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In this study, we consider a Lotka – Volterra type predator-prey model with piecewise constant arguments
of generalized type and investigate the stability of the positive equilibrium point of the proposed model.
Although the model includes piecewise constant delays, we do not use Lyapunov functionals. We establi-
sh the stability conditions using Lyapunov functions of the corresponding model of ordinary differential
equations. In order to illustrate the validity of our results, we present an appropriate example and numeri-
cal simulations.

Розглянуто модель «хижак-жертва» типу Лотки – Вольтерра iз кусково-сталими аргумента-
ми та вивчено стiйкiсть додатного положення рiвноваги розглядуваної моделi. Незважаючи
на те, що модель має кусково-сталi запiзнення, функцiонали Ляпунова не використовуються.
Отримано умови стiйкостi з використанням функцiй Ляпунова для вiдповiдної моделi зви-
чайних диференцiальних рiвнянь. Для iлюстрацiї отриманих результатiв наведено вiдповiдний
приклад та числовi розрахунки.

1. Introduction and preliminaries. Differential equations with piecewise constant argument
have been intensively developed [5, 7, 12, 15 – 20] since they were initiated in [9 – 11]. In the
last few decades, this class of differential equations has attracted considerable attention due to
their wide range of applications in biology, control theory, neural networks etc. [3, 4, 6, 8, 13,
21, 25]. However, reduction to discrete equations and application of numerical methods have
been the main instrument of investigation for differential equations with piecewise constant
argument [3, 9 – 12]. That being the case, initial value problems only with integer-valued initial
moments can be taken into consideration and thus stability analysis can not be set out in full.

Akhmet [1, 2] has generalized differential equations with piecewise constant arguments by
taking arbitrary piecewise constant functions as arguments and used a new approach based
on the construction of an equivalent integral equation. By means of this approach, stability
problems can be considered by taking any real number as an initial moment. Afterwards, in
[7], Akhmet et al. have developed the Lyapunov method for the following differential equation
with piecewise constant arguments of generalized type:

x′(t) = f(t, x(t), x(β(t))), (1.1)
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where x ∈ B(h), B(h) = {x ∈ Rn : ‖x‖ < h}, t ∈ R+, β(t) = θi if t ∈ [θi, θi+1), i ∈ N
and θi, i ∈ N, is a fixed real-valued sequence satisfying 0 = θ0 < θ1 < . . . < θi < . . . with
θi → ∞ as i → ∞. Here it is assumed that N and R+ are, respectively, the sets of natural
numbers and nonnegative real numbers; Rn, n ∈ N, is the n-dimensional real space and ‖ . ‖
is the Euclidean norm in Rn. Despite the piecewise constant delay, they have established the
stability conditions using Lyapunov functions only, that is, no functionals have been used. The
authors have utilized the total stability concept [26] which has enabled to make a connection
between the stability of equations with piecewise constant arguments and the corresponding
ordinary differential equations. With these ideas and the assumptions including f(t, 0, 0) = 0
for all t ≥ 0, they have investigated the stability of the zero solution of (1.1).

By a solution of equation (1.1) on R+ we mean a continuous function x(t) with the following
properties: the derivative x′(t) exists everywhere with the possible exception of the points θi,
i ∈ N, where one-sided derivatives exist; (1.1) is satisfied on each interval [θi, θi+1), i ∈ N [1, 6,
7].

In the present paper, we shall consider the Lotka – Volterra system, which is still one of the
most famous models of predator-prey interactions in an ecosystem due to its theoretical and
practical significances. Using the results of the paper [7], we aim to investigate the stability of
Lotka – Volterra predator-prey model with piecewise constant arguments of generalized type.

It is well recognized that models of population dynamics under certain conditions do not
satisfy realities. Naturally, more realistic and interesting models of populations should take the
short term perturbations and time delays into account [14, 22, 23]. In [14], the authors studied
the stability and Hopf bifurcation for the following delayed predator-prey system:

N ′(t) = N(t)[r1 − a11N(t− τ)− a12P (t)],
(1.2)

P ′(t) = P (t)[−r2 + a21N(t)− a22P (t− τ)],

where N(t) and P (t) denote, respectively, the population densities of prey and predator at time
t; r1 > 0 and r2 > 0 are the intrinsic growth rate of the prey and the death rate of the predator,
respectively; the parameters aij , i, j = 1, 2, are all positive constants. Assuming a21r1 > a11r2,
system (1.2) has a unique positive equilibrium E = (N∗, P ∗), where

N∗ =
a22r1 + a12r2
a11a22 + a12a21

and

P ∗ =
a21r1 − a11r2
a11a22 + a12a21

.

We aim to incorporate the piecewise constant argument of generalized type β(t) defined in
(1.1) into the model (1.2) and then investigate the stability of the positive equilibrium E. That
is, we shall consider the model given by

N ′(t) = N(t)[r1 − a11N(β(t))− a12P (t)],
(1.3)

P ′(t) = P (t)[−r2 + a21N(t)− a22P (β(t))],
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where N and P lie in the circle centered at the point E with radius h. We choose h in a way that
the circle stays in the first quadrant of the NP -plane.

Let us make the linear transformation x1 = N − N∗ and x2 = P − P ∗. By this change of
variables, the equilibrium point E is mapped into the origin of the x1x2-plane. Then, system
(1.3) can be written as follows:

x′1(t) = (x1(t) +N∗)(−a11x1(β(t))− a12x2(t)),
(1.4)

x′2(t) = (x2(t) + P ∗)(a21x1(t)− a22x2(β(t))).

Let x(t) = (x1(t), x2(t)) and x(β(t)) = (x1(β(t)), x2(β(t))). By defining

f1(x(t), x(β(t))) := (x1(t) +N∗)(−a11x1(β(t))− a12x2(t)),

f2(x(t), x(β(t))) := (x2(t) + P ∗)(a21x1(t)− a22x2(β(t))),

we can see that system (1.4) can be expressed as x′(t) = f(x(t), x(β(t))), where x = (x1, x2)
T

and f = (f1, f2)
T .

We can observe that system (1.4) satisfies the following conditions:
(C1) f(u, v) ∈ C(B(h)×B(h)) is an 2× 1 real-valued function;
(C2) f(0, 0) = 0;
(C3) f satisfies a Lipschitz condition with constants `1, `2, i.e.,

‖f(x, y)− f(u, v)‖ ≤ `1‖x− u‖+ `2‖y − v‖, (1.5)

for all x, y, u, v ∈ B(h), where `1 =
√
2max{(a12 + a11 + a21)h+ a21P

∗, (a21 + a22 + a12)h+
+a12N

∗} and `2 =
√
2max{a11(N∗ + h), a22(P

∗ + h)}.
Let us prove the condition (C3):

‖f(x, y)− f(u, v)‖ =

=

∥∥∥∥ −a11x1y1 − a12x1x2 − a11N∗y1 − a12N∗x2 + a11u1v1 + a12u1u2 + a11N
∗v1 + a12N

∗u2
a21x1x2 − a22x2y2 + a21P

∗x1 − a22P ∗y2 − a21u1u2 + a22u2v2 − a21P ∗u1 + a22P
∗v2

∥∥∥∥=
=

∥∥∥∥ (−a12x2 − a11y1)(x1 − u1) + (−a11N∗ − a11u1)(y1 − v1) + (−a12N∗ − a12u1)(x2 − u2)
(a21x1 − a22y2)(x2 − u2) + (−a22P ∗ − a22u2)(y2 − v2) + (a21P

∗ + a21u2)(x1 − u1)

∥∥∥∥≤
≤ (| − a12x2 − a11y1|+ |a21P ∗ + a21u2|)|x1 − u1|+ (|a21x1 − a22y2|+ | − a12N∗−

− a12u1|)|x2 − u2|+ | − a11N∗ − a11u1| |y1 − v1|+ | − a22P ∗ − a22u2| |y2 − v2| ≤

≤ (a12|x2|+ a11|y1|+ a21P
∗a21|u2|)|x1 − u1|+ (a21|x1|+ a22|y2|+ a12N

∗ + a12|u1|)|x2 − u2|+

+ (a11N
∗ + a11|u1|)|y1 − v1|+ (a22P

∗ + a22|u2|)|y2 − v2| ≤

≤ ((a12 + a11 + a21)h+ a21P
∗)|x1 − u1|+ ((a21 + a22 + a12)h+ a12N

∗)|x2 − u2|+

+ (a11(N
∗ + h))|y1 − v1|+ (a22(P

∗ + h))|y2 − v2| ≤ `1‖x− u‖+ `2‖y − v‖,
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which verifies (1.5). As a result, Lipschitz condition, that is, condition (C3) is fulfilled for the
function in the right-hand side of the model (1.4).

In what follows, we shall assume that the following conditions are satisfied:
(C4) there exists a constant θ > 0 such that θi+1 − θi ≤ θ, i ∈ N;
(C5)] θ[`2 + `1(1 + `2θ)e

`1θ] < 1;

(C6) θ(`1 + 2`2)e
`1θ < 1.

2. Main results. We give now some definitions and preliminary results which enable us to
investigate stability of the zero solution x = 0 of (1.4).

Definition 2.1 [2]. The zero solution of (1.4) is said to be,
(i) stable if for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that ‖x0‖ < δ

implies ‖x(t, t0, x0)‖ < ε for all t ≥ t0;

(ii) uniformly stable if δ is independent of t0.

Definition 2.2 [2]. The zero solution of (1.4) is said to be uniformly asymptotically stable if it
is uniformly stable and there is a δ0 > 0 such that for every ε > 0 and t0 ∈ R+, there exists a
T = T (ε) > 0 such that ‖x(t, t0, x0)‖ < ε for all t > t0 + T whenever ‖x0‖ < δ0.

The following lemma plays a crucial role in the proof of the stability theorem.

Lemma 2.1 [7]. If the conditions (C4), (C5) are fulfilled, then for a solution x(t) of (1.4) we
have the estimation

‖x(β(t))‖ ≤ m‖x(t)‖

for all t ∈ R+, where m =
{
1− θ[`2 + `1(1 + `2θ)e

`1θ]
}−1

.

Next, we need the following theorem which provides conditions for the existence and uni-
queness of solutions on R+. Since the proof of the assertion is almost identical to the one given
in [1], we omit it here.

Theorem 2.1. Suppose that conditions (C4) – (C6) are fulfilled. Then for every (t0, x0) ∈ R+×
×B(h) there exists a unique solution x(t) = x(t, t0, x0) of (1.4) on R+ with x(t0) = x0.

In consideration of the paper [7] we shall make use of the following system of ordinary
differential equations that corresponds to (1.4), that is the system given by

x′1(t) = (x1(t) +N∗)(−a11x1(t)− a12x2(t)) := g1(x),
(2.1)

x′2(t) = (x2(t) + P ∗)(a21x1(t)− a22x2(t)) := g2(x).

Let the time derivative of a function V (x) with respect to system (2.1) be defined as

V ′(3)(x) =
∂V (x)

∂x
g(x)

for all x ∈ B(h).

Consider the function F (x1, x2) =
√

1

(N∗ + x1)2
+

1

(P ∗ + x2)2
on the regionB(h). Since F

is a continuous function on a closed region it has a maximum value, say, M. Next, the following
results follows.
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Theorem 2.2. Let the conditions (C4) – (C6) be fulfilled. The zero solution of (1.4) is uni-
formly asymptotically stable if there exists a positive constant τ such that

M ≤ min{a11 − a21, a22 − a12} − τ
`2(1 +m)

.

Proof. Let x(t) = (x1(t), x2(t) be a solution of (1.4) with (x1(t0), x2(t0)) ∈ B(h). Consider
a Lyapunov function defined for t ≥ t0 by

V (x) = | ln (x1 +N∗)− lnN∗|+ | ln(x2 + P ∗)− lnP ∗|.

It is clear that V is a positive definite and decreasing function. Hence, there exist strictly increa-
sing functions u, v ∈ C(R+,R+), u(0) = v(0) = 0 such that [24]

u(‖x‖) ≤ V (x) ≤ v(‖x‖) for all x ∈ B(h).

Let h(x(t), x(β(t))) := f(x(t), x(β(t)))− f(x(t), x(t)) = f(x(t), x(β(t)))− g(x(t)).
If we evaluate the time derivative of V along the solutions of (1.4), we find for t 6= θi that

V ′(1.4)(x1, x2) = V ′(2.1)(x1, x2) +

〈
∂V (x)

∂x
, h(x(t), x(β(t)))

〉
≤

≤ sgn (ln (x1 +N∗)− lnN∗)(−a11x1 − a12x2)+

+ sgn (ln (x2 + P ∗)− lnP ∗)(a21x1 − a22x2) + `2(1 +m)

∥∥∥∥∂V (x)

∂x

∥∥∥∥ ‖x‖ ≤
≤ sgn (x1)(−a11x1 − a12x2) + sgn (x2)(a21x1 − a22x2) +

∥∥∥∥∂V (x)

∂x

∥∥∥∥ `2(1 +m)‖x‖ ≤

≤ −a11|x1| − a12sgn (x1)x2 + a21sgn (x2)x1 − a22|x2|+ `2(1 +m)

∥∥∥∥∂V (x)

∂x

∥∥∥∥ ‖x‖ ≤
≤ −a11|x1|+ a12|x2|+ a21|x1| − a22|x2|+

∥∥∥∥∂V (x)

∂x

∥∥∥∥ `2(1 +m)‖x‖ =

= (a21 − a11)|x1|+ (a12 − a22)|x2|+ `2(1 +m)

∥∥∥∥∂V (x)

∂x

∥∥∥∥ ‖x‖ ≤
≤ [max{a21 − a11, a12 − a22}+ `2(1 +m)F (x1, x2) ] ‖x‖ ≤

≤ [max{a21 − a11, a12 − a22}+ `2(1 +m)M ] ‖x‖ ≤ −τ‖x‖.

Hence by Theorem 3.7 of [7], we conclude that the zero solution of (1.4) is uniformly
asymptotically stable.

Theorem 2.2 is proved.
Since we consider a linear transformation of the axes, we can derive the next assertion.

ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 4



STABILITY ANALYSIS OF A PREDATOR-PREY MODEL . . . 457

Theorem 2.3. Let the conditions (C4) – (C6) be fulfilled. The equilibrium E = (N∗, P ∗) of
(1.3) is uniformly asymptotically stable if there exists a positive constant τ such that

M ≤ min{a11 − a21, a22 − a12} − τ
`2(1 +m)

.

3. Numerical simulations. As an example, we consider the system (1.3) with r1 = 500,
r2 = 1, a11 = 40, a12 = 1, a21 = 30, a22 = 20, θi = i/7000, i ∈ N, and h = 11.9, i.e.,

N ′(t) = N(t)[500− 40N(β(t))− P (t)],
(3.1)

P ′(t) = P (t)[−1 + 30N(t)− 20P (β(t))],

which has the positive equilibrium point

E = (N∗, P ∗) =

(
10001

830
,
1496

83

)
∼= (12.05, 18.02).

It is clear that the system given by (3.1) satisfies the conditions (C1) – (C3) with `1 = 1959.566686
and `2 = 1354.782515. We note that the model parameters are chosen in a way to satisfy condi-
tions (C4) – (C6).

By simple calculation, we find that m = 2.744189738. Since θ = 1/7000, we see that

θ[`2 + `1(1 + `2θ)e
`1θ] = 0.6355937106 < 1

and

θ(`1 + 2`2)e
`1θ = 0.8824978508 < 1.

Hence, conditions (C4) – (C6) are fullfilled. Taking

V (x) = | ln (x1(t) +N∗)− lnN∗|+ | ln(x2(t) + P ∗)− lnP ∗|

as in the proof of Theorem 3, we find
∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ M = 0.0007864841932 for the system (3.1),

and thus

M`2(1 +m)−min{a11 − a21, a22 − a12} = −6.010509547,

which shows that all hypotheses of Theorem 2.3 are fulfilled. In order to see the validity of the
theoretical results guaranteed by Theorem 2.3, we present below the solution graphs of prey
N and predator P with respect to time t, respectively. For t ∈ [θi, θi+1), i ∈ N, system (3.1)
reduces to an ordinary differential equation. Hence, we can solve the system (3.1) numerically
in each interval [θi, θi+1), i ∈ N, by using MATLAB’s built-in solver ode45. Consequently, we
obtain that the positive equilibrium pointE of (3.1) is uniformly asymptotically stable as shown
in Figures 1 and 2, which confirm the results of the Theorem 2.3.
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Fig. 1. Time response of the prey.

Fig. 2. Time response of the predator.
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