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Our aim in this paper is to esatblish some sufficent conditions for oscillation of the second-order quasili-
near neutral functional dynamic equation(

p(t)
(
[y(t) + r(t)y(τ(t))]∆

)γ)∆

+ f(t, y(δ(t)) = 0, t ∈ [t0,∞)T,

on a time scale T, where |f(t, u)| ≥ q(t)
∣∣uβ
∣∣ , r, p and q are real valued rd-continuous positive functions

defined on T, γ and β > 0 are ratios of odd positive integers. Our results do not require that γ = β ≥ 1,

p∆(t) ≥ 0,
∫∞

t0

(
1

p(t)

) 1
γ

∆t = ∞ and
∫∞

t0
δβ(s)q(s)[1−r(δ(s))]β∆s = ∞. Some examples are considered

to illustrate the main results.

Метою статтi є встановлення деяких достатнiх умов осциляцiйностi квазiлiнiйного нейтраль-
но функцiонального динамiчного рiвняння(

p(t)
(
[y(t) + r(t)y(τ(t))]∆

)γ)∆

+ f(t, y(δ(t)) = 0, t ∈ [t0,∞)T,

на часовiй ґратцi T, де |f(t, u)| ≥ q(t)
∣∣uβ
∣∣ , r, p та q — дiйснозначнi rd-неперервнi додатнi функ-

цiї, що визначенi на T, γ та β > 0 є вiдношеннями непарних додатних цiлих чисел. Отриманi

результати не вимагають виконання умов γ = β ≥ 1, p∆(t) ≥ 0,
∫∞

t0

(
1

p(t)

) 1
γ

∆t = ∞ та∫∞
t0

δβ(s)q(s)[1 − r(δ(s))]β∆s = ∞. Наведено деякi приклади, що iлюструють основнi результа-
ти.

1. Introduction. In this paper, we consider the quasilinear neutral functional dynamic equation

(
p(t)

(
[y(t) + r(t)y(τ(t))]∆

)γ)∆
+ f(t, y(δ(t)) = 0, (1.1)

on a time scale T. Throughout this paper, we will assume the following hypotheses:
(h1) r, p and q are real valued rd-continuous positive functions defined on T, 0 ≤ r(t) < 1,

(h2) γ is a ratio of odd positive integers, τ : T → T, δ : T → T, τ(t) ≤ t for all t ∈ T and
limt→∞ δ(t) = limt→∞ τ(t) = ∞,
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380 S. H. SAKER

(h3) f(t, u) : T × R → R is continuous function such that uf(t, u) > 0 for all u 6= 0 and
there exists a positive rd-continuous function q(t) defined on T such that |f(t, u)| ≥ q(t)|uβ |,
where β > 0 is a ratio of odd positive integers.

We shall also consider the two cases:

∞∫
t0

(
1

p(t)

) 1
γ

∆t = ∞, (1.2)

and

∞∫
t0

(
1

p(t)

) 1
γ

∆t < ∞. (1.3)

Since we are interested in the oscillatory and asymptotic behavior of solutions of (1.1) near
infinity, we assume that sup T = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T :=
:= [t0,∞) ∩ T. Throughout this paper these assumptions will be supposed to hold. Let τ∗(t) =
= min{τ(t), δ(t)} and let T0 = min{τ∗(t) : t ≥ 0} and τ∗−1(t) = sup{s ≥ 0 : tau∗(s) ≤ t} for
t ≥ T0. Clearly if τ∗(t) ≤ t, then τ∗−1(t) ≥ t for t ≥ T0, τ∗−1(t) is nondecreasing and coincides
with the inverse of τ∗(t) when the latter exists. Throughout the paper, we will use the following
notations:

x(t) := y(t) + r(t)y(τ(t)), x[1] := p(x∆)γ , x[2] := (x[1])∆. (1.4)

By a solution of (1.1), we mean a nontrivial real-valued function y which has the properties x ∈
∈ C1

rd[τ
∗
−1(t0),∞), and x[1] ∈ C1

rd[τ
∗
−1(t0),∞) where Cr is the space of rd-continuous functions.

Our attention is restricted to those solutions of (1.1) which exist on some half line [ty,∞) and
satisfy sup{|y(t)| : t > t1} > 0 for any t1 ≥ ty. A solution y of (1.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.

Much recent attention has been given to dynamic equations on time scales (or measure
chains), and we refer the reader to the landmark paper of Hilger [6] for a comprehensive
treatment of the subject. Since then several authors have expounded on various aspects of this
new theory [5]. A book on the subject of time scales, by Bohner and Peterson [4], summarizes
and organizes much of time scale calculus.

The three most popular examples of calculus on time scales are differential calculus, di-
fference calculus, and quantum calculus (see Kac and Cheung [9]), i.e., when T = R, T = N
and T =qN = t : t = qk, k ∈ N, q > 1.

Dynamic equations on a time scale have an enormous potential for applications such as in
population dynamics. For example, it can model insect populations that are continuous while in
season, die out in say winter, while their eggs are incubating or dormant, and then hatch in a new
season, giving rise to a nonoverlapping population (see [4]). There are applications of dynamic
equations on time scales to quantum mechanics, electrical engineering, neural networks, heat
transfer, and combinatorics. A recent cover story article in New Scientist [14] discusses several
possible applications. A time scale T is an arbitrary nonempty closed subset of the real numbers
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R. The set of all such rd-continuous functions is denoted by Crd(T). The graininess function µ
for a time scale T is defined by µ(t) := σ(t) − t, and for any function f : T → R the notation
fσ(t) denotes f(σ(t)).

In recent years there has been much research activity concerning the oscillation and nonosci-
llation of solutions of second-order neutral dynamic equations on time scales, we refer the
reader to the papers [1 – 3, 7, 8, 11 – 13, 15, 16]. We note that all the results obtained in these
papers are given for neutral delay dynamic equations when (1.2) holds,

γ = β ≥ 1, p∆(t) ≥ 0, and

∞∫
t0

δγ(s)q(s)[1− r(δ(s))]γ∆s = ∞. (1.5)

The question now is: If it is possible to find new oscillation criteria for (1.1) without (1.5)? Our
interest is to give an affirmative answer to this question and to establish some oscillation criteria
for (1.1) that do not require.

γ = β ≥ 1, p∆(t) ≥ 0,

∞∫
t0

δβ(s)q(s)[1− r(δ(s))]β∆s = ∞. (1.6)

The paper is organized as follows. In Section 2, we consider the case when (1.2) holds and in
Section 3, we consider the case when (1.3) holds. Our results are essentially new for (1.1) even
in the case when γ = β and can be applied when γ and/or β < 1. Applications to equations to
which previously known criteria for oscillation are not applicable are given.

2. Oscillation criteria when (1.2) holds. In this section, we establish some sufficient condi-
tions for oscillation of (1.1) when (1.2) holds. In the subsection 2.1, we consider the case when
δ(t) > t and the case when δ(t) ≤ t will be considered in the subsection 2.2. To prove the main
results we need the following Lemmas which play important roles in the proofs of the main
results even in the case when (1.3) holds.

Lemma 2.1. Assume that (h1) – (h3), (1.2) hold and (1.1) has a nonoscillatory solution y on
[t0,∞)T and x is defined as in (1.4). Then there exists T > t0 such that x(t)x[1](t) > 0 for t ≥ T.

Proof. Assume that y(t) is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,∞)T so that
t1 > t0 and so that y(t) > 0, y(τ(t)) > 0, and y(δ(t)) > 0 on [t1,∞)T. (Note that in the case
when y(t) is negative the proof is similar, since the transformation y(t) = −z(t) transforms (1.1)
into the same form.) Since y is a positive solution of (1.1) and q(t) > 0, we have (by (h3)) that

(x[1](t))∆ ≤ −q(t)yβ(δ(t)) < 0 for t ∈ [t1,∞)T. (2.1)

Then x[1](t) is strictly decreasing on [t1,∞)T and of one sign. We claim that x[1](t) > 0 on
[t1,∞)T. Assume not. Then there is a t2 ∈ [t1,∞)T such that (note x[1](t) is strictly decreasing)
x[1](t2) = c < 0. Then from (2.1), we have x[1](t) ≤ c for t ≥ t2 and therefore

x∆(t) ≤ c
1
γ

p
1
γ (t)

for t ∈ [t2,∞)T. (2.2)
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Integrating the last inequality form t2 to t, we find from (1.2) that

x(t) = x(t2) +

t∫
t2

x∆(s)∆s ≤ x(t2) + c
1
γ

t∫
t2

∆s

p
1
γ (s)

→ −∞ as t → ∞, (2.3)

which implies that x is eventually negative. This contradiction completes the proof.

Lemma 2.2. Assume that (h1) – (h3), (1.2) hold and (1.1) has a nonoscillatory solution y on
[t0,∞)T and x is defined as in (1.4). Then there exists T ≥ t0 such that

(p(t)
(
x∆(t)

)γ
)∆ + P (t)xβ(δ(t)) ≤ 0 for t ≥ T, (2.4)

where

P (t) = q(t)(1− r(δ(t)))β. (2.5)

Proof. Assume that y(t) is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,∞)T so that
t1 > t0 and so that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and y(δ(t)) > 0 on [t1,∞)T. (Note
that in the case when y(t) is negative the proof is similar, since the transformation y(t) = −z(t)
transforms (1.1) into the same form.) Since y is a positive solution of (1.1) and q(t) > 0, from
Lemma 2.1, we see that (note x[1](t) > 0 and p(t) > 0)

x(t) > 0, x∆(t) > 0 and
(
x[1](t)

)∆
< 0 for t ≥ t1. (2.6)

Since τ(t) ≤ t and r(t) ≥ 0, we have (1.4) and (2.6) that

x(t) = y(t) + r(t)y(τ(t)) ≤ y(t) + r(t)x(τ(t)) ≤ y(t) + r(t)x(t) for t ≥ t1.

Thus y(t) ≥ (1 − r(t))x(t) for t ≥ t1. Then for t ≥ t2, where t2 > t1 is chosen large enough,
we have

y(δ(t)) ≥ (1− r(δ(t)))x(δ(t)). (2.7)

From (2.1) and the last inequality, we have inequality (2.4) and this completes the proof.

2.1. Oscillation of (1.1) when δ(t) > t. In this subsection, we establish some sufficient
conditions for oscillation of (1.1) when (1.2) holds and δ(t) > t. We introduce the following
notations:

Q(t) := P (t)

(
p1/γ(t)P (t, T )

p1/γ(t)P (t, T ) + σ(t)− t

)β

ησ(t), P (t, T ) :=

t∫
T

(
1

p(s)

) 1
γ

∆s,

and

ησ(t) :=


1, if β = γ,

c2

(∫ σ(t)
T

1

p
1
γ (s)

∆s

)β−γ

, if β < γ,

c1, if β > γ,

(2.8)
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where T ≥ t0 is chosen sufficiently large and c1 and c2 are any positive constants. We start with
the following theorem.

Theorem 2.1. Assume that (h1) – (h3) and (1.2) hold. Let y be a nonoscillatory solution of
(1.1) and make the Riccati substitution

u(t) :=
x[1](t)
xγ(t)

, (2.9)

where x is defined as in (1.4). Then u(t) > 0 for t ≥ T (here T is as in Lemma 2.2) and

u∆(t) + Q(t) +
γ

p
1
γ (t)

(uσ(t))1+
1
γ ≤ 0 for t ∈ [T,∞)T. (2.10)

Proof. Let y be as above and without loss of generality, we assume that there is a t1 > t0
such that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and y(δ(t)) > 0 for t ≥ t1. Then from Lemma
2.1 and (1.4), there exists T > t1 such that

x(t) > 0, x[1](t) > 0, and x[2](t) < 0 for t ≥ T.

By the quotient rule [4] (Theorem 1.20) and the definition of u(t), we have

u∆(t) =
xγ(t)x[2](t)− (xγ(t))∆ x[1](t)

xγ(t) (xσ(t))γ =
x[2](t)

(xδ(t))γ

(
xδ(t)

)β
(xσ(t))γ −

(xγ(t))∆ x[1](t)
xγ(t) (xσ(t))γ .

From Lemma 2.2, we see that

u∆(t) ≤ −P (t)

(
xδ(t)

)β
(xσ(t))γ −

(xγ(t))∆ x[1](t)
xγ(t) (xσ(t))γ for t ≥ T. (2.11)

By the Pötzsche chain rule ([4], Theorem 1.90), if f∆(t) > 0 and γ > 1 (note fσ ≥ f) we
obtain

(fγ(t))∆ = γ

1∫
0

[
f(t) + µhf∆(t)

]γ−1
f∆(t)dh ≥

≥ γ

1∫
0

(f(t))γ−1f∆(t)dh = γ(f(t))γ−1f∆(t). (2.12)

Also by the Pötzsche chain rule ([4], Theorem 1.90), if f∆(t) > 0 and 0 < γ ≤ 1, we obtain

(fγ(t))∆ = γ

1∫
0

[
f(t) + hµ(t)f∆(t)

]γ−1
dh f∆(t) ≥

≥ γ

1∫
0

(fσ(t))γ−1 dhf∆(t) = γ(fσ(t))γ−1f∆(t). (2.13)
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Now from (2.12) and (2.13), using f(t) = x(t) and the fact that x(t) is increasing and x[1](t) is
decreasing, we have, for γ > 1, that

((x(t))γ)∆ x[1](t)
(x(t))γ (xσ(t))γ ≥

γ
(
x[1](t)

)σ
(
(
x[1](t)

)σ
)

1
γ

p
1
γ xσ(t) (xσ(t))γ

= γ
1

p
1
γ (t)

(uσ(t))
1
γ
+1

.

Also for 0 < γ ≤ 1, we have

(xγ(t))∆ x[1](t)
xγ(t) (xσ(t))γ ≥

γ
(
x[1](t)

)σ
(
(
x[1]
)σ

(t))
1
γ

p
1
γ (t) (xσ(t))γ xσ(t)

= γ
1

p
1
γ (t)

(uσ(t))1+
1
γ .

Thus
(xγ(t))∆ x[1](t)
xγ(t) (xσ(t))γ ≥ γ

1

p
1
γ

(uσ(t))1+
1
γ for γ > 0.

Substituting in (2.11), we have

u∆(t) ≤ −P (t)

(
xδ(t)

)β
(xσ(t))γ − γ

1

p
1
γ (t)

(uσ)1+
1
γ for t ≥ T. (2.14)

Next consider the coefficient of P in (2.14). Since xσ = x + µx∆, we have

xσ(t)
x(t)

= 1 + µ(t)
x∆

x(t)
= 1 +

µ(t)

p
1
γ (t)

(
x[1](t)

) 1
γ

x(t)
. (2.15)

Also since x[1](t) is decreasing, we have

x(t) = x(T ) +

t∫
T

(
x[1](s)

) 1
γ

(
1

p(s)

) 1
γ

∆s >
(
x[1](t)

) 1
γ

t∫
T

(
1

p(s)

) 1
γ

∆s.

It follows that

x(t)(
x[1](t)

) 1
γ

≥
t∫

T

(
1

p(s)

) 1
γ

∆s = P (t, T ) for t ≥ T. (2.16)

This and (2.15) imply that

xσ(t)
x(t)

= 1 + µ(t)
x∆(t)
x(t)

= 1 +
µ(t)

p
1
γ (t)

(
x[1](t)

) 1
γ

x(t)
≤ p

1
γ (t)P (t, T ) + µ(t)

p
1
γ (t)P (t, T )

for t ≥ T.

Hence,

x(t)
xσ(t)

≥ p
1
γ (t)P (t, T )

p
1
γ (t)P (t, T ) + σ(t)− t

for t ≥ T.
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Thus for t ≥ T, we have

xδ(t)
xσ(t)

=
xδ(t)
x(t)

x(t)
xσ(t)

≥
(

xδ(t)
x(t)

)
p

1
γ (t)P (t, T )

p
1
γ (t)P (t, T ) + σ(t)− t

. (2.17)

Now, since δ(t) > t and x(t) is increasing, we have

xδ(t) > x(t). (2.18)

This and (2.17) guarantees that(
xδ(t)

)β
(xσ(t))γ ≥

(
p

1
γ (t)P (t, T )

p
1
γ (t)P (t, T ) + σ(t)− t

)β

(xσ(t))β−γ for t ≥ T. (2.19)

We consider the following cases. Case (1): β < γ. From Lemma 2.1, since x[1](t) is positive and
decreasing, we see that x[1](t) ≤ x[1](t2) = c for t ≥ t2. This implies that

x(σ(t)) ≤ x(t2) + c
1
γ

 σ(t)∫
t2

1

p
1
γ (s)

∆s

 .

Thus

xβ−γ(σ(t)) > (c2)
β

 σ(t)∫
t2

1

p
1
γ (s)

∆s


β−γ

, (2.20)

where c2 =
(

1
c

)β

. Case (2): β = γ. In this case, we see that (xσ(t))β−γ = 1. Case (3): β > γ.

In this case, since x∆(t) > 0, there exists t2 ≥ t1 such that xσ(t) > x(t) > c > 0. This implies
that (xσ(t))β−γ > c1, where c1 = cβ−γ . Combining these three cases and using the definition
of ησ(t), we see that

(xσ(t))β−γ ≥ ησ(t).

This and (2.19) imply(
xδ(t)

)β
(xσ(t))γ ≥

(
p

1
γ (t)P (t, T )

p
1
γ (t)P (t, T ) + σ(t)− t

)β

ησ(t) for t ≥ T. (2.21)

Put (2.21) into (2.14), we obtain the inequality (2.10) and this completes the proof.

Theorem 2.2 (Leighton – Wintner type). Assume that (h1) – (h3) and (1.2) hold. Furthermore,
assume that

∞∫
t0

Q(s)∆s = ∞. (2.22)
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Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) > 0 for t ≥ T (where T is as in Theorem 2.1). We consider only this case, because the
proof when y(t) < 0 is similar. Let u be defined as in Theorem 2.1. Then from Theorem 2.1, we
see that u(t) > 0 for t ≥ T and satisfies the inequality

−u∆(t) ≥ Q(t) +
γ

p
1
γ (t)

(uσ(t))1+
1
γ > Q(t) for t ≥ T. (2.23)

From the definition of x[1](t), we see that

x∆(t) =

(
x[1](t)
p(t)

) 1
γ

.

Integrating from T to t, we obtain

x(t) = x(T ) +

t∫
T

(
1

p(s)
x[1](s)

) 1
γ

∆s for t ≥ T.

Taking into account that x[1](t) is positive and decreasing, we get

x(t) ≥ x(T ) +
(
x[1](t)

) 1
γ

t∫
T

(
1

p(s)

) 1
γ

∆s for t ≥ T.

It follows that

u(t) =
x[1](t)
xγ(t)

≤

 t∫
t0

(
1

p(s)

) 1
γ

∆s

−γ

for t ∈ [T,∞)T,

which implies using (1.2) that limt→∞ u(t) = 0. Integrating (2.23) from T to ∞ and using
limt→∞ u(t) = 0, we obtain

u(T ) ≥
∞∫

T

Q(s)∆s,

which contradicts (2.22). The proof is complete.
In the following, we consider the case when

∞∫
t0

Q(s)∆s < ∞. (2.24)
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Theorem 2.3. Assume that (h1) – (h3) and (1.2) hold. Furthermore assume that there exists a
positive rd-continuous ∆-differentiable function φ(t) such that

lim
t→∞

sup

t∫
t0

[
φ(s)Q(s)− p(s)((φ∆(s))γ+1

(γ + 1)γ+1φγ(s)

]
∆s = ∞. (2.25)

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) > 0 for t ≥ T (where T is as in Theorem 2.1). We consider only this case, because the
proof when y(t) < 0 is similar. Let u be defined as in Theorem 2.1. Then from Theorem 2.1, we
see that u(t) > 0 for t ≥ T and satisfies the inequality (2.10). From (2.10), we have

u∆(t) ≤ −Q(t)− γ

p
1
γ (t)

(uσ)
γ+1

γ for t ≥ T. (2.26)

Multiplying (2.26) by φ(s) and integrating from T to t (t ≥ T ), we have

t∫
T

φ(s)Q(s)∆s ≤ −
t∫

T

φ(s)u∆(s)∆s−
t∫

T

γφ(s)

p
1
γ (s)

(uσ)
γ+1

γ ∆s.

Using integration by parts, we get

t∫
T

φ(s)Q(s)∆s ≤ u(T )φ(T ) +

t∫
T

φ∆(s)uσ(s)∆s−
t∫

t1

γφ(s)

p
1
γ (s)

(uσ)
γ+1

γ ∆s.

Setting B = φ∆(s) and A = γφ(s)p−1/γ(s) and u = uσ, and applying the inequality

Bu−Au
γ+1

γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

we have
t∫

T

φ(s)Q(s)∆s ≤ u(t2)φ(T ) +

t∫
t1

p(s)(φ∆(s))γ+1(s)
(γ + 1)γ+1φγ(s)

∆s,

i.e.,
t∫

t2

[
φ(s)Q(s)− p(s)(φ∆(s))γ+1(s)

(γ + 1)γ+1φγ(s)

]
∆s < φ(T )u(T ),

which contradicts condition (2.25). Then every solution of (1.1) oscillates. The proof is complete.
From Theorem 2.3, we can obtain different conditions for the oscillation of (1.1) by using

different choices of φ(t). For instance, if φ(t) = t, we have the following result.

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3



388 S. H. SAKER

Corollary 2.1. Assume that (h1) – (h3) and (1.2) hold. Furthermore, assume that

lim
t→∞

sup

t∫
t0

[
sQ(s)− p(s)

(γ + 1)γ+1sγ

]
∆s = ∞. (2.27)

Then every solution of (1.1) oscillates.

Another method of choosing test functions can be developed by considering the function
class < which consists of kernels of two variables. Following Saker [11], we say that a function
H ∈ < provided H is defined for t0 ≤ s ≤ t, t, s ∈ [t0,∞)T, H(t, s) ≥ 0, H(t, t) = 0 for
t ≥ s ≥ t0, and for each fixed t, H∆i(t, s) is delta integrable with respect to variable i, i = 1, 2.
Important examples of H when T = R are H(t, s) = (t − s)m for m ≥ 1. When T = Z,
H(t, s) = (t− s)k, k ∈ N, where tk = t(t− 1) . . . (t− k + 1).

The following theorem gives new oscillation criteria for (1.1) which can be considered as an
extension of Kamenev-type oscillation criterion. The proof is similar to that of the proof in [11]
(Theorem 3.3), if one uses the inequality (2.10) and hence is omitted.

Theorem 2.4. Assume that (h1) – (h3) and (1.2) hold. Let φ(t) be defined as in Theorem 2.3,
H ∈ <, and for t > s

lim
t→∞

sup
1

H(t, t0)

t∫
t0

[
H(t, s)φ(s)Q(s)− p(s)((φ∆(s))γ+1(H∆s(t, s))γ+1

(γ + 1)γ+1φγ(s)Hγ(t, s)

]
∆s = ∞. (2.28)

Then every solution of (1.1) oscillates.

With appropriate choices of the functions H one can establish a number of oscillation cri-
teria for (1.1) on different types of time scales. For instance if there exists a function h(t, s) ∈ <
such that

H∆s(t, s) := −h(t, s)H
γ

1+γ (t, s), (2.29)

we have from Theorem 2.4 the following oscillation result.

Corollary 2.2. Assume that (h1) – (h3) and (1.2) hold. Let φ(t) be defined as in Theorem 2.3,
H ∈ <, and for t > s

lim
t→∞

sup
1

H(t, t0)

t∫
t0

[
H(t, s)φ(s)Q(s)− p(s)((φ∆(s))γ+1(h(t, s))γ+1

(γ + 1)γ+1φγ(s)

]
∆s = ∞.

Then every solution of equation (1.1) is oscillatory.

As a special case by choosing H(t, s) = (t− s)m for m ≥ 1, we have from Corollary 2.2 the
following Kamenev-type oscillation criterion.

Corollary 2.3. Assume that (h1) – (h3) and (1.2) hold. If for m > 1

lim
t→∞

sup
1
tm

t∫
t0

[
(t− s)mQ(s)− mγ+1p(s)((t− s)m−1)γ+1

(γ + 1)γ+1(t− s)mγ

]
∆s = ∞,
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then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in this subsection. To obtain
conditions for oscillation we will use the facts

∞∫
t0

∆s

sν
= ∞, if 0 ≤ ν ≤ 1, and

∞∫
t0

∆s

sν
< ∞, if ν > 1. (2.30)

For more details we refer the reader to [4] (Theorem 5.68 and Corollary 5.71).

Example 2.1. Consider the following second-order neutral dynamic equation:[
y(t) +

1
2
y(τ(t))

]∆∆

+
λ (σ(t)− 1)

t3
y(δ(t)) = 0 for t ∈ [2,∞)T, (2.31)

where T is a time scale such that
∫∞
1 (σ(s)/s3)∆s < ∞. Here γ = 1, τ(t) < t, and δ(t) > t,

τ(t) and δ(t) ∈ T and limt→∞ δ(t) = limt→∞ τ(t) = ∞, r(t) = 1/2, p(t) = 1, f(t, u) = q(t)u,
where

q(t) =
λ (σ(t)− 1)

t3
,

and λ > 0 is a constant. Now take any T ≥ 2, and since p(t) = 1, we have P (t, T ) = P (t, T ) =
= t− T. This gives

Q(t) := P (t)
P (t, T )

P (t, T ) + σ(t)− t
=

λ (σ(t)− 1)
2t3

t− T

t− T + σ(t)− t
=

λ (σ(t)− 1)
t3

t− T

σ(t)− T
.

It is easy to see that assumptions (h1) – (h3) hold and also (2.24) is satisfied, since

∞∫
t0

Q(s)∆s =
λ

2

∞∫
t0

(σ(s)− 1)
s3

s− T

σ(s)− T
∆s ≤ λ

2

∞∫
2

σ(s)
s3

− 1
s3

∆s < ∞.

To apply Corollary 2.1, it remains to discuss condition (2.27). Note

lim
t→∞

sup

t∫
t0

[
sQ(s)− r(s)

(γ + 1)γ+1sγ

]
∆s =

= lim
t→∞

sup

t∫
2

(
λs (σ(s)− 1)

2s3

s− T

σ(s)− T
− 1

4s

)
∆s >

> lim
t→∞

sup

t∫
t

(
λs2

2s3
− T

2s2 (s− 1)
− 1

4s

)
∆s = ∞,

provided that λ > 1/2. Hence, by Corollary 2.1 every solution of (2.31) oscillates if λ > 1/2.

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3



390 S. H. SAKER

2.2. Oscillation criteria when δ(t) ≤ t. In this subsection, we establish some sufficient
conditions for oscillation of (1.1) when δ(t) ≤ t. We will use the following notation:

A(t) := P (t)αβ(t)ησ(t),

where ησ(t) is defined as in (2.8), and

α(t) :=
p

1
γ (t)P (δ(t), T )

p
1
γ (t)P (t, T ) + µ(t)

, where P (u, v) :=

u∫
v

1

p
1
γ (s)

∆s.

Theorem 2.5. Assume that (h1) – (h3) and (1.2) hold. Let y be a nonoscillatory solution of
(1.1) and make the Riccati substitution

w(t) :=
x[1](t)
xγ(t)

, (2.32)

where x is defined as in (1.4). Then w(t) > 0 for t ≥ T (here T is as in Lemma 2.2) and

w∆(t) + A(t) + γ
1

p
1
γ (t)

(wσ)1+
1
γ (t) ≤ 0 for t ∈ [T,∞)T. (2.33)

Proof. Let y be as above and, without loss of generality, we assume that there is t1 > t0
such that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and y(δ(t)) > 0 for t ≥ t1. From the definition
of w, by the quotient rule [4] (Theorem 1.20) and as in the proof of Theorem 2.1, we get

w∆(t) ≤ −P (t)

(
xδ(t)

)β
(xσ(t))γ − γ

1

p
1
γ (t)

(wσ(t))1+
1
γ for t ≥ T. (2.34)

Now, we consider the coefficient of P (t) in (2.34). Since x[1](t) = p
(
x∆
)γ (t) is decreasing for

t ≥ T, we have

xσ(t)− x(δ(t)) =

σ(t)∫
δ(t)

x[1](s)

p
1
γ (s)

∆s ≤ x[1](δ(t))

σ(t)∫
δ(t)

1

p
1
γ (s)

∆s,

and this implies that

xσ(t)
x(δ(t))

≤ 1 +
x[1](δ(t))
x(δ(t))

σ(t)∫
δ(t)

1

p
1
γ (s)

∆s. (2.35)

On the other hand, we have that

x(δ(t)) > x(δ(t))− x(T ) =

δ(t)∫
T

x[1](s)

p
1
γ (s)

∆s ≥ (x[1])(δ(t))

δ(t)∫
T

1

p
1
γ (s)

∆s,
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which leads to

x[1](δ(t))
x(δ(t))

<

 δ(t)∫
T

1

p
1
γ (s)

∆s


−1

.

From this and (2.35), we get that

xσ(t)
x(δ(t))

< 1 +

∫ σ(t)
δ(t) p

− 1
γ (s)∆s∫ δ(t)

T p
− 1

γ (s)∆s
=

∫ σ(t)
T p

− 1
γ (s)∆s∫ δ(t)

T p
− 1

γ (s)∆s
=

=

∫ t
T p

− 1
γ (s)∆s +

∫ σ(t)
t p

− 1
γ (s)∆s∫ δ(t)

T p
− 1

γ (s)∆s
=

=

∫ t
T p

− 1
γ (s)∆s + µ(t)p−

1
γ (t)∫ δ(t)

T p
− 1

γ (s)∆s
=

1
α(t)

for t ≥ T,

where we used the fact that,
∫ σ(t)
t f(s)∆s = µ(t)f(t). Hence, we get

x(δ(t)) ≥ α(t)xσ(t) for t ≥ T. (2.36)

This implies that (
xδ(t)

)β
(xσ(t))γ ≥ (α(t))β (xσ(t))β−γ for t ≥ T.

As in the proof of Theorem 2.1, since (xσ(t))β−γ ≥ ησ(t), we have(
xδ(t)

)β
(xσ(t))γ ≥ (α(t))β ησ(t) for t ≥ T. (2.37)

Substituting (2.37) into (2.34), we have the desired inequality (2.33). This completes the proof.

Theorem 2.6 (Leighton – Wintner type). Assume that (h1) – (h3) and (1.2) hold. Furthermore,
assume that

∞∫
t0

A(s)∆s = ∞. (2.38)

Then every solution of (1.1) oscillates.

Proof. Suppose the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) > 0 for t ≥ T (where T is as in Theorem 2.5). We consider only this case, because the
proof when y(t) < 0 is similar. Let w be defined as in Theorem 2.2. Then from Theorem 2.5, we
see that w(t) > 0 for t ≥ T and satisfies the inequality (2.33). From (2.33), we have

−w∆(t) ≥ A(t) +
γ

p
1
γ (t)

(wσ(t))1+
1
γ > Q(t) for t ≥ T. (2.39)
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From the definition of x[1](t), we see that

x∆(t) =

(
x[1](t)
p(t)

) 1
γ

.

Integrating from T to t, we obtain

x(t) = x(T ) +

t∫
T

(
1

p(s)
x[1](s)

) 1
γ

∆s for t ≥ T.

Taking into account that x[1](t) is positive and decreasing, we get

x(t) ≥ x(T ) +
(
x[1](t)

) 1
γ

t∫
T

(
1

p(s)

) 1
γ

∆s for t ≥ T.

It follows that

w(t) =
x[1](t)
xγ(t)

≤

 t∫
t0

(
1

p(s)

) 1
γ

∆s

−γ

for t ∈ [T,∞)T,

which implies using (1.2) that limt→∞w(t) = 0. Integrating (2.39) from T to ∞ and using
limt→∞w(t) = 0, we obtain

w(T ) ≥
∞∫

T

A(s)∆s,

which contradicts (2.38). The proof is complete.
In the following we consider the case when

∞∫
t0

A(s)∆s < ∞, (2.40)

and proceed as in the proof of Theorem 2.3 (use the inequality (2.33)) to get the following
results.

Theorem 2.7. Assume that (h1) – (h3) and (1.2) hold. Furthermore assume that there exists a
positive rd-continuous ∆-differentiable function φ(t) such that

lim
t→∞

sup

t∫
t0

[
φ(s)A(s)− p(s)((φ∆(s))γ+1

(γ + 1)γ+1φγ(s)

]
∆s = ∞. (2.41)

Then every solution of (1.1) oscillates.
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Theorem 2.8. Assume that (h1) – (h3) and (1.2) hold. Let φ(t) be defined as in Theorem 2.3,
H ∈ <, and for t > s

lim
t→∞

sup
1

H(t, t0)

t∫
t0

[
H(t, s)φ(s)A(s)− p(s)((φ∆(s))γ+1(H∆s(t, s))γ+1

(γ + 1)γ+1φγ(s)Hγ(t, s)

]
∆s = ∞. (2.42)

Then every solution of (1.1) oscillates.

With appropriate choices of the functions H one can establish a number of oscillation cri-
teria for (1.1) on different types of time scales. For instance if there exists a function h(t, s) ∈ <
such that (2.29) holds, we have from Theorem 2.8 the following oscillation result.

Corollary 2.4. Assume that (h1) – (h3) and (1.2) hold. Let φ(t) be defined as in Theorem 2.3,
H ∈ <, and for t > s

lim
t→∞

sup
1

H(t, t0)

t∫
t0

[
H(t, s)φ(s)A(s)− p(s)((φ∆(s))γ+1(h(t, s))γ+1

(γ + 1)γ+1φγ(s)

]
∆s = ∞. (2.43)

Then every solution of equation (1.1) oscillates.

As a special case by choosing H(t, s) = (t− s)m for m ≥ 1, we have from Corollary 2.2 the
following Kamenev-type oscillation criterion.

Corollary 2.5. Assume that (h1) – (h3) and (1.2) hold. If for m > 1

lim
t→∞

sup
1
tm

t∫
t0

[
(t− s)mA(s)− mγ+1p(s)((t− s)m−1)γ+1

(γ + 1)γ+1(t− s)mγ

]
∆s = ∞, (2.44)

then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results. To obtain the conditions for
oscillation we will use the facts in (2.30).

Example 2.2. Assume that T = R and consider the second-order neutral dynamic equation(
1
t2

((
y(t) +

δ−1(t)− 1
δ−1(t)

y(τ(t))
)′)γ)′

+
λ

t
yγ(δ(t)) = 0, t ∈ [1,∞)R, (2.45)

where γ > 0 and is a ratio of odd positive integers, τ(t) and δ(t) ∈ T and limt→∞ δ(t) =
= limt→∞ τ(t) = ∞, and τ(t) ≤ t, δ(t) ≤ t and we assume that δ−1(t) (the inverse of the
function δ(t)) exists. Here γ = β > 0,

p(t) =
1
t2

, r(t) =
δ−1(t)− 1

δ−1(t)
= 1− 1

δ−1(t)
, and q(t) =

λ

t
, λ > 0.

This gives (noting α(t) = 1, and ησ(t) = 1) that

A(t) = P (t) = q(t)(1− r(δ(t))γ =
λ

tγ+1
.
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We apply Theorem 2.7. It is easy to see that the assumptions (h1) – (h3), and (1.2) hold, since

∞∫
t0

(
1

p(t)

) 1
γ

∆t =

∞∫
t0

t
2
γ dt = ∞.

Also (2.40) is satisfied, since

∞∫
t0

A(s)∆s = λ

∞∫
t0

1
sγ+1

ds < ∞.

Finally we discuss (2.41). Note, by choosing φ(t) = tγ , that

lim
t→∞

sup

t∫
t0

[
φ(s)A(s)− p(s)((φ∆(s))γ+1

(γ + 1)γ+1φγ(s)

]
∆s =

= lim
t→∞

sup

t∫
t0

[
sγ λ

sγ+1
− γγ+1(sγ−1)γ+1

(γ + 1)γ+1 (sγ)γ s2

]
ds =

= lim
t→∞

sup

t∫
t0

[
λ

s
− γγ+1

(γ + 1)γ+1s3

]
ds = ∞,

provided that λ > 0. Then by Theorem 2.7 every solution of (2.45) oscillates if λ > 0. Note
that none of the results established in [1 – 3, 7, 8, 11 – 13, 15, 16] can be applied to (2.45), since

p∆(t) = p
′
(t) = − 2

t3
< 0.

3. Oscillation criteria when (1.3) holds. In this section, we consider the case when δ(t) ≤
≤ τ(t) ≤ t and (1.3) holds and establish some sufficient conditions for oscillation of (1.1). We
will use the following notations:

g(t) := q(t)(1− r(t))β, π(t) :=

∞∫
t

(
1

p(s)

) 1
γ

∆s.

Remark 3.1. We note from the proof of Lemma 2.1 that if (1.2) holds, then the case x(t)
x[1](t) < 0 is disregarded and x(t)x[1](t) > 0 for t ≥ T. So if (1.2) does not hold, i.e., when
(1.3) holds, we see that if y is a nonoscillatory solution of (1.1) on [t0,∞)T and x is defined as
in (1.4), then x[1](t) is of one sign and there exists T > t0 (where T ≥ t0 is chosen sufficiently
large) such that

x(t)x[1](t) > 0 for t ≥ T, (3.1)
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or

x(t)x[1](t) < 0 for t ≥ T. (3.2)

To prove the main results in this section when (1.3) holds, we need the following lemma.

Lemma 3.1. Assume that (h1) – (h3), (1.3) hold, τ∆(t) ≥ 0 and r∆(t) ≥ 0. Suppose that
(1.1) has a nonoscillatory solution y on [t0,∞)T and x is defined as in (1.4) such that (3.2) holds.
Then there exists T ≥ t0 such that

(p(t)
(
x∆(t)

)γ
)∆ + g(t)xβ(t) ≤ 0 for t ≥ T. (3.3)

Proof. Assume that y(t) is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,∞)T so that
t1 > t0 and so that y(t) > 0, y(τ(t)) > 0, y(τ(t)) > 0 and y(δ(t)) > 0 on [t1,∞)T. (Note
that in the case when y(t) is negative the proof is similar, since the transformation y(t) = −z(t)
transforms (1.1) into the same form.) Since y is a positive solution of (1.1) and q(t) > 0, we
have

(x[1](t))∆ ≤ −q(t)yβ(δ(t)) < 0 for t ∈ [t1,∞)T. (3.4)

Then x[1](t) is strictly decreasing on [t1,∞)T and of one sign. Since y is a positive solution of
(1.1) and q(t) > 0, and (3.2) holds, we see that (note x[1](t) < 0 and p(t) > 0)

x(t) > 0, x∆(t) < 0, and
(
x[1](t)

)∆
< 0 for t ≥ t1. (3.5)

Since x(t) is decreasing, we may assume without loss of generality that y(t) is also decreasing. If
this is not the case, i.e., y(t) and y(τ) are increasing for t ≥ t1, we see that x(t) is also increasing
for t ≥ t1, since

x∆(t) = y∆(t) + r∆(t)y(τ(t)) + rσ(y(τ(t))∆ > y∆(t) > 0

(note r(t) ≥ 0 and r∆(t) ≥ 0), which is a contradiction with x∆(t) < 0 for t ≥ t1. This implies
from (1.4) and (2.6) (note x(t) > y(t)) that

x(t) = y(t) + r(t)y(τ(t)) ≤ y(τ(t)) + r(t)x(τ(t)) ≤ y(τ(t))[1 + r(t)] for t ≥ t1.

Thus

y(τ(t)) ≥ x(t)
1 + r(t)

for t ≥ t1.

Since 0 ≤ r(t) < 1, we have 1 ≥ 1 − r2(t), which implies that 1/(1 + r(t)) ≥ (1− r(t)) .
Therefore

y(τ(t)) ≥ x(t)(1− r(t)) for t ≥ t1.

Since δ(t) ≤ τ(t) for t ≥ t2, where t2 > t1 is chosen large enough (note y(t) is decreasing), we
have

y(δ(t)) ≥ (1− r(t))x(t) for t ≥ t2. (3.6)
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From (3.4) and the last inequality, we have inequality (3.3) and this completes the proof.

Theorem 3.1. Assume that (h1) – (h3), (1.3) hold, τ∆(t) ≥ 0 and r∆(t) ≥ 0. Furthermore,
assume that (2.38) holds and there exists T ∈ [t0,∞)T such that

∞∫
T

 1
p(s)

s∫
T

g(u)πβ(u)∆u

 1
γ

∆s = ∞. (3.7)

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(τ(t)) > 0, and y(δ(t)) > 0
for t ≥ T (where T is chosen large enough so the conclusions of Lemmas 2.2 and 3.1 hold).
We consider only this case, because the proof when y(t) < 0 is similar. From Remark 3.1, there
are two possible cases: (3.1) and (3.2). First, we consider (3.1). In this case we proceed as in
the proof of Theorem 2.6 and define u(t) as in (2.9) to get a contradiction with (2.38). Now,
we consider (3.2). Proceed as in the proof of Lemma 3.1 to get the inequality (3.3) where x(t)
satisfies (3.5) for t ≥ T. From (3.5), since x[1](t) < 0, we have for s ≥ t ≥ T that −x[1](s) ≥
≥ −x[1](t), or

p(s)(−x∆(s))γ ≥ p(t)(−x∆(t))γ ,

and hence

−x∆(s) ≥
(

1
p(s)

) 1
γ (

p(t)(−x∆(t))γ
) 1

γ .

Integrating from t(≥ T ) to u (≥ t) and letting u → ∞, yields

x(t) > −x(∞) + x(t) ≥
(
p(t)(−x∆(t))γ

) 1
γ

∞∫
t

(
1

p(s)

) 1
γ

∆s = p
1
γ (t)(−x∆(t)π(t) for t ≥ T.

From this, since p
1
γ (t)(−x∆(t) is decreasing, we have

x(t) ≥ p
1
γ (T )(−x∆(T )π(t) = cπ(t) for t ≥ T, (3.8)

where c = p
1
γ (T )(−x∆(T ) > 0. Using (3.8) in (3.3), we get

(p(t)
(
x∆(t)

)γ
)∆ + g(t)cβπβ(t) ≤ 0 for t ≥ T.

Integrating the last inequality from T to t, we have

−p(t)
(
x∆(t)

)γ ≥ −p(T )
(
x∆(T )

)γ
+ cβ

t∫
T

g(s)πβ(s)∆s ≥ cβ

t∫
T

g(s)πβ(s)∆s,
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or

−x∆(t) ≥ c
β
γ

 1
p(t)

t∫
T

g(s)πβ(s)∆s


1
γ

.

Integrating from T to t, we obtain

∞ > x(t1) > x(t1)− x(t) ≥ c
β
γ

t∫
T

 1
p(s)

s∫
T

g(u)πβ(u)∆u

 1
γ

∆s,

which contradicts (3.7). This completes the proof.

Remark 3.2. Note the difference between the inequality (2.4) when (1.2) holds, and the
inequality (3.3) when (1.3) holds.

Example 3.1. Assume that T = R and consider the neutral equation(
t2
(

y(t) + (1− 1
t
)y(λt)

)′)′

+
κt2

α(t)
y(

λ

2
t) = 0, t ∈ [1,∞)R, (3.9)

where τ(t) = λt > δ(t) =
λ

2
t and α(t) = P (δ(t), T )/P (t, T ) > 0 for any T ≥ 1. Here

γ = β = 1, 0 < λ < 1, and

p(t) = t2, r(t) =
(

1− 1
t

)
, and q(t) = κt2, where κ > 0.

This gives (noting ησ(t) = 1) that

A(t) = P (t)α(t) = α(t)q(t)(1− r(δ(t)) =
2κt

λ
, g(t) = 2κt,

and

π(t) :=

∞∫
t

(
1

p(s)

) 1
γ

∆s =

∞∫
t

1
s2

ds =
1
t
.

It is easy to see that the assumptions (h1) – (h3), and (1.3) hold, since

∞∫
1

(
1

p(s)

) 1
γ

∆s =

∞∫
1

1
s2

ds ≤ ∞. (3.10)

To apply Theorem 3.1, it remains to discuss (2.38) and (3.7). First, we discuss (2.38). It is clear
that (2.38) is satisfied since

∞∫
t0

A(s)∆s =

∞∫
t0

A(s)ds =

∞∫
1

2κs

λ
ds = ∞.

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3



398 S. H. SAKER

It remains to discuss the condition (3.7). Note

∞∫
T

 1
p(s)

s∫
T

g(u)πβ(u)∆u

 1
γ

∆s = 2κ

∞∫
1

 1
s2

s∫
1

s
1
s
∆u

 ds = κ

∞∫
1

(
1
s2

(s− 1)
)

ds = ∞.

Then by Theorem 3.1, every solution of (3.9) oscillates. Note that none of the results established
in [1, 2, 3, 7, 8, 11 – 13, 15, 16] can be applied on (3.9), since (1.2) does not hold (see (3.10)).

Remark 3.3. In Theorem 3.1, we used the condition (2.38) to get a contradiction if the (3.1)
holds. Also we can use the conditions (2.41), (2.42), (2.43) and (2.44) to get a counteraction. For
the case when (3.2) holds we proceed as in the proof of Theorem 3.1 to get a contradiction with
(3.7). So that the following results can similarly be stated. There are, however, no new principles
involved.

Theorem 3.2. Assume that (h1) – (h3), (1.3), τ∆(t) ≥ 0 and r∆(t) ≥ 0 hold. Furthermore,
assume that (2.41) holds and there exists T ∈ [t0,∞)T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.3. Assume that (h1) – (h3), (1.3) hold, τ∆(t) ≥ 0 and r∆(t) ≥ 0. Furthermore,
assume that (2.42) holds and there exists T ∈ [t0,∞)T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.4. Assume that (h1) – (h3), (1.3) hold, τ∆(t) ≥ 0 and r∆(t) ≥ 0. Furthermore,
assume that (2.43) holds and there exists T ∈ [t0,∞)T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.5. Assume that (h1) – (h3), (1.3) hold, τ∆(t) ≥ 0 and r∆(t) ≥ 0. Furthermore,
assume that (2.44) holds and there exists T ∈ [t0,∞)T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Remark 3.4. We note that the results in Theorems 3.1 – 3.5 are valid only when δ(t) ≤ τ(t) ≤
≤ t. So it would be interesting to consider the case when this condition is not satisfied and find
new oscillation criteria when (1.3) holds. Also it would be interesting to find new conditions
different from the condition (3.7).
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