.1.5), (6.1.10) are invariant with respect to these operators.
Then, we will show that the nonlinear Dirac equation (6.1.1) is conditionally-
invariant with respect to so obtained involutive sets of differential operators.

According to Definition 1.5.2 Ansatz (6.1.5) is invariant with respect to
the involutive set of operators (@1, @2, Q3 if the conditions

Qa(x) = Qq (A(:c)cp(w)) =0, a=1,2,3, (6.1.19)

where A(x) = exp{v40(70 + 73)} exp{(1/2)8p70y3 + (1/2)037172}, hold with
an arbitrary four-component function p(w).

Equating coefficients of ¢(w) and ¢(w) in the left-hand side of (6.1.19) to
zero we get

bap(x)0pw(z) =0, a =1,2,3, (6.1.20)
Na(@) = = (an(2)0,A) 471, a=1,2,3. (6.1.21)

Thus, to obtain the involutive set of operators O, such that the Ansatz (6.1.5)
is invariant with respect to it we have
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e to solve equations (6.1.20) which should be considered as a system of lin-
ear algebraic equations with respect to &,,(z), a =1,2,3, p=0,...,3;

e to get explicit expressions for 1,, a =1,2,3 from (6.1.21).

On solving equations (6.1.20), (6.1.21) for each class of functions 6,,(z),
w(z) from (6.1.10) we obtain the following sets of operators Qg:

1) Qi1=01, Q2= 02 Q3=2x003+ 2300 — (1/2)v073 — C(I231

—1102 + (1/2)7172);
2) Q1= (w0 +x3)01 +x1(d — 33) + (1/2)71(70 + 73),
Q2 = (wo + 3)02 + x2(00 — 03) + (1/2)72(70 + 73),
Q3 = 2003 + 1300 — (1/2)v073 — 0(56231 — 1102 + (1/2)7172);
3) Q1=01, Q2= (x0+23)02 +2(00 — 93) + (1/2)72(70 +73),
Q3 = 2003 + x300 — (1/2)v07v3 — C(asgf)l — 1100 + (1/2)7172);
4) Q1=01, Q2 =02, Q3= (1—C2)0p + (1 + C2)03
~2C1 (2201 — 2105 + (1/2)11%2));
5) Q1=00+ 03, Q2 = 0y,
Q3 =01+ 0(56053 + 2300 — (1/2)7073);
6)  Qa = 04— 75(050.W) (30 +73) — 20(04 W) (1172
+2(710W = 7200W) (70 + 73)>7 A=12,
Q3 = 0o — 03 — Cy1y2 — 2C(M10:W — 7201 W) (0 + 73);
7)) Q1=00— 03, Q2 =710 — 2201 — (1/2)(7172 — C17073)
+C1 (52 + #3) "% exp {—C) arctan (i /Z2)}
X (7281 = 11%2) (70 + 73) + (1/2)(y11d2 — Y21n) (6.1.22)
X (0 +73) — (C1/2)vawa(v0 + 73),
Q3 = 0o + 03 — 2404 — YaWa(y0 + 73);
8) Q1 =0 — 03, Qo =d10s — 7201 — (1/2)1172 — C1(77
+i3) 72 (2o + 1) T (F172 — F2m1) (90 + 73)
—(1/2)(m2 — y2101) (Y0 + 73),
Q3 = 1003 + 1300 — (To + 23)wa0s — (1/2)7073
—(1/2)7a (W + (20 + 23)104 ) (0 + 78) — (3F + 73) 772
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X (w3 + (2o + 963)1123) (MmZ2 — 7221) (Y0 + 73);
9) Qa=04—1s [838,4 (U(Jﬁ + ix2, 9 + x3)

+U (21 — tx2, o + 933))} (Y0 +73) + 0417sW5
X(v0+13), A=1,2, Q3 =00 — 03;
10) Ql = 30 - 83, QQ = (sin w2)81 - (COS w2)62

_ [71 (/201 + Ce™) sinws — (1/2)ib

x coswy| — o[ ((1/2)n + Ce™) cosw
H(1/2)ibysinwa) | (30 + ), Qs = a0 — 201)
iy (cos w2) D + (sinws)ds ) + (1/2)(9o + B5)

— (w1 sinwy — 25 coswp) ((1/2) (1 + ) (1 sin wy

—vy9 coswy) — (1/2) (W + wi2)(y1 cos wa + 72 sin w2)>
X (0 +7v3) — (W4 + wrwa) (71 sinwg — 2 cos w2 ) (Yo + V3)
—(1/2) (w3 + wiws)(y1 coswy + Yo sinwa) (o + ¥3)
—(1/2)wam1y2 — (1/2)1707s,
11) Q1= 00— 03, Q2= 02— (C/2)v073 — (C/2)vawa(70 + 73),
Q3 = =10 + (1/2)(00 + 93) — (1/2)7aa(y0 + 73)
—(C/2)b2v073 — (C/2)bayatia(y0 + V3)-

Analyzing the above formulae we come to a conclusion that only the op-
erators 1-5 from (6.1.22) are linear combinations of the generators of the
Poincaré group P(1,3) (1.1.20). The remaining triplets of operators cannot
be represented as linear combinations of operators (1.1.20). Consequently,
Ansétze 6-11 from (6.1.10) are not invariant with respect to three-parameter
subgroups of the group P(1,3) and cannot, in principle, be constructed within
the framework of the Lie approach. They correspond to conditional symmetry
of the nonlinear Dirac equation (6.1.1).

Let us consider as an example the eighth triplet of operators Q1, Q2, Q3.
Rather tiresome computations yield the following relations:

Q1L =0,
QoL = —2iC1(&} + 73) (w0 + 1) (70 + 1) Q¥
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+(nZz — ’Yﬂl)Qﬂ/J) + (12 — Y11 ) Q1Y + (Cl (&3

+5) 72 (w0 + 23) "M (@172 — F2m1) (Y0 + 73)

+(1/2)1179 + (1/2) (s — y2101) (30 +73) ) Ly (6.1.23)
QsL = 2i(ws + (wo + w3)is ) (73 + #3) 772 (90 + 75) Qo

+(y1d2 — 1F1)Quw) + [(1/2)707 + (1/2)74 (W

+(@o + 563)1'0,4) (Yo +s) + (& + 23) 71/ <w3 + (w0 + 3)

><U'73) (M1Z2 — y221) (0 + 73)}3
[Q1, Q2] = [Q2, Q3] =0, [Q3, Q1] = Q1,

In (6.1.23) we designate by the symbol Qa the first prolongation of operator
Qa, L = tvuthe, — [1b — fonah.

Thus, the nonlinear Dirac equation (6.1.1) is conditionally-invariant with
respect to the involutive set of operators QQ1, Q2, @s3.

Substitution of the Ansétze (6.1.5), (6.1.10) into (6.1.1) gives rise to the
following systems of ODEs for the four-component function ¢ = p(w):

) (1/2)(0+73)(1+ Cry2)e + (70 = 93 +w(y0 +7) )¢ = R
1/2)(30 +73) 3 + Crnva)e + (70 = 18 + w90 +18) )¢ = R,
)¢ =R

)
)

) (1/2)(0 +8)(2 + Crye)e + (0 — 13 + w0 +79) )¢ =
)

)

)

)

w N

Y

S

C1/2)(0 + 73) a9 + <C2(70 +73) + 70 — ’73)85 =R,
/272719 + (Cyi + e (30 +73) )» = R,
—(C(0 = 8)71 + 473(w) (30 + 73) + 8C 7o (w)

t

6
x (70 + 73)74)80 + (o +713)¢ =R,

) w T 2((1/2)7 = Ca(0 +78) + (C1/2)727 )0 + 20?90 = R,

8)  (1/2)((1 201w ) (0 +73) + w232 ) + 201 2100 = R,

9) (o +13) (’wQ(W)’M - wl(w)>90 + (o +13)¢ =R,

10) —C(v+73)e +m¢ = R,
11) —Cyivap +me =R,
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where R = —i(fi(@0, #va0) + fa(, Bra9) 1) 0.

It is important to emphasize a very important difference between Poincaré-
invariant Ansétze for the spinor field and conditionally-invariant Ansétze given
in (6.1.10). As it was said above, P(1,3)-invariant Ansétze for the spinor field
reduce any Poincaré-invariant spinor equation to systems of ODEs, provided
the generators of the Poincaré group have the form (1.1.20). But for Ansétze
(6.1.10) it is not the case. Each specific equation gives rise to a specific system
of PDEs for functions 6, w. This means that the approach suggested makes
it possible to take into account a structure of solutions of the equation under
study more precisely than the Lie approach does.

It is worth noting that the formula (6.1.5) can be easily adapted to the
case of a field with an arbitrary spin s. Let us rewrite it in the following way:

w(:C) = eXp{QHA(SoA - SA3)} eXp{H()Sog + 93512}4,0((,«)), (6.1.24)

where Sy, = (1/4) (v — %), Ansatz (6.1.24) can be applied to reduce
any Poincaré-invariant equation (by means of the method described above)
provided it admits the group P(1,3) with the following generators:

P,=0" Juw=x,P,—x,P,+ Su.

Here S,,, are constant matrices of the corresponding dimension satisfying
the commutation relations of the Lie algebra AO(1,3).

2. Non-Lie reduction of spinor equations invariant under the ex-
tended Poincaré group. We look for solutions of the nonlinear P(1,3)-
invariant equations

{iwau — ()" [91 (W(lﬁwb)_l) + g0 (151/}(1/7741#)_1)74} }1/1 =0 (6.1.25)

in the form
Y(x) = exp{fo + v404 (70 +73) fo(w), (6.1.26)

where 6y, 61, 02, w are arbitrary smooth real-valued functions of x¢ + x3, x1,
x2; ( is an arbitrary complex-valued four-component function.

Substituting the Ansatz (6.1.26) into (6.1.25) and multiplying the expres-
sion obtained by the matrix exp{—60y — 0.v4(70 + v3)} yield

1/2k(

iRy (x)p + iRz (x)p = (Pp) g1 + g274) @,
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where

ga = ga (@@(@7490)’1)7 A=12,
Ri = (70 +73)000 + 740400 + 74750405 (0 + 73) — 2040400(70 + 73),
Ry = (70 +73) (0w — 20.04w) + 7404w

(as earlier, the notation & = xy + x3 is used).

Consequently, Ansatz (6.1.26) reduces the initial equation (6.1.25) to a
system of ODEs if there exist such (4 x4)-matrices G1(w), Ga(w) that R,(z) =
Ga(w), A =1,2. Hence we get the system of nonlinear PDEs for unknown
functions 0y, 61, 62, w

1) (0¢ —20404)00 — 0404 = f1(w) exp{fok '},

2) D100 = folw) exp{Ook'},

3) sy = f3(w)exp{bok~'},

4) 0961 — 0162 = fa(w)exp{bok~'}, (6.1.27)
5) (0 —20404)w = f5(w) exp{fok'},

6) 01w = fe(w)exp{ok'},

7) Oow = fr(w)exp{fok'}.

In (6.1.27) f1,..., fr are arbitrary smooth real-valued functions.

Solutions of the above system of nonlinear PDEs are looked for up to the
equivalence relation E which is introduced in the following way. We say that
the solutions of equations (6.1.27) Oy(x), O.(x), w(z) and Oy(z), ¢, (z), ()
are equivalent if they are transformed one into another by

1) a suitable transformation from the group Gg, which is induced in the
space of variables x, 6y(x), 04(x), w(x) by the action of the transformation
group Gg C ]5(17 3) with generators P,, Jo1 — J13, Jo2 — J23, J12, D on Ansatz
(6.1.26), or

2) a suitable transformation of the form

w— h(w), 6Oy — 0o+ ho(w), Or— 0,4+ hs(w), (6.1.28)

where {h, hg, h1,ho} C Cl(Rl, Rl).

Due to the fact that system (6.1.27) is over-determined we have succeeded
in constructing its general solution. Up to the equivalence relation E it is
given by one of the formulae

1) 0y = klnwq, 01 = (2w1)_1(w1$1 + ’LUQ),
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0y = (2wy) ! ((Qk: — Dz + wg), w = wiT] + wa;
2) 0p=—kln(xg+wy1), 64= W3<(1‘1 + w1)2

k—1
H(@a+w)?) (watwa) £ (1/2ia, A=1,2,  (6.1.29)

w=(r1+wi)(z2 + wg)_l;

3) 6p=0, w=ux+x3, HA:8A<U(x1+ix2,xo+a:3)

+U(£L’1 — T2, Tq +$3)) +wyr1, A=1,2.

Here wy, we, ws are arbitrary smooth real-valued functions of x¢ + x3; U
is an arbitrary function analytic in the first variable.

Substitution of Ansétze (6.1.26), (6.1.29) into equation (6.1.25) gives rise
to the following systems of ODEs:

1) imp =R,
2) i(y2 —wn)p =R,
3) (v +73)¢ + (Y0 +¥3)(way1y2 — wi)p = R,

where R = (7¢)V/%* g1 (G(@710) 1) + 7492 (20(B1a0) 1) | -

Generally speaking, Ansétze (6.1.26), (6.1.29) are not invariant with re-
spect to the three-parameter subgroups of the group P(1,3) (description of
inequivalent P(1,3)-invariant Ansitze for the spinor field is given in Section
2.2). In the case involved we deal with reduction via conditionally-invariant
Ansétze. For example, the involutive set of operators @), corresponding to the
Ansatz 1 from (6.1.29) is of the form

Q1= (1/2)(0o — 03), Q2 =w102 + (1/2)(1 — 2k)w172(v0 + 73),
Qg = (1/2)’(01(60 + 83) — u';leaA - u')281 - ]ﬂwl + (2101)_1

x(20f — wrin) (aza + 20k — Dyawz) (o +73) + (2w) ™"
X ((lewg — wlﬂ)g)’}q + (w3w1 - w1w3)’72) ('YO + '73)'

The above operators satisfy the following relations:

[Q1, Q2] = [Q1, Q3] =0, [Q2, Q3] = —2w1Q2,
Q1L =0, QoL = AL+ AsQvp + A3Qa,
QsL = ByL + BaQa,
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where Q, is the first prolongation of operator Q,; L = 1Y, 0u ) — ()2 (g1 +
9274)V; Aq, Bo, B, are some variable (4 x 4)-matrices. Hence it follows that
the nonlinear Dirac equation (6.1.25) is conditionally-invariant with respect
to the involutive set of operators @1, @2, Q3.

In conclusion we adduce the two classes of new exact solutions of the
nonlinear spinor equation

(940 — A@) ) = 0

constructed with the use of conditionally-invariant Ansétze (6.1.10), (6.1.29)

wle) = exp{nlo+ ) | (orsinws — zacoswn) [((1/2)01
+Ce™ ) sinws — (1/2)1y cos wa| + wasinwy + (1/2)g
X CoS wz} — 72(Y0 + 73) [(xl sinwy — @ coswy) | ((1/2)n
+Ce ™) cos wy + (1/2)t sin ws| + wy cos wy
~(1/2)iysinwa | bexp{(1/2)wrron + (1/2wenre)
x exp{ (IA00) %1 = Oy (90 + 7)) (w1 cos w
sy sinwy + ws) .

w(x) = whexp{(2un)™ (w1 + o) + ((2k — Dionzs + ws) o)

1/2k(

x(v0 + ’73)} exp{idy1(xx) /" (wiz1 + w2) } x.

Here wy, wo, w3, wy are arbitrary smooth real-valued functions of zg+x3; x
is an arbitrary four-component constant column.

6.2. Non-Lie reduction of Galilei-invariant spinor equations

Taking into account the classical ideas and methods of symmetry analysis of
differential equations we generalize results obtained in the previous section in
the form of the following non-Lie algorithm of reduction of PDEs:

e the maximal (in Lie sense) invariance group of the equation under study
is found by the Lie method;
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e subgroup analysis of the invariance group is carried out, each subgroup
giving rise to some Ansatz which reduces PDE in question to an equation
having a smaller dimension. As a rule, Ansétze obtained in this way have
a quite definite structure which is determined by the representation of
the symmetry group.

e the general form of the invariant Ansatz is obtained. This Ansatz
includes several scalar functions 61, ...,0y satisfying some compatible
over-determined system of nonlinear PDEs (reduction conditions).

e equations for #1,...,0N are integrated.

Let us realize the above algorithm for the following system of nonlinear
spinor PDEs:

{=i(0 +74)0; + 17200 + m(y0 — 74) — F(*,9) }¢p = 0, (6.2.1)

where F' is a variable (4 x 4)-matrix.
According to Theorem 4.1.5 equation (6.2.1) is invariant under the Galilei
group iff

F = fi(@, 1 + dyaw) + fa(d, T + Pyap) (0 + ), (6.2.2)

where {f1, fo} € C'(R? C?) are arbitrary functions. In Section 4.2 we have
constructed G(1, 3)-inequivalent Ansétze for the spinor field (¢, Z) invariant
under three-parameter subgroups of the Galilei group. One can become con-
vinced of the fact that these Ansétze have the form

P(t, T) = exp{ifo + Vaba(y0 + 74) } exp{Osy172}o(w), (6.2.3)

where 6, 04, w are smooth real-valued functions on ¢, ; ¢ = ¢(w) is an
arbitrary complex-valued four-component function.
In the following, we will describe all Ansétze (6.2.3) with 8, = 0 reducing
the Galilei-invariant equation (6.2.1), (6.2.2) to systems of ODEs.
Substituting (6.2.3) with 64 = 0 into (6.2.1), (6.2.2) and requiring for the
obtained equation be equivalent to a system of ordinary differential equations
for p(w) we have

1) 023 — 0302 = f1(w),

2) 0301 — 0103 = fa(w),
3) 0102 — 0201 = f3(w),
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1) Buba = f1(w), (6.2.4)
5) (8 + 20404)60 + 4mbaby = f5(w),
6) (0 +20,04)w = fo(w),
7) Oaw = fota(w),
8) 0400+ 4mby = fota(w).
Here f1,..., fi2 are arbitrary smooth real-valued functions, a = 1,2, 3.

As earlier (see Section 6.1), we introduce an equivalence relation E on the
set of solutions of system of PDEs (6.2.4). We say that solutions of equations
(6.2.4) 00(t,Z), 04(t,7), w(t,Z) and O)(t, T), 0, (t, %), (¢, ¥) are equivalent if
they are transformed one into another by

1) a suitable transformation from the group (N;n which is induced in the
space of the variables t, Z, 6y(t,Z), 0,(t, %), w(t,Z) by the action of the Galilei
group G(1,3) on Ansatz (6.2.3), or

2) a suitable transformation of the form

90 - 90 + ho(b&)),
0o — 04 + he(w),

w = h(w)a

where {h,,h} C C1(R},R!) are arbitrary functions.

Theorem 6.2.1. General solution of system of PDEs (6.2.4) determined up
to the equivalence relation E is given by one of the following formulae:

I. m=0
1) w=z1+wi(t), 6p=Cs (acg - 2w2(t)) +Cy (:Ug - 2w3(t)) + Cst,
01 = —(1/2)wi(t), 602 = —a(Cszy + Cyxsz) + wa(t) + Crxa,
03 = a(Cszg — Cyxa) + w3(t) + Coxa, o = (C1C3+ C2CY)
x(C3+ )Y
2) w=uz1+wo(t), 0p=Cst, 60 =—(1/2)w(t),
Oy = U(xg +ixzs,t) + U(xe —ixs, t) + Cia2,
03 = iU (xo + ixs, t) — iU (xe — ixs, t) + Coxa;
3) w=t, 0o=1x49a(t), Oa=capchp(t)xc+ W + wy(t)z,,
function W = W (t, &) being given by one of the relations a — ¢
a) wunder g1 =gz =g3=0
0a 0, W = 0;
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b) wunder go =0, g3 #0
W =gy (7“1961333 + roxoxs + raxs + (1/2)r3xi — (1/2)g5 tgrr103
+(1/2)(g5 ' grr1 — T3)$§) +U(z,t) + U(2", 1),

2= (g + g3) " (gr1as — gaw1) + s
) under gi +g5 #0, g3 #0
W = (1/2)g5°r1(2gsz123 — g123) + (1/2) g3 *r2(2g322w3
—g273) + (1/2)g5 " (r3zs + 2razs) + (1/2)g5 (g7 + ¢3) " (1o
+rag2 — r3g3) (9221 — g122)” + Uz, t) + U(2*, 1),
2= (g2 +93) 7" (63 + 63) — g3 (g} + 6) ) 2 (go1 — gr2)
+i (9193(9% +935) " (921 — g12) + g3z — 92333)7
where
Tq = —<9a’w0 + Eabegohe + (1/2)Qa>, T4 = go-
II. m#0
1) w=az1+ @m) 'Cst* + Crt, 6y = (2mC7 + Cst)w
+(C3 — 4mCy)xg + (Cy — 4mCy) w3 — (12m) 1 C2t3 — (1/2)C5Crt?
+Cst, 6 = —(4m)~'Cst — (1/2)C7, 6y =C41, 63 = Cy;
2) w=t, 0= —-2mRor.xq+ Roxeq — Am(Taprexy + Toza),
0, = Roxg + 2T pxy + Ty,

where Ro(t), Rp(t), Tre(t), Tu(t) are real-valued functions satisfying the Ric-
cati-type systems of ODFEs

(Ro + 2R%)6ap + 2T + 8TucThe + 8RoTop = 0,
Ry — 4mT, — 8mRoT, — 16mTy Ty + ATy Ry + 2Ro R, = 0

and besides
Top = Tpa, Th1+Too+T33 =0.

In the above formulae wy, wqe, 90, Ga, ha are arbitrary smooth real-valued
functions of t; a,b,c = 1,2,3; U 1is an arbitrary function analytic in the
variable z; Cy, Co,...,C7 are arbitrary constants.

A detailed proof of this assumption can be found in [8, 303].

Substantial extension of the class of Ansétze (6.2.3) reducing nonlinear
PDE (6.2.1), (6.2.2) to systems of ODEs as compared with the class of Lie
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Ansétze (see Section 4.2) is achieved due to the conditional symmetry of equa-
tion (6.2.1).

Computing involutive sets of operators Qq = &uu(t, ©)0, + 1a(t, ) (00 =
), a=1,2,3 with the use of formulae (6.1.20), (6.1.21), (4 x 4)-matrix A =
A(t, ) and scalar function w(t, Z) being determined by the formulae I.1-11.2,
we can become convinced of that Ansétze 1.2, 1.3 correspond to conditional
symmetry of system of PDEs (6.2.1), (6.2.2).

Substitution of the Ansétze obtained above into the initial equation (6.2.1),
(6.2.2) yields systems of ODEs for a four-component function ¢(w)

I 1) imp+ z’((cm —C1 —iC5)(v0 +71) + 0372 + z‘Cm)so =R,
2) iv1p+i(Coyr — C1 —iC3)(v0 +14)p = R,
3) —i(y0+70)¢ +i((2hara — Bwo — igo) (0 + 1)

+iga%>so = R,
1L 1) im@+ ((Csw+ Co — 4mC} — 4mC3 + mCE +201Cy
+2C2C4) (0 +74) — C372 — Cayz +m(yo — ’74))90 =R,
2) —i(yo+v4)p + (fBiRo(’Yo +74) + 2R, T, — 4mT,T,)

x(90 +74) = Rava + m(10 — 1)) = R,

Here R = (fi(@p, 070+ @1a0) + fo (@0, 10 + 3140) (0 +74) )3 wo, wa,
has 90, 9a, Tu, R4 are functions of w determined in Theorem 6.2.1; Cf4,...,
C'7 are constants.

A particular or general solution ¢ = ¢(w) of one of the above equations
after being substituted into corresponding Ansatz (6.2.3) gives rise to a class
of exact solutions of the initial nonlinear PDE.

As an example, we adduce the class of solutions of system of nonlinear
PDEs (6.2.1), (6.2.2) with m = 0, fi = 0, fo = @™ + dyp)F, A =
const, k = const constructed with use of the Ansatz 1.3

P(x) = exp{id(x"x + X7X) "t + (30 + 74) 720 W }x,

where x is an arbitrary constant four-component column, W = W (t, &) is an
arbitrary solution of the three-dimensional Laplace equation

AW = 0,0,WW = 0.
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The approach to the problem of reduction of G(1,3)-invariant equations
for the spinor field of the form (6.2.1) suggested above can be generalized for
the case of an arbitrary Galilei-invariant system of PDEs admitting the group
G(1,3) with generators

PO - 6t7 Pa — Uq,
Jab = 2504 — 40p + Sap,
Gy = t0y + iAxgq + Mg,

where A\ = const; a,b = 1,2,3; Sap, 1, are arbitrary constant matrices satis-
fying the commutation relations of the Lie algebra AE(3). Exact solutions of
such a system are looked for in the form

w(ta f) = eXp{QO + eana} exp{045'12}<p(w),

where {90,91,92,93,94,&)} C Cl(R4,R1).



CHAPTER 7

REDUCTION AND EXACT SOLUTIONS
OF SU(2) YANG-MILLS EQUATIONS

In the present chapter a detailed account of symmetry properties of SU(2)
Yang-Mills equations is given. Using a subgroup structure of the Poincaré
and conformal groups we have constructed all C(1,3)-inequivalent Anséitze
for the Yang-Mills field which are invariant under three-parameter subgroups
of the Poincaré group. With the aid of these Ansétze reduction of Yang-Mills
equations to systems of ordinary differential equations is carried out and wide
families of their exact solutions are obtained. A number of generalizations of
the Lie Anséitze are suggested making it possible to construct broad families
of exact solutions of the Yang-Mills equations containing arbitrary functions.
It is shown that a possibility of such generalizations is provided by nontrivial
conditional symmetry of the Yang-Mills equations.

7.1. Symmetry reduction and exact solutions of the

Yang-Mills equations

1. Introduction. A majority of papers devoted to construction of the explicit
form of exact solutions of the SU(2) Yang-Mills equations (YMESs)

— — —

00" Ay — 000, A, + e((0,4,) x A, —2(0,4,) x 4,

. . . L (7.1.1)
+(@A,) x AY) + 2, x (A7 x 4,) = 0.

are based on the Ansétze for the three-component vector-potential of the
Yang-Mills field A, (xo, x1, x2, x3) (called, for brevity, the Yang-Mills field)
suggested by Wu and Yang, Rosen, 't Hooft, Corrigan and Fairlie, Wilczek,
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Witten (see [2] and references therein). And what is more, Ansétze mentioned
are obtained in a non-algorithmic way, i.e., there is no regular and systematic
method for constructing these Ansétze.

Since there are only a few distinct exact solutions of YMEs, it is difficult
to give their reliable and self-consistent physical interpretation. That is why
the problem of prime importance is the development of an effective regular
approach for constructing new exact solutions of system of nonlinear PDEs
(7.1.1).

A natural approach to construction of particular solutions of YMEs (7.1.1)
is to utilize their symmetry properties. Apparatus of the theory of Lie transfor-
mation groups makes it possible to reduce system of PDEs (7.1.1) to systems
of ODEs by using invariant Ansétze. If we succeed in constructing its gen-
eral or particular solutions, then substituting the results obtained into the
corresponding Ansétze we obtain exact solutions of YMEs. Let us note that
symmetry reductions of the Euclidean self-dual YMEs (which form the first-
order system of PDEs) by means of the subgroups of the Euclid group E(4)
have been performed in the paper [204]. It is interesting to note that many
integrable two-dimensional PDEs are obtained as symmetry reductions of the
self-dual YMEs (see [47] and references therein).

Another possibility of construction of exact solutions of YMEs is to use
their conditional symmetry. To this end, we apply the same approach which
enables us to obtain broad families of conditionally-invariant Anséatze for the
nonlinear Dirac equation (see Chapter 6).

In the present chapter we exploit both possibilities mentioned above. In the
first section symmetry reduction of system of PDEs (7.1.1) by means of three-
parameter subgroups of the Poincaré group is carried out and a number of its
non-Abelian exact solutions are constructed. The second section is devoted to
investigation of conditional symmetry of YMEs.

2. Symmetry and solution generation for the Yang-Mills equations.
It was known long ago that YMEs are invariant with respect to the group
C(1,3) ® SU(2), where C(1,3) is the 15-parameter conformal group having
the following generators:

P, =0,,

Jaﬁ == 330‘85 — 3368(1 + A“‘”‘@A% — AaﬂaAgéa

D =x,0,— Aﬁ@AZ,

— nwrn _ v ap _ a .V
KM 22D — x,x aﬂ +2A l‘yaAg 2AV$ 8Aau,

(7.1.2)
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and SU(2) is the infinite-parameter special unitary group with the following
basis generator:

Q = (CapeAlu(z) + €10 (x) ) O (7.1.3)

In (7.1.2), (7.1.3) Oag=0/0Aj,, w(z) are arbitrary smooth functions, &g
is the third-order anti-symmetric tensor with €103 = 1.

But the fact that the group with generators (7.1.2), (7.1.3) is a maximal (in
Lie sense) invariance group admitted by YMEs was established only recently
[251] with the use of a symbolic computation technique. The only explanation
for this situation is a very cumbersome structure of the system of PDEs (7.1.1).
As a consequence, realization of the Lie algorithm of finding the maximal
invariance group admitted by YMEs demands a huge amount of computations.
This difficulty has been overcome with the aid of computer facilities.

One of the remarkable consequences of the fact that the equation under
study admits a nontrivial symmetry group is a possibility of getting new solu-
tions from the known ones by the solution generation technique (see Theorem
2.4.1).

To make use of Theorem 2.4.1 we need formulae for finite transformations
generated by the infinitesimal operators (7.1.2), (7.1.3). We adduce them
following [2, 137].

1) The group of translations (generator X = 7,P,)

A dl __ pd
T, =T+ T A=A

2) The Lorentz group O(1,3)

a) the group of rotations (generator X = 7.J,)

/
=0, .=, c#a, c#b,
= 2,C08T + Tpsin T,
Ty = TpCOST — Ty SINT,
d/ d dr d
Ay = Ay, AT =AS, c#a, c#Db,
dr _ ad d
Ay = AgcosT + ApsinT,
AY = A cosT — AdsinT;

b) the group of Lorentz transformations (generator X = 7.Jy,)

336 = xgcosh T + x, sinh 7,



304 Chapter 7. REDUCTION AND EXACT SOLUTIONS

rl = xz4coshT +zgsinh7, ), =, b#a,
AY = Al cosh T 4 Alsinh T,
AY = Adcosht + Alsinh, A = AL, b#a.

3) The group of scale transformations (generator X = 7.D)

r_ T di _ 4d _—T
r, =xue, A, =Aje .

4) The group of special conformal transformations (generator X = 7, K*)

zy, = (2 — Tuzya’)o ! (),

AZ/ = (gw,a(a:) +2(xpT — 2Ty + 270 2T,

— 2o X T T, — TaTo‘me,,)Ad”.
5) The group of gauge transformations (generator X = Q)
T, = T,
Al‘i’ = Aﬁ cosw + EdbcAch sinw + QndnbAZ sin?(w/2)
e (/290w + (1/2)(@un) sinw + £gpe(Dun)nc ).
In the above formulae o(z) = 1 — 7,3% + (747%)(v527), n% = n%(x) is the
unit vector determined by the equality w®(z) = w(z)n®(z), a =1,2,3.
Using Theorem 2.4.1 it is not difficult to obtain formulae for generating

solutions of YMEs by the above transformation groups. We adduce these
omitting the derivation (see also [134]).

1) The group of translations
Al(z) = uy(x + 7).
2) The Lorentz group

Aﬁ(m):a#ug(a-x,b~x,c-a:7d-:c)+buucf(a-9:,b-a:,c-x,d~:13)

tepud(a-z, ba, coa,d-x) +dubla-2, b2, cox, d-x).
3) The group of scale transformations

d _ d
A () = eTug (zeT).
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4) The group of special conformal transformations
AZ(.’E) = (gw,a_l(x) + 20_2(x)($,,7'u — 2Ty + 2702%, Ty
— 2o X7, T, — TaTo‘ac#x,,))ud” ([:U — T(:):a:ca)]a_l(x)).

5) The group of gauge transformations

d, b

Aﬁ(:ﬂ) = uz cosw + 6dbcuch sinw + 2nn UZ sin®(w/2)

e (/2900 + (1/2)(@un) sinw + £gpe(Dun)nc ).

Here uﬁ(x) is a given solution of YMEsS; Aﬁ(az) is a new solution of YMEs;
T, T, are arbitrary parameters; a,, b,, c,, d, are arbitrary parameters sat-

isfying the equalities

ayal' = =b, b = —c ' = —d,d" =1,

aub'u — auc'u = audu = bMC“ = b'ud'u‘ = Cud# — 0

In addition, we use the following notations: z+7 = {z,+7,,4 =0,...,3},
a-xr=a,x".

Thus, each particular solution of YMEs gives rise to a multi-parameter
family of exact solutions by virtue of the above solution generation formulae.

3. Ansatze for the Yang-Mills field. Let us recall that the key idea of the
symmetry approach to the problem of reduction of PDEs is a special choice of
the form of a solution. This choice is dictated by a structure of the symmetry
group admitted by the equation under study.

In the case involved, to reduce YMEs by N variables we have to construct
Ansitze for the Yang-Mills field Af(z) invariant under (4 — N)-dimensional
subalgebras of the algebra with the basis elements (7.1.2), (7.1.3). Since we are
looking for Poincaré-invariant Ansétze reducing YMEs to systems of ODEs, N
is equal to 3. Due to invariance of YMEs under the conformal group C(1,3)
it is enough to consider only subalgebras which cannot be transformed one
into another by a group transformation from C(1, 3), i.e., C(1, 3)-inequivalent
subalgebras. Complete description of C(1, 3)-inequivalent subalgebras of the
Poincaré algebra was obtained in [100].

According to Theorem 1.5.1 to construct an Ansatz invariant under the
invariance algebra having the basis elements

Xa = Eoplw, )3y + (2, Ay, a=1,2,3, (7.1.4)

where A = {Af,, a=1,2,3, p=0,...,3}, we have
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e to construct a complete system of functionally-independent invariants of
the operators (7.1.4) Q = {wj;(z,A4), j=1,...,13};

e to resolve the relations
Fj(wi(z, 4),... w3, 4)) =0, j=1,...,12 (7.1.5)
with respect to the functions Aj.

As a result, we get an Ansatz for the field Aj(x) which reduces YMEs to
the system of twelve nonlinear ODEs.

Remark 7.1.1. Equalities (7.1.5) can be resolved with respect to A}, a =
1,2,3, u=0,...,3 provided the condition

rank ||, (2, A)|[2_ g = 3 (7.1.6)

holds. If (7.1.6) does not hold, the above procedure leads to partially-invariant
solutions [235], which are not considered here.

In Section 1.5 we have established that a procedure of construction of
invariant Ansétze could be substantially simplified if coefficients of operators
X, have the structure:

gau = gau(x)7 ﬁzu = PZZV(IU)AIC, (7.1.7)

(i.e., basis elements of the invariance algebra realize a linear representation).
In this case, the invariant Ansatz for the field Af () is searched for in the form

A () = Qb (2) B (w(x)). (7.1.8)

ab

@ (x) are particular

Here B%(w) are arbitrary smooth functions and w(z),
solutions of the system of PDEs

gauwxﬂ = 07 (fauay - ,OZZQ) gé% = 0, (719)

where p=0,...,3, a,b,d =1,2,3.
The basis elements of the Poincaré algebra P,, Jug from (7.1.2) evidently
satisfy conditions (7.1.7) and besides the equalities

UZM = pauu(x)Agv (7.1.10)

hold.
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This fact allows further simplification of formulae (7.1.8), (7.1.9). Namely,
the Ansatz for the Yang-Mills field invariant under a 3-dimensional subalgebra

of the Poincaré algebra with basis elements belonging to the class (7.1.4),
(7.1.10) should be looked for in the form

Al () = Quu(2) B (w(x)), (7.1.11)

where BY(w) are arbitrary smooth functions and w(x), Q. (x) are particular
solutions of the following system of PDEs:

gauwitu = 05 a = ]-7 27 37 (7112)
gaaaocQuV - paanau =0, a=1,2,3, pu,v=0,...,3. (7.1.13)

Thus, to obtain the complete description of C(1,3)-inequivalent Ansétze
for the field Aj(x) invariant under 3-dimensional subalgebras of the Poincaré
algebra, it is necessary to integrate the over-determined system of PDEs
(7.1.12), (7.1.13) for each C(1,3)-inequivalent subalgebra. Let us note that
compatibility of (7.1.12), (7.1.13) is guaranteed by the fact that operators
X1, X5, X3 form a Lie algebra.

Consider, as an example, a procedure of constructing Ansatz (7.1.11) in-
variant under the subalgebra (P;, P, Jo3). In this case system (7.1.12) reads

Wy = 07 Wyy = 07 ToWzs + T3Wgy = 07

whence w = 23 — 23.

Next, we note that the coefficients p1,,,, p2,, of the operators Py, P are
equal to zero, while coefficients p3,, form the following (4 x 4) matrix

3
HP&LV”H,V:Q =

_ o O O

0 0 1
0 0 0
0 0 0
0 0 0

(we designate this constant matrix by the symbol 5).
With account of the above fact, equations (7.1.13) take the form

Qxl =0, sz =0, xOng + xSon -5Q =0, (7~1'14)

where Q = ||Quy(x)||i v—o 18 a (4 x 4)-matrix.
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From the first two equations of system (7.1.14) it follows that @ = Q(zo,
x3). Since S is a constant matrix, a solution of the third equation can be
looked for in the form (see Section 2.2)

Q = exp{ f(zo, 73)S}.

Substituting this expression into (7.1.14) we get

(fL'szg + $3f$0 - 1) exp{fS} =0
or, equivalently,
xOfm + $3fxo =1,
whence f = In(xg + z3).
Consequently, a particular solution of equations (7.1.14) reads

Q = exp{ln(zo + x3)5}.

Using an evident identity S = S we get the equalities:

o n

@ = 3 2 (o +a3)" = 1+5(ao +09) +

n=0

silinGao + z3)]°

n > + S2< : [In(zo + x3)]? i [In(zo +23))" + .. )

_|_
= I + Ssinh[In(zo + x3)] (cosh In(xg + x3)] — 1)7

where [ is the unit (4 x 4)-matrix.

Substitution of the obtained expressions for functions w(z), Q. () into
(7.1.11) yields the Ansatz for the Yang-Mills field Af(x) invariant under the
algebra (Pi, Py, Jo3)

A% = B§(x? — 23)coshln(xg + x3) + B (2 — x3) sinhIn(zg + x3),
AY = B{(z-2%), A% = BS(z2—23), (7.1.15)
AY = B§(x} — 23)coshln(xg + z3) + BS(x — x3) sinhIn(zq + x3).

Substituting (7.1.15) into YMEs we get a system of ODEs for functions
Bj. 1f we succeed in constructing its general or particular solution, then sub-
stituting it into formulae (7.1.15) we get an exact solution of YMEs. But such
a solution will have an unpleasant feature: independent variables z, will be in-
cluded into it in an asymmetric way. At the same time, in the initial equation
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(7.1.1) all independent variables are on equal rights. To remove this drawback
we have to apply the solution generation procedure by transformations from
the Lorentz group. As a result, we will obtain the Ansatz for the Yang-Mills
field in the manifestly-covariant form with symmetric dependence on /.

In the same way, we construct the rest of Ansétze invariant under three-
dimensional subalgebras of the Poincaré algebra. They are represented in the
unified form (7.1.11), where

Quv(z) = (aya, —d,d,)coshby + (d,a, — dyay,)sinh 6y
+2(ay, + d,,)[(01 cos O3 + O sin 03)b,, + (02 cos O3
—0y sinb3)c, + (63 + 03)e % (ay, +dy)] + (buc, (7.1.16)
—byc,)sinfs — (cuc, + bub,) cos B3 — 2e~%
X (01by + b2cy)(ay + dy)

and 6,(x), w(x) are some functions whose explicit form is determined by the
choice of a subalgebra of the Poincaré algebra AP(1,3).

Below, we adduce a complete list of 3-dimensional C(1,3)-inequivalent
subalgebras of the Poincaré algebra following [100]

= (P, P1, P5); Lo= (P, Py, Ps3);
= (Po+ P3, P, Ps); Ly = (Jo3 + aJiz, P1, P»);
= (Jos, Po + Ps, P1); Le = (Jo3s + P1, Py, P3);
L7 = (Jos + P1, Py + P3, P»); Lg = (Ji2 + aJos, Po, P3);
= (Ji2+ Po, P1, P5); Lo = {(Jia+ P35, P, P); (7.1.17)
=(Jiu+ PR — P, P, P»); Lio=(G1, Po+ P, P+ aP);
Li3=(Gi1+ P2, Py + P3, P1); Liy=(Gi1+ Py — P3, Py + P3, P»);
Lis =(G1+ Py— P, Ph+ P3, Py + aPs); Lig = (Ji2, Jo3, Po + Ps);
= (G1+ P, Go — PL+aP, Py + P3);  Lig = (Jos, G1, P»);
Lig = (G1, Jos, Po+ P3);  Loo = (G1, Jo3 + P2, Po + P3);
= (G1, Jos + P +aPs, P+ P3); L2 = (G1, Ga, Joz + aJi2);
= (G1, Py + P3, P1); Loy = (J12, P1, P»);
Lzs = (Jo3, Po, P3); Lo = (J12, J13, J23); Loz = (Jo1, Joz2, J12).
Here G; = Jo; — Jig, i =1,2, a € RL.

P(1,3)-invariant Ansétze for the Yang-Mills field A}(z) are of the form
(7.1.11), (7.1.16), functions 6, (x), w(x) being determined by one of the fol-
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lowing formulae:

Ly : 0,=0, w=d-ux

Ly : 0,=0, w=a-ux;

Ly : 0,=0, w=k-u;

Ly : p=—-lnlk-z|, 01=0,=0, 03=aln|k-z,
w=(a-x)?~(d-2)%

Ly @ Op=—-Inlk-z|, 01 =0=03=0, w=c-u;

Lg : Og=—-b-x, 01=0=03=0, w=c-x;

L7 : p=—-b-z, 6=0,=05=0, w=b-x—Inlk-z|;

Lg : 0p=caarctan(b-z/c-x), 61 =02=0, 03=—arctan(b-x/c-z),
w=(b-x)?+(c-2)%

Ly : 6g=0,=6,=0, O3=—-a-xz, w=d-uz

Lig : 0p=60,=0,=0, O3=d-z, w=a-x

Ly : 0g=01=0,=0, 03=—(1/2)k-z, w=a-z—d-x

Lis @ 0o=0, 0, =(1/2)(b-z—ac-z)(k-2)"', 6y=03=0,
w=k- (7.1.18)

Lis @ 0p=02=05=0, 61=(1/2)c-x, w=k-u;

Liy @ Op=0=03=0, 0,=—(1/Dk-z, w=4b-z+ (k-z)%

Lis : 0g=02=03=0, 0,=—(1/)k-z, w=4(ab-z—c-x)
+a(k - x)%

Lig : Og=—Inlk-z|, 61=0=0, 603=—arctan(b-zx/c-x),
w=(b-2)?+(c-2)%

Liv ¢ 0=03=0, 61=(1/2)(c-z+(a+k-z)b-z)(1+k-2

X(a+k‘-x)>_l, 92:—(1/2)(b'm—c-wk-x)<1—|—k-a:

x(a—i—k-x))_l, w=k-x
Lig @ Og=—Inlk-z|, 0= (1/2)0b-x(k-2)"', 6y=10;3=0,
w=(a-2) =0 -2)%—(d-z)%
Lig : 0p=—Inlk-z|, 6= b-x(k-z)7t, Gy=03=0 w=c-m;
Ly : Og=—Inlk-z|, 6= b-a(k-z)7t, 6y=03=0,
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Loy @ 0p=—TInlk-al, 01:é(b-az—ln|k-x|)(l€-w)_1, N —
w=all|k -z|—c-x;

Ly : Og=—Inlk-z|, 6= 1/2)b-x(k-2)7t, 6y=(1/2)c-z(k-z)7},
O3=alnlk-z|, w=(a-2)>— (b -2)*=(c-2)*—(d-z)°

Here ky, = a, +d,, p=0,...,3.

Note 7.1.2. Basis elements of subalgebras Log — Loy do not satisfy (7.1.6).
That is why Ansétze invariant under these subalgebras lead to partially-
invariant solutions and are not considered here.

4. Reduction of the Yang-Mills equations. In order to reduce YMEs to
ODE it is necessary to substitute Ansatz (7.1.11), (7.1.16) into (7.1.1) and
convolute the expression obtained with Q¥ (x). As a result, we get a system
of twelve nonlinear ODEs for functions B%(w) of the form

ku7§7 + lwév + mwév + eguwéy x BY + 6huwglj x B (7.1.19)
+e?B, x (B x B,) = 0.
Coefficients of the reduced ODE are given by the following formulae:

kuy = guyF1 — GuGy,
y = gunF2+ 25, — GuHy — GuG,,

Myy = Ry — GuH,, (7.1.20)
Gy = JurGu + GG — 290G,
th”W = (1/2)(9HWHV - g#VHW) - TMV’Y?

where g,,, is a metric tensor of the Minkowski space R(1,3) and Fi, F», G,
..+, Ty~ are functions of w determined by the relations

Fy = We, Wk, Fy = Dw, Gu = Qauwxav Hu = Qauxaa
S/uz = Q?;Qayl’gwgg57 R/LV = QﬁDQam (7121)
T,uy'y = QgQanﬁ Q/B'y + QSQO&’YIQ Qﬁ,u + Q?;Qauac@ Qﬁu-

Substituting functions @, (z) from (7.1.16), where 6,(x), w(z) are de-
termined by one of the formulae (7.1.18), into (7.1.20), (7.1.21) we obtain
coefficients of the corresponding systems of ODEs (7.1.19)

Ly ¢ Ry = =gy — dpdy, Ly = myy =0,
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Guvy = Guy v + Goydy — 29 dy,  hywy = 0;
Loy kuy = guy — apay, Ly = myy =0,
Gy = Guy v + Gy @y — 20,0y, Py = 0;
Ls kpy = —kpky, lupy =muy =0,
Guvy = Gurkv + Gy kp = 29uwky, Py = 05
La kuy = 491w — apay (W +1)* = dyudy (w — 1) = (audy + aydy)
X(W? 1), Ly = 4(9#7 + a(bucy — Cubv)> = 2kp(ay — dy + kyw),
Myy =0,  Guuy = e(gw(a,, —dy + kyw) + guy(ay — dy + kuw)
—2gu(ay — dy + kw“))a huvy = (€/2)(gurkv — guvky) + af((bucv
—Cuby )by + (byey = cuby )y + (bycy — vau)k‘u)Q
Ls kuy = =guy — cuCy,  luy = —€cuky,  myy =0,
Guvy = Gy v + GonCu = 20 Cys = (€/2)(gurkn — Guvky);
Le Kuy = =Guy = CuCys by =0, My = —(apay — dydy),
Guvy = GpyCo + GuyCu — 20 Cyy hyy = — ((audv — aydy )b,
+(aydy — aydy)b, + (ayd, — audy)by);
Lq Ky = —guy — (b — €kpe)(by — ekye”), Ly = —2(audy — aydy)
+eeky (by — ekpe®),  myn = —(auay — dudy),
Gy = Gy (by — €kpe®) + guy (b — €kpe®) — 29, (by — €ke®),
Py = *<(audv — aydy )by + (avdy — aydy)by + (aydy, — aud'y)bv)§
Lg kpy = —4w(guy + cucy)s Ly = —4(gpy + cucy),
My = —w™! (O‘Z(auav — dudy) + b#bW)’ Gy = 2012 (g
FGrC = 2000y Py = (1/2)w™ 2 (guy00 = guey) + aw™/?
X ((aud,, — aydy)by + (aydy — dyay)by, + (aydy, — audy)bl,);
Lo Ry = =Guy — dpdys Ly =0, My = buby + cpcy,
Gy = Guy Ay + Guydy — 29 dy, Ay = ay(bucy — cuby)
+au(bucy — cuby) + ay(bycy — cyby);
Lo Kuy = Gy = Aty Ly = 0, myy = —(buby + cucy),

Guvy = Gu~av + gu~ay, — QQW/CLW, hMV’Y = —(dry(bMCy - Cuby)
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Ly

Ly

L5

Lig

Fdu(buey — cuby) +dy(bycy — vau))§

Ky = —(ap — dp)(ay — dy), Ly = =2(bucy — cuby),  myy =0,
Gy = Guy(aw — du) + gunap — dp) = 29 (ay — dy),  hyy =

= (1/2) (ky (bues = eub) + hulbuey = euby) + ki (byc = e5b) );
kuy = —kuky, Ly = —w 'kuky,  muy = —a*w k,k,,

Gy = Gk + Gk = 20k, Py = (/207 (gurk = guvks)
0w ((kuby = kubu)ey + (kuby = kyby)ep + (kyby — kuby)e, );
Ky = —kpky,  luy =0, myy = —kyky,

Yuvy = Guvkv + Gorky — 29ky, Py = _((kubv — kyby)ey
+(kyby — kyby)cy + (kyby — kubv)CV)§

Ky = =16(guy + buby), Ly = My = hyy = 0, (7.1.22)
Guvy = 4(Guybv + Guybu — 2gwby);

Ky = _16<(1 +0%) gy + (e — abp)(cy — O‘bv))a

by = Myy = Py = 0, Gy = *4(9/W(Cu —aby)

+9uy(cp — aby) = 29 (cy — abv))?

Fuy = —4w(guy + cucy)s  luy = =gy + cucy) — 26‘*’1/2]‘77%7
Muy = _W_lbubw Guvy = QWI/Q(QMCV + GuyCu — 29 Cy),

By = (1/2) (e(Gurbir = Guurkiy) + @™ (g0 — gpucy) )

Ky = =kuky, iy = —(2w + @) (W(w + )+ 1)]43#]‘5%

My = Ak (14 0@+ 0)) 0 G = Gk + G — 20k,
hywy = (1/2) (2w + a)(l + w(w + a)>_1(g,,yk:,, — Guvky)
~2(1+w(w+ oz))_l ((kuby = kubu)es + (kuby = kyby)es

+(kyby — kubv)cu>;
Ky = dwgyy — (kuw + ap — dp)(kyw + ay — dy),  luy = Ggyy
+A(audy = aydy) =3k (kpw + ap —dy), - My = —kyksy,

Gy = e(gw(k,,w +ay, —dy) + guy(kyw + a, — dy)
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=29 (kyw + ay — dv))v Py = €(Guyky — Guvky);
Lig o Fuy = —Guy = CuCyy  luy = 2€kycp,  myy = —kuky,

Gy = GuyCv + GuyCu = 29y, Py = €(Guyky — guvky);
Lo o Ky = —guy — (6 — €kp)(cy —€ky), Ly = 2¢kycp — 2k, ky,

Myy = —kpky, Gy = guy(€ky — ¢v) + gury(eky — cp)
=290 (eky — ¢y),  hpuy = €(Gurky — guvky);

Lov + kuy = —guy — (cu — aeky)(cy — aeky), Ly = 2(ekycy — akyky),
Muy = =kuky,  Guy = —guy(cv — aeky) — gy (e — aeky)

+2g(cy — aeky),  huy = €(Guyky — guksy);
Loy i kyy =4wguy — (ap — dy + kuw)(ay — dy + kyw),

luy = 4(29m +albucy = cuby) — ayay +dydy — Wkukv)v

My = =2kukys Guny = E(qu(av —dy + kyw) + gur(ay — dy
+huw) = 29 (ay — dy + kww)), Py = (3¢/2)(guvky — guvky)
—ear(ky (Bucs = eub) + kulbuey = euby) + ki (byc — eyby) );

wheree=1fora-x+d-z>0ande=—-1fora-x+d-x <0.

5. Exact solutions of the Yang-Mills equations. When applying the
symmetry reduction procedure to the nonlinear Dirac equation, we succeeded
in constructing general solutions for most of the reduced systems of ODEs.
In the case considered we are not so lucky. Nevertheless, we obtain some
particular solutions of equations (7.1.19), (7.1.20), (7.1.22).

The principal idea of our approach to integration of systems of ODEs
(7.1.19), (7.1.20), (7.1.22) is rather simple and quite natural. It is reduction
of these systems by the number of components with the aid of ad hoc substi-
tutions. Using this trick we have constructed particular solutions of equations
1,2, 5,8, 14, 15, 16, 18, 19, 20, 21, 22 (o = 0). Below we adduce substitutions
for EM (w) and corresponding equations.

(1) B, = auéif(w) + buéag(w) + cué3h(w),
f—e2@+hr)f=0, §+e(f*—h?g=0,
h
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(8.1)

(8.2)

(14.1)

(14.2)

(15.1)

h+e2(f% + g*)h = 0.

By = kyéy f(w) + buéag(w),

f=egdf=0, j=o.

(under o = 0) éu = ku€if(w) + buéag(w),

dwf +4f —e2¢*f =0, 4dwj+4§—w lg=0.

B, = a,@1f(w) + d,eag(w) + buézh(w),

dwf +4f — Pw  f — 2aew Y2gh + e2(h* 4+ ¢*)f =0,

Awi + 4§ + *w g+ 20ew V2 fh 4 2 (f% — h?)g = 0,

Awh 4 4h — w™ h + 20w 2 fg + €2(f? — g?)h = 0.

B, = 0, f(w) + d,éag(w) + cuésh(w),

16f —e2(h2 +¢°)f =0, 16§+ e*(f>—h?)g=0,

16h + 2(f2 — g )h = 0.

BZ = kuéif(w) + cufag(w), (7.1.23)
16f —e2¢’f =0, §=0.

B, = 0,1 f(w) + dueag(w) + (1 + o) 7Y% (e, + b,)ésh(w),
16(1+a?)f —e?(h? + ¢*)f =0,
16(1+a®)g+ €*(f* = h?)g =0,

16(1 4+ o®)h + 2(f2 — g¥)h =
B, =k f(w)+ (1+a®) 2 (ac, + b,)éag(w),
16(14+a?)f —e2fg®> =0, §=0.

By, = k&1 f(w) + buéag(w),

dwf +4f —e2¢*f =0, 4dwj+4§—w tg=0.
By = buéi f(w) + cuéag(w),

4wf+6f+62g2f =0, 4wg'+6§}—|—62f29:0.
By = kué1 f(w) + buéag(w),

f=eg’f=0, j=0.

By = kué1 f (@) + bufag(w)

f-€eg’f=0, j=o.

B, = kué1 f (@) + bufag(w),

f=egdf=0, j=o.

(under a = 0) éu buerf(w) + cueag(w),

o
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dwf +8f 4+ €2g>f =0, Adwi+ 8+ ef2g=0.

In the above formulae we use the notations €; = (1,0,0), € = (0,1,0),
és = (0,0,1).

Thus, combining symmetry reduction by the number of independent vari-
ables and reduction by the number of dependent variables we reduce YMEs
to rather simple ODEs.

Next, we will briefly consider a procedure of integration of systems of
nonlinear ODEs (7.1.23).

Substitution f = 0, g = h = u(w) reduces the system of ODEs 1 from
(7.1.23) to the equation

il = e*u’, (7.1.24)

which is integrated in elliptic functions [26, 197]. In addition, ODE (7.1.24)
has a solution which is expressed in terms of elementary functions u = v/2(ew —
C)7 !l C eRL

ODE 2 with f = g = h = u(w) reduces to the form ii + 2e?u3 = 0. This
equation is also integrated in elliptic functions [26, 197].

Integrating the second equation of system of ODEs 5 we get ¢ = Ciw +
Cy, C; € R If ¢y = 0, then the constant Cs can be neglected, and we may
put Cy = 0. Provided C; # 0, the first equation from system 5 reads

f—e2Ccqr2f=o. (7.1.25)
The general solution of ODE (7.1.25) is given by the formula

fw) = w22y 4((ieC1/2)w?).

Hereafter, we use the notation Z,(w) = C3J,(w) + C4Y, (w), where J,, Y,
are Bessel functions, C3, Cy are arbitrary real constants.

In the case C7 = 0, Cy # 0 the general solution of the first equation from
system 5 reads f = Cscosh Coew + C4 sinh Coew, where C3, C4 are arbitrary
real constants.

At last, provided C; = Cy = 0, the general solution of the first equation
from system 5 has the form f = Csw + Cy, {C3,Cy} C RL.

The general solution of the second ODE from system 8.1 is of the form
g= Chw'? 4+ Cow™1/2, where Cy, Cy are arbitrary real constants.

Substituting the expression obtained into the first equation we get

4% f + dwf — 2(Crw + C2)2f = 0. (7.1.26)
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We cannot solve ODE (7.1.26) with C1C5 # 0. In the remaining cases its
general solution reads

a) C1 #0, Co =0
f = Zo((ieCr/2)w),

b) Cr =0, Cy £ 0
f _ 03(.()602/2 + 046()7602/2,

c)C1=0,Cy=0
f=Cslnw + Cy.

Here C3, Cy are arbitrary real constants.

We did not succeed in obtaining particular solutions of the system 8.2.
Equations 14.1 coincide with equations 1, if we replace e by e/4. Similarly,
equations 14.2 coincide with equations 5, if we change e by e/4. Next, equa-
tions 15.1 coincide with equations 1 and equations 15.2 with equations 5, if
we replace e by (e/4)(1 + a?)~1/2,

System of ODEs 16 coincides with the system 8.1 and systems 19, 20, 21
with the system 5. We did not succeed in integrating equations 18.

At last, the system 22 (under a = 0) with the substitution f = g = u(w)
reduces to the form

wii + 20 + (e*/4)u® = 0. (7.1.27)

ODE (7.1.27) is the Emden-Fowler equation which is integrated in terms
of elliptic functions (see, e.g. [197]). It has two classes of particular solutions
which are expressed in terms of elementary functions

u=e'w 2 uw=2V2C1e w+ )Y, € eRL

Substituting the results obtained into the corresponding formulae from
(7.1.23) and then into the Ansatz (7.1.16), we get exact solutions of the non-
linear YMEs (7.1.1). Let us note that solutions of the systems of ODEs 5, 8.1,
14.2, 15.2, 16, 19, 20, 21 satisfying the condition g = 0 give rise to Abelian
solutions of YMEs. We do not adduce these and present non-Abelian solutions
of YMESs only.

—

1) Ay = (&b ~|—€3c“)f(ed.$_>\)—1;
2) u:(ezb + e )Asn [(ev2/2)Md - ] dn [(ev/2/2)M\d - ]
< (en[(ev2/2)Ad-x))
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3) A= (@bt EeA(en(eAd o))

4) A, = (&b, + Ecy + Edy)hen (ev2)a - x);

5) A, =ikl -2 (e 1) 22y ((eA/2) (e 2)F) + Eabude -

6) A, = éikylk-2|7 (A cosh(edc - 2) + Ao sinh(edc - x) ) + Eb\;
) A, = akuZo((e)/2)[(b- 2)? + (- 2)%]) + Eabuc -z — eub- B)A;
8>1% Erku(M[(b-2)% + (- 2)N2 4 Aa(b- 2)? + (e~ )]~ ?)

Ex(buc-x —cyb- )N[(b-2)* + (c- )}

9) ,IM_{eg((1/8)[d — ku(k - 2)?) + (1/2)byk - ) + Ee pA
xsn((e)\\f/S )4b-x + (k- x2])dn(e)\\f/8 )40 - x + (k- )2])
x{cn ((e/\\[/8)[4b z+ (k x)Q])} ;

10) A, = {62((1/8)[ — ku(k-2)?) + (1/2)buk-x)+€3cu})\
x{en ((eA/)[b -z + (k- x2)}

1) A, ={e ((1/8)[ (k- 2)?) + (1/2)buk - ) + Sy 492

1

x(eldb-z+ (k- 2)%] = A
12) A, = &k, [4b -z + (k- 2)%)"/? Zl/4((ze)\/8)[4b z+ (k- 2)7?)
e, A4b -z + (k- 2)?);

13) A, = & ku{ A cosh((eA/4)[4b - @ + (k- 2)*] )+ Ao sinb ((eA/4)[4b - 2
+H >D}+@@x
14) A, = (@ldy — (1/8)ku(k - 2)? = (1/2)buk - 2] + Elacy + by

+(1/2)k,k - 2](1+ ?)~ 1/2})\sn ((eAv2/8)4(ab -z —c- x)
+a(k-2)(1+a?)~?) dn ((eAV2/8)4(ab -z — - 2) + a(k - 7)?]
x(1+ a2)71/2> {cn ((e/\\/§/8) [4(ab-2 —c-z) + a(k-1)?]

1

x(1+a?)72)}
15) A, = (&ldy — (1/8)ku(k - 2)2 = (1/2)buk - 2] + Efacy + by
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16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

+(1/2)kuk - 2)(1+ o) 72 ) {en (eA/DA(ab- 2 — ¢ 2) + alk - 2)?]
x(1+a2) )

T, = (@ldu — (1/8)ku(k - 2)2 = (1/2)buk - 2] + E[acy + by
+(1/2)k,k - x](1 + a2)_1/2)4\/§(1 + a?)1/? (e[4(ab ‘T —c-x)

+ak- a;)Q])_l; (7.1.28)
Ay =&k {[Aab-z — c- ) + alk - 2)2M22y 4 ((e)/8)A(ab - 2
—c-a)+a(k-2)2(1+ o) V) b+ dlacy + by + (1/2)kyk - ))
x[d(ab -z —c-z) +ak-z)?)(1 + a?) V2

/_fu = 51/@{)\1 cosh((e)\/4)(1 +a) V2 4(ab -z —c-x) + ok - a:)z])
+2 sinh((e)\/4)(1 +a®) V2 4(ab -z —c- ) + alk - a:)Q])} + é[acy,
b+ (1/2)kyk - 2] A1 4 2) 72,

Ay = ekl - 2|7 Zo((ie2/2)[(b - 2)? + (¢ 2)%]) + Ealbuc - @
—cub - )N

L, = @k lk -l (b 2)° + (e )72 + Ag[(b- 2)?

+(c- :E)2]_6/\/2> + & (buc-x —cub- )b 2)* + (c-2)*] 7Y

Ay = Ekulk -2 (e - 2) 22 (i) /2) (¢ w)] + Elb,

~kub-x(k-2) e @

A, = ekylk -z~ ()\1 cosh(Xec - ) 4+ Ag sinh(Xec - :c))

+&[by — kb - (k- 2) 7N

/_fu = eikylk -z (Ink- 2| —c- ;1:)1/221/4[(ie)\/2)(1n kx| —c-z)?]
+&by — kb x(k-z) A(In |k - 2| — ¢ - 2);

/_fu = Erkylk - x| ()\1 cosh[Ae(In |k - x| — ¢+ z)] + Agsinh[Xe(In |k - z|
—c- x)]) + &by — kb x(k - )TN

A, = ikylk 2| alnlk -z — ¢ 2)2Z) 4[(ier/2)(aln |k - 2|
—c-x)?|+ &by —ku(b-x—In|k-z|)(k-z) YNaln|k- 2| - c- z);
Ay = &kl 217! (M cosh[he(aln |k - ] — ¢ 2)] + Ao sinh[Ae
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x(alnlk- | = c-2))) +lb, — ku(b- o — k-2 (k- 2) 1A
27) A, = (é’l by — kub-x(k-2) ™Y + &fe, — kyc - 2(k - ;U)_l])e_l

(.CU : l‘>_1/2,
- { 2Nz - x4 A)

28) A, = (51 by — kb w(k - 2) Y] + ey — ke (k- x)_l])f(x L z),
wf+2f + (2 f3/4) = 0.

In the above formulae Z,(w) is the Bessel function; sn, dn, cn are Jacobi
elliptic functions having the modulus v/2 /2; A, A1, A2 = const.

Let us note that the solutions N 27 are nothing more but the meron and
the instanton solutions of YMEs [2]. In the Euclidean space the meron and
instanton solutions were obtained by Alfaro, Fubini, Furlan [68] and Belavin,
Polyakov, Schwartz, Tyupkin [29] with the use of the Ansatz suggested by 't
Hooft [278], Corrigan and Fairlie [60] and Wilczek [285].

Another important point is that we can obtain new exact solutions of
YMEs by applying to solutions (7.1.28) the solution generation technique. We
do not adduce the corresponding formulae because of their awkwardness.

6. Some generalizations. It was noticed in [157, 158] that group-invariant
solutions of nonlinear PDEs could provide us with rather general information
about the structure of solutions of the equation under study. Using this fact,
we constructed in [157, 158, 160] a number of new exact solutions of the non-
linear Dirac equation which could not be obtained by the symmetry reduction
procedure (see also Sections 6.1 and 7.2). We will demonstrate that the same
idea proves to be efficient for constructing new solutions of YMEs.

Solutions of YMEs numbered by 7, 8, 19, 20 can be represented in the
following unified form:

f_l'#:kug(k:'x, c-x)+buC_"(k-$, c- ). (7.1.29)

Substituting the Ansatz (7.1.29) into YMESs and splitting the equality ob-
tained with respect to linearly independent four-vectors with components k,,,
b, ¢, we get

1

—

1) wiwr = 0,
x C,, =0, (7.1.30)
3) By, + €Coy x €+ €2C x (C x B) = 0.

[\
S—
1
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Here we use the notations wg =k -z, w1 =c- .
The general solution of the first two equations from (7.1.30) is given by
one of the formulae

L. C = f(wo),
II. C = (wl + vo(wo))f(wo),
where vy, f are arbitrary smooth functions.

Consider the case C' = f (wo). Substituting this expression into the third
equation from (7.1.30) we have

Buyir + €fuy x f+ 2 f(fB) - f?B = 0. (7.1.31)
Since equations (7.1.31) do not contain derivatives of B with respect to

wp, they can be considered as a system of ODEs with respect to the variable
wi. Multiplying (7.1.31) by f we arrive at the relation (Bf )y, = 0, whence

Ef: U1 (wo)wl + ’Ug(wo). (7.1.32)

In (7.1.32) v1, v are arbitrary sufficiently smooth functions.
With account of (7.1.32) system (7.1.31) reads

éwlwl — 62f2§ = efx ﬁ,o — 62(v1w1 + vg)f

The above linear system of ODEs is easily integrated. Its general solution
is given by the formula

B = g(wo) cosh e|f|w1 + ﬁ(wo) sinh e|f|w1 + e_l\ﬂ_Qﬁ,O X f
x]ﬂ_Q(vlwl +vg)f,

where ¢, h are arbitrary smooth functions.
Substituting (7.1.33) into (7.1.32) we get the following restrictions on the
choice of the functions ¢, h:

(7.1.33)

fg=0, fh=0. (7.1.34)
Thus, provided éwl = 0, the general solution of the system of ODEs
(7.1.31) is given by formulae (7.1.33), (7.1.34). Substituting (7.1.33) into

the initial Ansatz (7.1.29) we obtain the following family of exact solutions
of YMEs:

—

A, = ku{g’coshe\ﬂca:—f—ﬁsinhe\ﬂc~a:+e_1|ﬁ_2fxf

+(vlc-x+vg)f}+buﬁ
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where f, g, h, v1, vg are arbitrary smooth functions of k- x satisfying (7.1.34),
an overdot denotes differentiation with respect to wg =k - x.

The case C = [w1 + vo(wo)] f(wo) is treated in a similar way. As a result,
we obtain the following family of exact solutions of YMEs:

zzfu = ku{(c~1‘+Uo)1/2(§J1/4[(i6/2)’ﬂ(C x—i—vo)]
+hYal(ie/2)|Fl(c 2+ v0)?]) + (vie- 2+ va) f

e 1172 % F) 4 bule @+ w) f,

where f, g, ﬁ, vy, V1, vg are arbitrary smooth functions of k - x satisfying
(7.1.34), J1/4(w), Y1/4(w) are the Bessel functions.

Another effective Ansatz for the Yang-Mills field is obtained if we replace
c-xin (7.1.29) by b - x

—

A, =k,Bk-z,b-2)+b,C(k-z,b-x). (7.1.35)

Substitution of (7.1.35) into YMEs yields the following system of PDEs
for B, C:

—

Buywy — Cunor —e(Bx Cy, 428, x C+C x Cy, ) +€2C x (C x B) = 0. (7.1.36)

We have succeeded in integrating system (7.1.36), provided C = fl (wo).
Substituting the result obtained into (7.1.35), we come to the following family
of exact solutions of YMEs:

Ay = ku{ @+l 1705 % F)cosel flb- @) + (7 +b-al /71 x )
1)+ e IR % F 4 (o w+ w0) f} + 0,

x sin(e| f]b -
where f, g, E, v1, Vg are arbitrary smooth functions of k - x.
In addition, we have constructed the following class of exact solutions of
YMEs:

ffu = ky&ou(b-2) + buéru(b- z),
where €1 = (1,0,0), €5 = (0,1,0); v is an arbitrary smooth function of k - x;

u(b - x) is a solution of the nonlinear ODE ii = e?u’, which is integrated in
elliptic functions.
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In conclusion of this section we will obtain a generalization of the plane-
wave Coleman solution [54]

Ay =k (Flk - 2)b- 2+ Gk - 2)e - 2). (7.1.37)

It is not difficult to verify that (7.1.37) satisfy YMEs with arbitrary f, g.
Evidently, solution (7.1.37) is a particular case of the Ansatz

/TH :k‘uﬁ(k:-:z:, b-x,c-x). (7.1.38)
Substituting (7.1.38) into YMEs we get

gwlwl + éu)gu}2 = 67 (7139)

where w1 =b-x, wy =c- .
Integrating the Laplace equations (7.1.39) and substituting the result ob-
tained into (7.1.38) we have

—

Auzku((j(hx,b-w+z’c'x)+[j(k-x,b-x—ic-x)).

Here U (k-x, z) is an arbitrary analytical with respect to z function. Choo-
sing U = (1/2)[f(k - ) — ig(k - z)]z we get the Coleman’s solution (7.1.37).

7.2. Non-Lie reduction of the Yang-Mills equations

In the present section we will obtain conditionally-invariant Ansétze for the
Yang-Mills field g“(x) utilizing the idea which enables us to construct non-Lie
(conditionally-invariant) Ansétze for the spinor field ¢ (z). This idea proves to
be fruitful for obtaining new reductions and constructing new exact solutions
of the SU(2) Yang-Mills equations (7.1.1) as compared with those found by
means of the symmetry reduction of YMEs.

1. Reduction of YMEs. We are looking for a solution of YMEs of the
form (7.1.11), (7.1.16) without imposing @ priori conditions on the functions
w(x), 0,(x). They should be determined from the requirement that substi-
tution of the Ansatz (7.1.11) into system of PDEs (7.1.1) yields a system of
ordinary differential equations for a vector function éu(w).
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By direct check one can become convinced of that the following assertion
holds true.

Lemma 7.2.1. Ansatz (7.1.11), (7.1.16) reduces YMEs (7.1.1) to a system
of ODEs iff the functions w(x), 0,(x) satisfy the system of PDEs

1) we,wen = F1(w),
2) Ow= F(w),
3) Qupa, = Culw).
4) Qapz. = Hu(w), (7.2.1)
5) QuQovaswys = Ruw(w),
6) QuOQu = S (w),
7) QuQavzsQpy + QpQarasQpu + QY Qapas Qs = Ty (W),
where 1, Fy, Gy, ..., T~ are some smooth functions, u,v,v=0,...,3.

And what is more, a reduced equation has the form

K BY + 1,y BY 4 myy BY + €qpuy BY x BY + ehyy BY x BY

L L L (7.2.2)
+e’B, x (BY x B,) =0,
where
kuy = gunF1 — GuGy,
lyw = guF2+2R,, -G H, —G,G,,
Myy = Spy — GuHy, (7.2.3)
q,LLI/'y == gM’YGV + gy'yGH - 2g/“/G'7’

Thus, to describe all Ansétze of the form (7.1.11) reducing YMEs to
a system of ODEs we have to construct the general solution of the over-
determined system of PDEs (7.1.16), (7.2.1). Let us emphasize that system
(7.1.16), (7.2.1) is compatible since Ansiitze for the Yang-Mills field Y,,(z)
invariant under the P(1,3) non-conjugate subgroups of the Poincaré group
satisfy equations (7.1.16), (7.2.1) with some specific choice of the functions
Py, Fy,..., T

Computations needed to integrate system of nonlinear PDEs (7.1.16),
(7.2.1) are rather involved. In addition, they have much in common with
those performed to obtain conditionally-invariant Ansétze for the spinor field
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(Theorem 6.1.1). That is why we present here only a principal idea of our
approach to solving the system (7.1.16), (7.2.1). When integrating it we use
essentially the fact that the general solution of system of equations 1, 2 from
(7.2.1) is known (see Section 2.1). With already known w(z) we proceed to
integration of linear PDEs 3, 4 from (7.2.1). Next, we substitute the results
obtained into the remaining equations and thus get the final form of the func-
tions w(x), 6,(x).

Before adducing the results of integration of system of PDEs (7.1.16),
(7.2.1) we make a remark. As a direct check shows, the structure of the
Ansatz (7.1.11), (7.1.16) is not altered by the change of variables

w—w =T(w), 6o— 6)=>0+Ty(w),

01 — 0) =01 + e <T1 (w) cos b3 + Tr(w) sin 6?3)7 (7.2.4)
0y — 95 =0y + efo (TQ(w) cosf; — T (w) sin 93), h

03 — 0{;’ =03+ Tg(w),
where T'(w), T,(w) are arbitrary smooth functions. That is why solutions of
system (7.1.16), (7.2.1) connected by the relations (7.2.4) are considered as
equivalent.

It occurs that the new (non-Lie) Ansétze are obtained only when the func-
tions w(x), 0,(x) up to the equivalence relations (7.2.4) have the form

Op=0,0& bz, c-x), (7.25)

w=w( bz, c- x),

where € = (1/2)k -z, k, =a, +dy, p,v=0,...,3.
A list of inequivalent solutions of system of PDEs (7.1.16), (7.2.1) belonging
to the class (7.2.5) is exhausted by the following solutions:

1) 6p=03=0, w=(1/2)k-z, 61 =wo(§b z+wi({)c =
O = wa(§)b -z +ws(§)c-x

2) w=b-z+wi(f, (c x + wa (€ )
0, (1/4)wa(§), 1,2, 63=0, (7.2.6)

3) O=T(), O3=wi(§), w=b-zcoswy+c-xsinw +w(§),
6, = ((1/4)(56T +T)(b- zsinwy — ¢-zcoswi) + wg(ﬁ)) sin wy
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4) 6y =0, 65=arctan ([c cx+wa(E)][b-x+ wl(f)]_l),

+(1/4) (u')l(b ~xsinw) —¢-xrcoswy) — u')g) cos wi,

Oy = —((1/4)(66T +T)(b- zsinw; — ¢z coswi) + w::,(f)) oS w1

+(1/4) (wl(b ~xsinw; — ¢ xcoswy) — 11'}2) sin wy;

‘9(1 = *(1/4)1011(5)7 a=1,2,
w= ([b rtwi (@ + ez + w2(§)]2)1/2.

Here o # 0 is an arbitrary constant, e = +1, wp, wy, we, w3 are arbitrary
smooth functions of £ = (1/2)k -z, T = T(§) is a solution of the nonlinear

ODE

(T +eeT)? +ui? = %e®T, »eRL

(7.2.7)

Substitution of the Ansatz (7.1.11), where Q. (z) are given by formulae
(7.1.16), (7.2.6), into YMEs yields systems of nonlinear ODEs of the form
(7.2.2), where

1)

by = —(1/8)kpky, Ly = —(wo + w3 )k,
My = —4 (Wi + wi +wi + w3)kuky, — (o + 13)k, k-,

Quvy = (1/2)(9M7kl’ + gV’YkN - 29“1,]{7),

Py = (wo + w3)(gurkv — Guvky) + 2(w1 — wo) ((k’ubv — kubp) cy

+H(bucy = bucu)ky + (cuky — Cvku)bv)3

kuy = —Guy = bubyy Ly =0, myy = —a*(auay — dudy),

Quvy = Guybv + Guyby — 29,0+,

Py = a((a#d,, —aydy)ey + (ducy — dycp)ay + (cpay — c,,au)dy);

k,uf}’ == _guf\{ - b,u,b’ya l,LL’Y = _(6/2)b/—’4k7’
Muy = —=(e/D)kuky,  QGuy = Guyby + Guyby — 2guby,
h;w'y = (5/4)(9H’YkV - gl“’k’Y);

kuy = =Gy = bubys  luy = =0 (guy + byby),
Muy = _‘U_chcw Quvy = GuryOv + Gurbp — 29,0y,
h;wv = (1/2)&)_1(9“717,/ - gMVb’Y)'

(7.2.8)



7.2. Non-Lie reduction of the Yang-Mills equations 327

2. Exact solutions of the Yang-Mills equations. Systems (7.2.2), (7.2.8)
are systems of twelve nonlinear second-order ODEs with variable coefficients.
That is why there is a little hope to construct their general solutions. But it is
possible to obtain particular solutions of system (7.2.2) with coefficients given
by formulae 2—4 from (7.2.8).

Consider, as an example, system of ODEs (7.2.2) with coefficients given
by the formulae 2 from (7.2.8). We look for its solutions in the form

B, = k@1 f(w) + buéag(w), fg#0, (7.2.9)

where €1 = (1,0,0), € = (0,1,0).
Substituting the expression (7.2.9) into the above mentioned system we
get
f4+®=e2g®)f=0, fg+2fg=0. (7.2.10)

The second ODE from (7.2.10) is easily integrated
g=M2 XeR' N#£0. (7.2.11)

Substitution of the result obtained into the first ODE from (7.2.10) yields
the Ermakov-type equation for f(w)

fHa?f—eA2f3 =0,
which is integrated in elementary functions [197]
1/2
f= (04_202 + a7 2(C* = 2222 sin 2|a|w) / . (7.2.12)

Here C' # 0 is an arbitrary constant.
Substituting (7.2.9), (7.2.11), (7.2.12) into the corresponding Ansatz for
A, (x) we get the following class of exact solutions of YMEs (7.1.1):

/YM = éikyexp (—ac-x — aws) (a_202 +a2(Ch = a?e?A2)1/2
1/2
x sin 2|al|(b - x + wl)) / + 52)\(0(_202 + a7 2(Ch — a2e?A2)1/?
-1
xsin2lal(b-z+wi)) (b + (1/2)kuin).

In a similar way we have obtained five other classes of the exact solutions
of the Yang-Mills equations

ffu = é’lkue*T(b-xcoswl+c-xsinw1+w2)1/2Z1/4((ie)\/2)(b-a:coswl
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+c- zsinw; —|—w2)2> + éA (b-zcoswy + ¢ xsinwy + we)
X (Cu coswy — by sinwy + 2k, [(1/4) (e’ + T)(b -z sinw;

—c-xcoswy) + ’LU3]);

1

A, = é’lkﬂe_T (Cl coshleA(b - x coswy + ¢ - xsinwy + wa)] + Ca sinh[eX
X (b-xzcoswy + ¢ xsinw + wg)]) + 52/\<Cu coswi — by, sinwy

+2ku[(1/4)(5eT +T)(b-zsinw; —c-zcosw) + wg]);

- 1/2
A, = é’lkue_T (Cz(b -xcoswy + ¢ rsinwy + wg)2 + /\2620_2) /
-1
+€2A<C2(b -xcoswy + ¢ rsinwy + w2)2 + )\2620_2)
X (bu coswy + ¢, sinwy — (1/2)k, w1 (b - sinw;
—c-xcoswy) — wz]);
Ay = @k Zo((ie)/2)[(b- 2+ wi)? + (-2 +w2)?]) + EA(cu(b- 2+ wr)

—bu(cz+ws) = (1/2)ky[in (- 2+ wy) — ia(b- z + wn)]);

1

Ay = @k (-2 +w)? + (e m +w) M2 4+ Co(b- 2+ wn)?
e m+ws)?"N2) 4 @A @+ wi)? + (e w + ws)? !
x(eulb- 2 +wi) = bu(c- @ +ws) = (1/2)kuliis (c - @ + wn)
—ty(b- z+wn)]).

Here Cy, Cs, C # 0, X\ are arbitrary parameters; wi, ws, ws are arbitrary
smooth functions of £ = (1/2)k -z, T' = T'(£) is a solution of ODE (7.2.7) and

Zs(w) = ClJS(w) + CQYS(Q)),
51:(1,0,0), 52:<07170)7
where Js, Yy are Bessel functions.
Thus, we have obtained broad families of exact non-Abelian solutions of
YMEs (7.1.1).

In conclusion of the section we will say a few words about the symmetry
interpretation of the Ansétze (7.1.11), (7.1.16), (7.2.6). Let us consider as an
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example the Ansatz determined by the formulae 1 from (7.2.6). As a direct
computation shows, the generators of a three-parameter Lie group leaving it
invariant are of the form

Ql = kaaaa
3
Q2 = bo 0y — 2{ [’wo(k#by — kl,bﬂ) + ’w2<ku0y — kl,cu)] ZACW}aAaH;

a=1

3
Q3 = ca0n — 2{[w1(k‘uby — kuby) +ws(kye, — kucy)] ZA‘“’}@AW.
a=1

Evidently, system of PDEs (7.1.1) is invariant under the one-parameter
group having the generator (7. But it is not invariant under the groups
having the generators (Q2, Q3. At the same time, the system of PDEs

— —

0,0" &, — 09,4, + e((0,4,) x A, —2(0,4,) x 4,

Q1 A,y = bado Ay + 2(wolkuby — kuby) + wa(kucy — kuey) ) A =,
QoA = calay + 2(wi(kuby — by + ws(kuey — kycy) ) A =0

is invariant under the above mentioned group. Consequently, YMEs (7.1.1)
are conditionally-invariant under the Lie algebra (@1, Q2, @3). It means that
solutions of YMESs obtained with the help of Ansatz invariant under the group
with generators @1, ()2, (X3 cannot be found by means of the classical sym-
metry reduction procedure.

As rather tedious computations show, the Ansédtze determined by the for-
mulae 2-4 from (7.2.6) also correspond to conditional symmetry of YMEs.
Hence it follows, in particular, that YMEs should be included into the long
list of mathematical and theoretical physics equations possessing nontrivial
conditional symmetry [97].
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APPENDIX 1

THE POINCARE GROUP
AND ITS REPRESENTATIONS

The Poincaré group P(1,3) is a group of linear transformations of the
Minkowski space R(1, 3) preserving the quadratic form s(z) = 23 —23—23—23.
We say that there is a representation of the group P(1, 3) in some linear space
H if the homomorphism of this group g — Ty into the set of linear operators on
H is determined, i.e., the product of the group corresponds to the product of
operators Ty, 4, = T, Ty, and the unit element of the group P(1,3) corresponds
to the identical transformation of the space H. If the representation space H
is infinite-dimensional, then it is assumed that the domain of definition of
operators Ty, Vg € P(1,3) is dense in H.

A representation is called irreducible if H contains no subspace invariant
with respect to operators T,, Vg € P(1,3).

Irreducible representations of the Poincaré group were described by Wigner
as early as 1939. It is known that the problem of description of representations
of the Lie group G can be reduced to description of representations of its
Lie algebra AG. An abstract definition of the algebra AP(1,3) is given by

commutation relations for the basis elements P, Jug
[Py, Pl =0, [Py, Jagl = i(guals — gupPu); (A.1.1)
[Jullu Jaﬂ] = i(gpﬂjua + gl/ow],uﬂ - guﬁJMa - g;wcjyﬂ)-

A homomorphism = — T'(z) of the algebra AP(1,3) into the set of linear
operators determined in some linear space H

az + by — aT'(z) + 0T (y),
[, y] = [T'(2), T(y)] = T(z)T(y) — T(y)T(x), (A.1.2)
{z,y} C AP(1,3), {a,b}C c!
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is called a representation of the Poincaré algebra AP(1,3).

Wigner’s results were supplemented by Shirokov [258] who was the first to
construct an explicit form of the basis elements of the algebra AP(1,3) for all
classes of irreducible representations. In many successive papers representa-
tions of this algebra in various bases were found (see, for example, [28]).

We adduce the formulae giving a complete description of irreducible repre-
sentations of the Poincaré algebra in the class of Hermitian operators following
[115, 116, 118].

According to the Schur’s lemma classification of irreducible representations
of the Lie algebra L is reduced to construction of the complete set of opera-
tors commuting with all basis elements z € L (such operators are called the
Casimir operators of the algebra L) and to computation of the spectrum of
their eigenvalues. Furthermore, each set of eigenvalues of all Casimir operators
corresponds to the one and only one irreducible representation [19].

Theorem A.1.1[118]. An arbitrary Hermitian representation of the Poincaré
algebra AP(1,3) can be realized by the following operators:

Py = po, Pu = pa,
- L. (7 +p)
J = I¥x +A TS o A13
P+ doq o ( )
. L AXp v (Fx i)
N = —po¥+ — (Aopop — AP —
0 p2 (00 )(p_|_ )

where j = (Jl,JQ,Jg), ]\7 = (Nl,NQ,Ng), Ja = (1/2)5achbC; Na = JOaa
a = 1,2,3, po, po are real variables connected by the relation py = £(C1 +
papa)l/z, e = £1, Cy is an arbitrary real number, x, = i0/0p,, a = 1,2,3,
p= (papa)l/z; Ao, A1, A2, A3 are matrices satisfying the commutation rela-
tions

(Ao, Aa] = i€abenpAe,

(A.1.4)
Aa, Ap] = iCreqpene o

and T = (n1,ng,n3) is an arbitrary unit vector.
The algebra (A.1.4) has two Casimir operators

I =XC + X+ 04+ )3, I = exp{2it)o}.

To obtain the explicit forms of matrices A, realizing an irreducible repre-
sentation of algebra (A.1.4) we choose the basis which consists of the complete
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set of eigenvectors of the commuting operators I;, I» and Ag. On designating
these vectors by the symbol |C1, Ca, A) we have
Mo|C1, Oz, A) = A|Cy, Ca, ),

1/2
(A1 £ iX2)[C1, O, ) = (1/2)(1 + n3) (02 — ChA\ £ 1))

-1
x|C1, Co, A 1) + (ng Fm1)? (2(1 + ng)) (A.1.5)

1/2
x(Co = AT 1)) TICL Co AT 1),
A3|C1, Ca, A) = —(A1 + A2)[C1, C2, A).
If the representation is irreducible, then the parameters C;, Cs take the
fixed values from the intervals enumerated below in formulae (A.1.6)
1) C1=m?>0, Cy=Cis(s+1), A=—s5 —s+1,...,s;
2) C1=Co=0, A=)\
3) C1=0, Cy=n*>0,

A=0, £1, £2, ... or A=£1/2 £3/2,...;
4) Cr=-n*<0, Co=—an?, —oco<a<—1/4, (A.1.6)
A=£1/2,£3/2,... or A=0, %1, £2,...;

Cr=-17<0, 0<Cy<(1/4)n?, X=0,+£1,42,...;
Cr=-n*<0, Co=—l(l+D)n% X=1+1,1+2,...;
Cr=-12<0, Co=—-I1+1)n? A=—-1-1,-1-2,...,

where s > 0 and ) are arbitrary integer or half-integer numbers, [ is a positive
integer or half-integer number satisfying the condition —(1/2) < | < 400
whose values in the irreducible representation are fixed.

Formulae (A.1.3)—(A.1.6) give all possible (up to the equivalence relation)
irreducible Hermitian representations of the commutation relations (A.1.1)
provided not all P, vanish. If P, = 0, p = 0,...,3, then algebra (1.1.31)
is isomorphic to the Lie algebra of the Lorentz group O(1,3). The theory of
representations of the algebra AO(1,3) is expounded with exhaustive com-
pleteness in [174].

Among all possible representations of the Poincaré algebra a specific role
is played by so-called covariant representations which are characterized by the
following form of the basis elements

Pu =DPu = iguuaua J;w =TuPy — TyPp + S/ux» (A17)
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where S, are constant matrices.
Necessary and sufficient conditions for operators (A.1.7) to realize a rep-
resentation of the Poincaré algebra are as follows:

[S;wa Soe,@] = i(guﬂsua + guaSuB - g/tozsy,@ - gVﬁS,ua)-

Let us note that operators (A.1.7) unlike those given by (A.1.3) realize a
reducible representation of the algebra AP(1,3). In addition, this representa-
tion is non-Hermitian if the matrices S, are finite-dimensional.

In what follows we consider the case of finite-dimensional matrices S,
since it is mostly used in applications.

It is straightforward to verify that the matrices

ja = (1/2)((1/2)2abeShe +iS0a)
o = (1/2)((1/2)zabeShe — iS0a)
satisfy the following commutation relations:
las Jb] = i€abedes  [Tas To] = i€abeTes  [das 5] = 0. (A.1.8)

As a basis of the space of a finite-dimensional irreducible representation
of algebra (A.1.8) we take the complete set of eigenvectors |j, m; T, n) of com-
muting operators juja, j3, TaTa, T3. In this basis the action of the operators
Ja and 7, can be represented in the form

jaja|jam;7-a n> = j(] + 1)|ja m;T, ’I’L>,
j3|j?ma T, n> = m|ja m;T, n>a
(i ija) |y mimom) = (3G +1)
12
_m(mi1)> ’Jvm:l:l;’rvn>u

. _ (A.1.9)

TaTald, m;T,n) = 7(7 + 1)|4,m; T, n),

73|j,m; T, n) = n|j,m;T,n),

(1 im)|jymi7n) = (r(r + 1)

1/2
—n(n 1)) |jmi 7,0 £ 1),

where j, m (7, n) are (half-) integer numbers, inequalities holding

—Jj<m<j, -T1<n<T
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Thus, irreducible finite-dimensional representations of the algebra AO(1, 3)
(A.1.8) are realized by matrices of the dimension (2j+1)(27+1) x (2j+1)(27+
1) with matrix elements (A.1.9). The above representations are denoted by
the symbol D(j, 7).

Using formulae (A.1.9) it is easy to check that on the set of solutions of
the Dirac equation (1.1.1) the representation D(1/2,0) @ D(0,1/2) is realized.

The Poincaré algebra has two principal Casimir operators

I, = P,P¢, I, =W, WH

where Wy = (1/2)eape Padbes Wa = (1/2) Pocabebe — EapePoJoc, whose eigenva-
lues are considered as the mass and the spin of a particle.

We say that the Poincaré-invariant equation describes a particle with the
spin s and the mass m provided its solutions satisfy identically the relations

Ly =m?),  Ip = s(s+ 1)m*y.

It is established by direct computation that solutions of the Dirac equation
satisfy the equalities I11) = m21), Ixp = (3/4)m?p, whence it follows that the
Dirac equation (1.1.1) describes a particle with the spin s = 1/2 and the mass
m.
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THE GALILEI GROUP
AND ITS REPRESENTATIONS

The Galilei group G(1,3) is a group of transformations of the four-dimen-
sional space R! x R? of the form

' = t+ro,
(A.2.1)
xl = Oy + vat + 14,

where ||9ab||2,b:1 is an arbitrary orthogonal matrix, v,, 7, are real parameters.

Since elements of orthogonal (3 x 3)-matrix can be expressed via three
parameters (for example, via the Euler angles), the group (A.2.1) is a 10-
parameter Lie transformation group.

It is worth noting that a condition of invariance of physical laws with re-
spect to coordinate transformation (A.2.1) is nothing else but the mathemati-
cal formulation of the Galilei relativity principle. This principle establishes an
equivalence of inertial reference frames. Therefore, the corresponding motion
equation has to be invariant under the Galilei group. In other words, some
representation of the Galilei group is to be realized on the set of solutions of the
equation in question. Consequently, to investigate wave equations invariant
under the group G(1,3) we have to know its representations.

As noted in the Appendix 1 the problem of description of representations
of the Lie group reduces to the study of representations of its Lie algebra and
besides we can restrict ourselves to irreducible representations.

An abstract definition of the Galilei algebra AG(1,3) with basis operators
Py, P,, Ju, G4, M is given by the following commutation relations

[P,WPV]:Ov [P/MM]:O?
[Jo, M] =0, [Ga M]=0,
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[Py, Go| = iPs, [Po, Jo) =0, (A.2.2)
[Pa; Gb] = 5abM7 [Pm Jb] = Z‘Eabcpm
[Gcw Jb] = Z.Eachca [Jm Jb] = Z.5achc

where u,v =0,1,2,3; a,b,c=1,2,3.

Note A.2.1. In Section 4.1 we designate the basis elements of the rotation
group Jo, a =1,2,3 as Jgup, a # b, a,b=1,2,3. These notations are related
by means of the formula

Jo = (1/2)5abc<]bc-

Let us note that the Lie algebra of the group (A.2.1) satisfies relations
(A.2.2) under M = 0.
The algebra (A.2.2) has three principal Casimir operators

C, = M,
Cy = (MJ—-PxGQq)7? (A.2.3)
Cs = 2MPy—- P,P,.

Following [114, 118] we give a realization of irreducible representations of

the Galilei algebra distinguished by a universal and quite simple form of the
generators of the group G(1,3).

Theorem A.2.1. [rreducible Hermitian representations of the Galilei algebra
AG(1,3) are numbered by numbers Cy, Ca, Cs (eigenvalues of the Casimir
operators (A.2.3)) which take the values
1) C3=m?>0, Cy=m?s(s+1), —o00o<C5< +0o0,
s=0,1/2,1,...;
2) Ci=0Cy=0, 03:—k2<0;
3) Ci =0, Cy= T2, C3 = —k% <0.

(A.2.4)

The explicit form of basis operators of an irreducible representation is
determined by the formulae

PO = Do, Pa = Da, (A25)
M = Cl = m,

0
Jo = _igabcpb?+)\ (A26)
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. 0 . 0 AbPe
Ga = —WPa7— —MM7— + EabcTo
dpo dpa (D)
e epyn A0 —AP)
P i)

where m is a fixed real number, )\, are matrices (A.1.4)-(A.1.6) and the vari-
ables pg, p, are connected by the relation

2mpo — papa = C3,

C3 being fixed too.

Let us give a brief characterization of the classes of irreducible representa-
tions enumerated in (A.2.4):

1) representations of the class I (m # 0, m? > 0) are characterized by
three numbers m, s and ey, where m and ¢y are arbitrary real numbers, s
is an integer or half-integer non-negative number. Such representations are
realized in the space of square-integrable functions f(p, \), where

A=—s,—s+1,..., s,

i.e., the dimension of f(p, A) with respect to the index A is equal to 2s+1. The
space of irreducible representation of the algebra AG(1, 3) is usually associated
with the position space of a free particle having the mass m, the spin s and
the internal energy e¢/2m;

2) representations of the class II are given by the pair of numbers

C3 < 0and Cy =0, 1/27 1,....

These representations are one-dimensional and are realized in the space of
square-integrable functions g(po, p).

Representations of the Galilei algebra of the class II are realized on the set
of solutions of equations describing fields with the zero rest mass, for example,
Galilei-invariant electro-magnetic field [212, 213];

3) representations of the class III are numbered by the pair of positive
numbers r2, k2. These representations are realized in the space of square-
integrable functions h(pg, p, A), where \ takes the infinite number of values

0, +1, £2,... or £1/2, £3/2,....

So far representations of the Galilei algebra of the class III have no appli-
cations in physics.
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The above considered classes of representations of the algebra AG(1,3)
exhaust all inequivalent non-Hermitian representations of this algebra if not
all P, are equal to zero.

Provided

P,=0, n=0,...,3,

the Galilei algebra is isomorphic to the Lie algebra of the Euclid group AF(3)
which is determined by commutation relations (4.3.4). The problem of com-
plete description of inequivalent irreducible representations of the Euclid alge-
bra is reduced to a purely algebraic problem which cannot be solved by already
known methods [118]. By the same reason, the problem of description of all
inequivalent covariant representations of the algebra AG(1,3) having the form
(4.3.3) is not solved yet.



APPENDIX 3

REPRESENTATIONS

OF THE POINCARE
AND GALILEI GROUPS
BY LIE VECTOR FIELDS

Given a fixed representation of a Lie transformations group G, the prob-
lem of description of differential equations invariant under the group G is
reduced with the help of the infinitesimal Lie method to integrating some
over-determined linear system of PDEs (called determining equations). But
to solve the problem of constructing all differential equations admitting the
transformation group GG whose representation is not fixed a priori one has

e to construct all inequivalent (in some sense) representations of the Lie
transformation group G,

e to solve the determining equations for each representation obtained.

And what is more, the first problem, in contrast to the second one, reduces to
solving nonlinear systems of PDEs. It has been completely solved by Rideau
and Winternitz [247], Zhdanov and Fushchych [307] for the generalized Galilei
group Ga(1,1) acting in the space of two dependent and two independent
variables.

Some new representations of the Galilei group G(1,3) were suggested
in [102]-[104],[144]. Yehorchenko [288] and Fushchych, Tsyfra and Boyko
[144] have constructed new (nonlinear) representations of the Poincaré groups
P(1,2) and P(1,3), correspondingly. A complete description of covariant rep-
resentations of the conformal group C'(n,m) in the space of n+m independent
and one dependent variables was obtained by Fushchych, Zhdanov and Lahno
[110, 164]. Tt has been established, in particular, that any covariant represen-
tation of the Poincaré group P(n,m) with max{n,m} > 3 in the case of one
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dependent variable is equivalent to the standard representation. But given the
condition max{n,m} < 3, there exist essentially new representations of the
corresponding Poincaré groups.

In this appendix we give a brief account of our latest results on classification
of inequivalent representation of the Euclid group F(3), which is a semi-direct
product of the three-parameter rotation group O(3) and of the three-parameter
Abelian group of translations 7°(3), acting in the space of three independent
x1,x2,x3 and n € N dependent uq,...,u, variables. Furthermore, we adduce
results on classification of representations of the Poincaré and Galilei groups
acting in the space of four independent xg,x1,72,z3 and n € N dependent
Ui, ..., Uy variables.

It is a common knowledge that investigation of representations of a Lie
transformation group G is reduced to study of representations of its Lie algebra
AG whose basis elements are first-order differential operators (Lie vector fields)
of the form

Q= ga(l" u)aﬂca + 772'(55’ u)aum (ASl)
where &,, 7, are some real-valued smooth functions on z = (xg,z1, 22, x3)
e R u = (up,ug, ...,up) € R”, 9, = %, Ou;, = 6%.’ a=0,...,3,i=
1,2,....n. ’ '

In the above formulae we have two kinds of variables. The variables
o, ...,xr3 and ui,us,...,u, will be referred to as independent and depen-

dent variables, respectively. Difference between these becomes essential when
we take into consideration partial differential equations invariant under the
Lie algebra AG.

Due to the properties of the corresponding Lie transformation group G
basis operators g, @ = 1,..., N of the Lie algebra AG satisfy commutation
relations

[Qa, Qo] =C5Qc, a,b=1,... N, (A.3.2)

where [Qq., Qb = QuQp — QpQ, is the commutator.

In (A.3.2) CS, € R are structure constants which determine uniquely the
Lie algebra AG. A fixed set of the Lie vector fields @, satisfying (A.3.2) is
called the representation of the Lie algebra AG.

Thus, the problem of description of all representations of a given Lie al-
gebra AG reduces to solving the relations (A.3.2) with some fixed structure
constants C¢, in the class of Lie vector fields (A.3.1).

It is easy to check that the relations (A.3.2) are not altered with an arbi-
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trary invertible transformation of variables x, u

y()é = fa m7u ) a - 07 A 737
(,u) (A.3.3)
vi = gi(x,u), 1=1,...,n,

where f,, g; are smooth functions. That is why, one can introduce on a set of
representations of a Lie algebra AG the following relation: two representations
Q1,...,Qn and Qf,...,Q)y are called equivalent if they are transformed one
into another by means of an invertible transformation (A.3.3). Since invert-
ible transformations of the form (A.3.2) form the group (called diffeomorphism
group), the relation above is the equivalence relation. It divides the set of all

representations of the Lie algebra AG into equivalence classes Ay, ..., A,. Con-
sequently, to describe all possible representations of AG it suffices to construct
one representative of each equivalence class A;, j =1,...,7.

Definition A.3.1. Set of first-order linearly independent differential operators
P,, J, of the form (A.3.1) is called the Euclid algebra AFE(3) if they satisfy the
following commutation relations:

[Pav Pb] = 07 [Jm Pb] = 5abcPCa [Jaa Jb] - Eabcja (A34)

where
1, (abc) = cycle (123),
Eabe = 4 —1, (abc) = cycle (213),
0, in the remaining cases.

Definition A.3.2. Set of first-order linearly independent differential operators
P,, Jos of the form (A.3.1) is called the Poincaré algebra AP(1,3) if they
satisfy the following commutation relations:
[Py, Pl =0, [Py, Jaﬁ]zguapﬁ_guﬁpm (A.3.5)
[Juvs Japl = gupdva + gvadus = Guadvs = gupJua-

Definition A.3.3. Set of first-order linearly independent differential operators
Py, Py, Jp, Gey, M of the form (A.3.1) is called the Galilei algebra AG(1,3) if
they satisfy the commutation relations (A.3.4) and

[P07 Pa]:07 [P07 Ja]zo, [P07 Ga]:Pm

[P()a M] = 07 [Pa7 Gb] = 6abM7 [Paa M] = 07 (A36)

[Jm Gb] = cabcGe, [Gaa Gb] =0, [Gaa M] =0.
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We say that basis elements of the Euclid algebra AFE(3) realize a covariant
representation if they can be reduced to the form

P, = Ta s Jo = _5abcxbamc + nai(ln;u)aui (A-3-7)

with the help of the transformation (A.3.3).

Note that the case when 7),; are linear in u corresponds to what is called
in the classical representation theory a covariant representation of the Euclid
algebra (see Appendix 2). This is the reason why we preserve for the more
general class of representations (A.3.7) the term ‘covariant representation’.

Similarly, operators P, J, realize a covariant representation of the Poin-
caré algebra AP(1,3) if they can be reduced to the form

P,u = g,ulxaxya Jaﬁ = $a9ﬁuaxy - xﬁgayaru + Uaﬁi(.f, u)@ul (A.3.8)

with the help of a transformation (A.3.3).
At last, operators Py, P, Ju, G4, M realize a covariant representation of
the Galilei algebra AG(1,3) if they can be reduced to the form

Py = ax()7 P, = a:caa Jo = _E:CLb(:-lea:z:C + nclli(a:,u)aui,

(A.3.9)
G, = 5508;1:& + Ugi(% u)aum M = 7713(93» u)auz

with the help of a transformation (A.3.3).

A specific role played by covariant representations of the algebras AF(3),
AP(1,3) and AG(1,3) is explained by the fact that they are widely used in
physical applications. Furthermore, the transformation groups generated by
their basis elements have a natural physical interpretation. The operators F,
P, generate translations of the time x(y and space x, variables, correspondingly.
Next, the operators J, generate rotations of the Euclid space & and the oper-
ators Jy, generate the Lorentz transformations of the Minkowski space g, Z
preserving the quadratic form x,2#. The operators G, generate the Galilei
transformations of the space of independent variables xg, x, leaving the time
variable x( invariant.

In what follows, we will restrict our considerations to the case of covariant
representations only.

1. Covariant representations of the Euclid algebra. Direct check shows
that the operators (A.3.7) form a basis of the Euclid algebra iff the following
relations hold:

anai
8xb

=0, [naiaum 77bj8u]~] = 5abc"70iauia
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where a,6=1,2,3, i =1,...,n.
Consequently, functions 7, are independent of x and, in addition, the
operators

Jo = nai(u)aui (A310)

satisfy the commutation relations of the Lie algebra of the rotation group

[jm ja] = egpee- (A311)

Thus, the problem of description of all inequivalent covariant represen-
tations reduces to describing all functions 74;(u) such that the operators J,
fulfill the commutation relations (A.3.11). Solution of this problem is given
by the following lemma.

Lemma A.3.1. Let the differential operators (A.3.10) satisfy the commuta-
tion relations (A.3.11). Then, there exists a transformation

vi:Fi(u), 1= 1,...,n (A.3.12)

reducing these operators to one of the following forms:

1. J; = —sinu tanugdy,, — cosui0y,,
Jy = —cosuy tan uady, + sinui0y,, (A.3.13)
J3 = aul;

2. Jip = —sinwu; tanugd,, — (cosu; — asinug sec uz)0y,

+ sin ug sec u20y,,
Jo = —cosuy tan ugdy, + (sinug + acosug secug)dy,, (A.3.14)

+ cos uy sec 20y,

J3 = au17
3. Jo=0, a=1,2,3. (A.3.15)
Here o is an arbitrary smooth function of us, ..., u,.

Proof.  1f at least one of the operators J, (say J3) is equal to zero, then by
virtue of commutation relations (A.3.11) two other operators Jy, J3 are also
equal to zero and we get (A.3.15).

Let J3 be a non-zero operator. Then, using a transformation (A.3.12) we
can always reduce the operator Js to the form J; = 9,, (we should write
J5 but to simplify the notations we omit hereafter primes). Next, from the
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commutation relations [J3, Ji] = Jo, [J3, Jo] = —J; it follows that coefficients
of the operators Ji, Jo satisfy the system of ordinary differential equations
with respect to vq

Onai onzi .
= M3, = —N2- z-l,...,n.
(91)1

81)1

Solving the above system yields

No; = fi cosvi + g; sin vy,
o o (A.3.16)
n3i = gi cos v — fisinvy,

where f;, g; are arbitrary smooth functions of vo,...,v,, i =1,...,n.

Case 1. f;=g; =0, j>2.
In this case operators Ji, Jo read

Jl = fCOS vl&,l, JQ = *f sinvlavl

with an arbitrary smooth function f = f(va,...,v,).

Inserting the above expressions into the remaining commutation relation
[J1, Jo] = J3 and computing the commutator on the left-hand side we arrive
at the equality f2 = —1 which can not be satisfied by a real-valued function.

Case 2. Not all f;, gj, j > 2 are equal to 0.
Making the change of variables

wi =v1 +V(va,...,0), wj=vj, j=2,....,n

we transform operators J,, a = 1,2,3 with coefficients (A.3.16) as follows

Ji = fsinwdy, +Z(f] coswy + gj sinwy ) Oy,
j=2

Jo = fcoswiOy, + Z(f}j coswy — f] sinwi )0y, (A.3.17)
=2

J3 = Oy,.

Subcase 2.1. Not all fj are equal to 0. Making the transformation

21 = Wi, zj:Wj(wg,...,wn), j:2,...,n,
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where Wy is a particular solution of the PDE
n ~
> fi0w,Wa =1,
j=2
and Wy, ..., W, are functionally-independent first integrals of the PDE
n ~
Z JiOuw;W =0
j=2

we reduce the operators (A.3.17) to be

n
J1 = Fsinz0, + cos 210, + Z Gjsinz10,,,
j=2
n
Jy = Fcosz10; —sinz10,, + Z G cos 210y, (A.3.18)
j=2
J3 = 0.

Substituting operators (A.3.18) into the commutation relation [Ji, Jo| =
Js and equating coefficients of the linearly independent operators 0,,, ..., 0,
we arrive at the following system of PDEs for the functions F, Ga,...,Gy:

n

F,—-F*=1, G,,-FG;=0, j=2,...,n
Integration of the above equations yields

F = tan(ze + c1),
<

G, = —————~
I cos(zg +¢1)’
where ¢y, ..., c, are arbitrary smooth functions of z3,...,z,, j=2,...,n.
Replacing, if necessary, zo by 22 + ¢1(z3,...,2,) we may put ¢; equal to

zero. Next, making the transformation

Ya = Za, a:17273a
ye = Zp(z3,.-..,2n), k=4,...,n,

where Zj, are functionally-independent first integrals of the PDE

> G;0.,Z =0,
j=3
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we can put G, =0, k=4,...,n.
With these remarks the operators (A.3.18) take the form

. sinyy
Jl = sy tanyZayl + cos yla’yQ + 7y(fay2 + gays)a
COS Y2
: coS Y1
Jo = cosyitanys0y, —siny10,, + m(fﬁy2 +90y,), (A.3.19)
J3 = Oy,
where f, g are arbitrary smooth functions of ys, ..., y,.

Ifin (A.3.19) g # 0, then replacing y3 by 93 = [ ¢ 'dys and y2 by 72 = —y2
we transform the above operators to the form (A.3.14).
If ¢ = 0, then making the transformation

sin o P
\/W7 k — yk‘v
where k = 3,...,n, we reduce the operators (A.3.19) to the form (A.3.13).

Subcase 2.2. f; =0, j=2,...,n.

Substituting operators (A.3.17) under f; = 0 into the commutation rela-
tion [J1, Jo] = J3 and equating coefficients of the linearly independent oper-
ators 0, ..., 0,, yield the following system of PDEs:

u1 = Y1 + arctan U9 = — arctan

cosyo’

7f2:]-a fgjzo, ]:2,,71

As the function f is real-valued, the system obtained is inconsistent.

Thus, we have proved that operators (A.3.12)-(A.3.15) exhaust a set of
all possible inequivalent representations of the Lie algebra with commutation
relations (A.3.11) in the class of the first-order differential operators (A.3.10).

As an immediate consequence of Lemma A.3.1 we get the following asser-
tion.

Theorem A.3.1. Any covariant representation of the FEuclid algebra is
equivalent to one of the following representations:

1. Pa = Oz, Ja = —Eabc$ba£c; (A320)
2. P,=0,,
J1 = 2305, — £205, — sinug tan ugdy, — cos U1y, (A.3.21)

Jo = 21035 — 230, — cosug tanugdy,, + sinui0y,,
J3 = 220z — 110z, + Ouy;
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3. P, =0,,
J1 = 230, — £20,, — sinug tan ugdy,
— (cosuy — arsinug secug)0y, + sinug secuzfy,, (A.3.22)
Jo = 210z — 30z, — cosuy tan ugdy,
+ (sinug + o cosuy sec uz)dy, + cosuy sec uady;,
J3 = wzaxl — wlam + 8u1.

Here « is an arbitrary smooth function of us, ..., Un,.
In two next subsections we will give without proofs the assertions describ-
ing inequivalent covariant representations of the Poincaré and Galilei algebras.

2. Covariant representations of the Poincaré algebra. Inserting the
operators (A.3.8) into commutation relations (A.3.5) yields that the functions
Nagi(x,u) are independent of x and the operators

Tap = Napi(1) Oy, (A.3.23)
satisfy the commutation relations of the Lie algebra of the Lorentz group

[jlﬂ/’ jozﬁ] = guﬂjz/a + gl/ozjuﬁ - guozjuﬂ - gyﬁj;wz-

Consequently, the problem of describing inequivalent covariant representa-
tions of the Poincaré algebra reduces to describing inequivalent representations
of the Lorentz algebra having the basis elements (A.3.23).

Theorem A.3.2. Any covariant representation of the Poincaré algebra is
equivalent to the representation

PH = g,uzxaxya
1
Joi = =200z, — 0y + §(Pi + 1K),

1
Jiz = 30y, — 0z, + 5(771' - K),

Ji2 = 220, — 104, + J12,
J03 = —l’o@xS — 11336960 + D,

where i = 1,2 and the operators P;, Ji2, D, K; are given by one of the formulae
below

1. Pl = 8u17 P2 = 8u27
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j12 = u28u1 - ulauz7 D= _u18U1 - u28UQ)
Ky = (_u% + u%)alu - 2u1u28u27

Ko = —2uqu20,, + (u% — u§)8u2;

2. P1=0u, Pz=0u,
T2 = w20y, — u10yy, D = —u10y; — u20y, + Ous,
K1 = (—u? +ud + ee723)0y, — 2u1ugyy + 211 Dys,
Ko = —2ujusdy, + (u3 — u3 4 €€~ 2%3) 0y, + 2updyy;

3. P1=0u, P2=0u,,
T2 = w20y, — u10y, + Ouy, D = —u10y; — ug0u,,
K1 = (—u? +u3)0y, — 2u1uady, + 2u20y,,
Ko = —2u1u2y, + (u? — u3)0y, — 2u10y,;

4. Py =0y, P2=0u,,
J12 = u20y;, — 10y, + Ouy, D = —u10y; — u20y, + Ouy,
K1 = (—u? +ud + ee™ 2 cos 2u3) 0y, — (2uius + €€~ 2% sin 2u3)d,,
+ (2uz + (gcosus + rsin u;:,)e_““)@us + (2u1 — (rcosus
— gsin U3)e_“4>8u4 + e " sinuz0y, + e 4 cosuzOy,,
Ko = (—2uyug — ee™2" sin 2u3)dy, + (uf — us — ee 2% cos 2u3)dy,

— (2u1 + (gsinus — 7 cos u;;)e‘“‘*)(‘)us + (2u2 + (rsinus

+ g cos U3)e_“4>8u4 + e " cosuzdy; — € " sinugdy,;

5. Pl = au17 P2 = 8u27
Ji2 = UQaul - ulauz + 8U37 D= _ulaul - UQaug + 8u47
K1 = (—u? 4+ u3 + ee 72" cos 2u3) 0y, — (2urus + ce™ 2" sin 2u3) Oy,

+ (2'(,62 + (f cosus + gsiHU3)6_“4>6u3 + <2u1 — (g cosus
— fsin ug)e*““)(?u4 + (hcosug + sinug)e” “40y;,
Ko = —(2uiug + €€ sin 2u3)0y, + (uf — u3 — ee™ 2" cos 2u3)y,

+ (—2u1 + (gcosug — fsin U3)e_“4>6u3 + (2u2 + (f cosus



Representations of the Poincaré and Galilei groups by Lie vector fields 351

10.

+ gsiHU3)e_“4)8u4 + (cosuz — hsinug)e “40y,;

P1=0u;, P2 = 0uy,
J12 = u20y; — 10y, + Ouy, D = —u10y; — U20y, + Ouy,
K1 = (—u? +u2)0y, — 2u1uady, + (2us + €€ cos ug) Dy,
+ (2u1 + (fe "5 cosug + esin U3)e*“4>8u4
+ (((efe_eu5 + g) cosug + sin ug)e_“4)6u5 + he™ "t cos uzOys,
Ko = —2uiugdy, + (u? — u3)0y, — (2u1 + ee™"4 sinug)dy,
(21@ + (ecosus — fe 5 sinug)e “4>8u4
+(

P1=0u, P2 =0u,,

Ji2 = u20y; — U10uy + Oz, D = —u10y; — U20u, + Ouy,

K1 = (—u% + u%)@ul — 2u U200y, + 2u20y, + (2u1 + fe™ "t cosuz)0y,
+ ((—U5f + g) cosug + sin ug)e_“4>8u5 + he™"* cos uzOy,

Ko = —2ujupdy, + (u? — u3)dy, — 201 0uy + (2ua — fe "4 sinusz)0y,
+ ((Cos ug + (us f — g) sin ug)e*““)au5 — he™ " sin u30y,;

cosuz — (efe” " + g)sinug)e “4>3u5 — he™ " sin ugOy,;

P1 =0y, P2 =0u,,

Ji2 = u20y, — u10yy + Oug, D = —u10y, — u20y, + Ouy,

K1 = (—u? 4+ u2)0u, — 2u1u20y, + (2us + ce™ " cos ug) Dy,
+ (2u1 + ee” " sinug)0y,,

Ko = —2uiugdy, + (u —u3)0y, — (2u1 + ee™ "4 sinug)dy,
+ (2ug + ee” " cos uz)Oy,;

P1=0u, P2 =0u,,

J12 = u20uy, — 10y, + Ouy, D = —u104, — u20y, + Oy,

K1 = (—u? +ud)0u, — 2u1usdy, + 2u20y; + (2u1 + ™" sinug)d,,
Ko = —2u1u20y, + (u? — u3)0y, — 2u10y, + (2uz + €€ cosus)dy, ;

7)1 - 811,17 PQ - aum
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Ji2 = w20y, — 10y, + Ouy, D = —u10y, — 20y, + Ou,,

Ki= (—u12 + ug? + ee 2 cos 2u3) 0y, — (2uiug + ce U gin 2u3) Oy,
+ 2u20u,; + 2110y,

Ko = —(2uqug + ce 2% gin 2u3)0y, + (u12 — ug? — e
— 2u10yy + 2u20y,;

cos 2u3) Oy,

11. Py =04, Pz=0u,,
Ji2 = u20y, — u10y, + Oug, D = —u10y; — u20y, + Q0ys,
K1 = (—uf + ud)0u, — 2u1u2dy, + 2(uz + u1Q)0us,
Ko = —2uqu20,, + (u% — u%)au2 — 2(u1 — u2Q) Dy, -

Here e = 0,1, and f, g, h are arbitrary smooth functions of ug, . .., U,, and
Q is an arbitrary smooth function of uq, ..., u,, and
r = Ulus+iug,uy,...,up) + U(us — iug, uz, ..., Up),
q = i(U(U5 + iug, Uz, . .., up) — U(us — iug, uz, . .. ,un))

with an arbitrary function U analytic in the variable us + iug.

Note that the operators P;, Ji2, D, KC; fulfill the commutation relations
of the Lie algebra of the conformal group C(2) (which is isomorphic to the
Lorentz algebra AO(1, 3))

[Pi, D] = =P;,  [P1, Ji2]l = P2, [P2, J12] = Pu,
[J12, D] =0, [Py, Ki] = [P2, Ko] =D,

[P1, Kol = —2J12, [Po, K1) = 2712,

i, D] =Ki, K1, Ji2]l = —Ka,  [K2, Jr2] =K.

The above formulae give the list of all inequivalent representations of the
algebra AC(2) by Lie vector fields.

3. Covariant representations of the Galilei algebra. Inserting the for-
mulae (A.3.9) into (A.3.6) and making some simple manipulations we conclude
that the basis elements of a covariant representation of the algebra AG(1,3)
necessarily take the form

Py = 89507 P, = Ta Jo = Ezzbcl'caxb + jav

(A.3.24)
Gazfl?oaxa-FSCaM—Fga, M =M,
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where J,, Gy, M are Lie vector fields of the form 7;(u)d,, satisfying the com-
mutation relations of the Euclid algebra

[gaa gb] = 07 [\7(1) gb] = gabcha [j(za L7b] = Eabcjc

and

M, JJ] =0, [M, GJ]=0.

On describing all inequivalent representations of the above Lie algebra we
arrive at the following assertion.

Theorem A.3.3. Any covariant representation of the Galilei algebra AG(1,3)
is equivalent to the representation having the basis elements (A.3.24), opera-
tors Ja, Gy, M being given by one of the formulae below

1. jl = u38’uz - u28’LL37 \72 = ulaug - u38u17 j3 = u2au1 - ula’uza
gl = aula g? = alLQa g3 = a’u,37
M = €dy,,

2. Ji1 = —ugcosustanugly, + ugsinuz tanus0y, + cos us cot ugOy,
+ sin u30y, + cos us3 csc ugOy;,
J2 = uj cosug tan ugdy, — uq sinuz tanug0y, — cot ug sin uzy,
+ cos u30y, — cSC Uy sin uzy;,
J3 = 20y, — u10u, + Ous,
Gi = Ouys, G2 =0u,, U3 =cosustanus0,, — sinustanus0,,,
M = f(cosug cos ug sec ug + sin ug sin uz )0y,

+ f(—sinug secuy cosus + cosug sin us) Oy, + gOus + €Qyg;

3. J1 = —ugcosustan us0,, + ugsin ug tan ug0y, + cos ug cot ug0y,
+ sinuz0y,,
J2 = uy cosug tan ugOQy,, — ug sinuz tan ugdy, — sinug cot ug0y,
+ cos u30y,,
J3 = u20y, — U100y, + Ous,
G1 =0u,, G2 =04, Us=cosustanus0,, — sinugtanusOy,,

4.  Jp = F(sec U3)28ul + cos ug tan uz0y, — sin ugdy,,

J2 = (F(sec u;:,)2 tan ug + ug sec ug tan ug)dy, + sin ug tan uzdy,
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+ cos u20y;,
J3 = —uy tan u28u1 - auzv
Gi = Ou,, G2 =tanugd,,, U3 =secugtanusly,,
M = @QsecugsecuzOy, + Oyy;

Ji = Q(sec u3)2(%1 + cos ug tan uzdy, — sin ug0y,,

Jo = (Q(secuz)? tan ug + uy sec ug tan uz)dy, + sin ug tan uzdy,
+ cos u20y,;,

J3 = —uy tanugdy;, — Oy,,

G1 = Ou,, G2 =tanug0,,, Us=secugtanusd,,,

M = @) secug secuzOy, ;

J1 = cosug tan ugOy, + (cosug + us sin ug tan ug)dy, — sinugdy,,
Jo = uy sec ug tan ug0y, + sinug tan ug0y, + (sinug
— U3 oS U2 tan Uy ) Oy, + oS U2y, ,
J3 = —uy tanug0y, — Oy,
G1 = Ou,, G2 =tanugdy,, U3 =secugtanusly,,
M = FsecugsecusOy, + G cosusOy, + €0yy;

J1 = sinug tanuz0y, + Rsecussinuydy, + (Q sinuj secug
+ cos u)Oyg + €sinug sec uzOy,,
J2 = cosuy tan uzdy, + R cosug secugdy, + (Q cos u; sec us

— sinuy )0y, + €cos uy sec uzy,,

\.73 = aup

G1=0, G2=0, G3=0,

M = 0y,

J1 = —sinug tanuady, — coSu1Oy,,
J2 = —cosuj tan ug0y, + Sinu10y,,
j3 = aup

G =0, Go=0, G3=0,
M =0;
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9.

10.

Here f,g are arbitrary smooth functions of ug, . .

smooth function of us, ..., u,, R,Q are arbitrary smooth functions of uy, ..

J1 = —sinug tanugdy, — (cosu; — asinug sec ug)dy,
+ sin ug sec ua0y;,
J2 = —cosu tanugdy, + (sinu + « cos uy sec uz)Oy,

+ cos uj sec u20y;,

j3 :8u17
G =0, Go=0, G3=0,
M =€dy,;

J1=0, JB=0, JT3=0,
G =0, Go=0, G3=0,
M = €0,,.

Up, « 18 an arbitrary smooth function of us,...,u, and € =0,1.

Sy Un, Fis an arbitrary

*)
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