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Our aim in this paper is to esatblish some sufficent conditions for oscillation of the second-order quasili-
near neutral functional dynamic equation

(o) (1®) + v O)2) ) + Fu60) = 0.t € fro.00)

on a time scale T, where | f(t,u)| > q(t) |uﬁ’ , 7, p and q are real valued rd-continuous positive functions
defined on T, v and 3 > 0 are ratios of odd positive integers. Our results do not require that v = 3 > 1,

pa(t) =0, [ ((125)) " At = coand J22 68 (s)a(s)[1—=r(8(s))]P As = oo. Some examples are considered
0 p 0
to illustrate the main results.

Memoro cmammi € 6BCMaH08AeHHA 0eAKUX OOCHAMMIX YMO8 OCUUAAUTIIHOCMI K8A3INIHILIHO20 HelIMPaib-
HO (PYHKUIOHAAbHO20 OUHAMIYHOZ0 PIBHAHHA

(p(®) (v + @ @I*) ) + FEp(60) = 0, ¢ € fro.00)z,

Ha yacositi rpamui T, Oe | f(t,u)| > q(t) |uﬁ| , 7, pma q — OIICHO3HAYHI Td-Henepeps8Hi 000amHi (yHkK-
yit, wo eusnaveni Ha T,y ma § > 0 € iOHOUWEeHHAMU HeNAPHUX 000AMHUX yiaux ducea. Ompumani
1
1 ¥
Pe3yabmamu He 6UMA2AI0Mb 6UKOHAHHA yMo6 v = (3 > 1, p~(t) > 0, f;o <(t)> At = oo ma
p
ftzo 58 (s)q(s)[1 — 7(8(5))]PAs = oco. Hasedeno deski hpukaadu, ujo ialocmpyrons OCHOSHI pe3yabma-
mu.

1. Introduction. In this paper, we consider the quasilinear neutral functional dynamic equation

(o(0) (1) + r@uO)2) ) + @) =0 (L1)

on a time scale T. Throughout this paper, we will assume the following hypotheses:
(h1) r, p and q are real valued rd-continuous positive functions defined on T, 0 < r(¢) < 1,
(hs2) ~y is a ratio of odd positive integers, 7 : T — T, : T — T, 7(¢t) < tforallt € T and
limy—,00 6(t) = limy—oo 7(t) = o0,
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380 S. H. SAKER

(h3) f(t,u) : T x R — R is continuous function such that uf(¢,u) > 0 for all u # 0 and
there exists a positive rd-continuous function ¢(t) defined on T such that | f(t,u)| > q(t)[u”|,
where # > 0 is a ratio of odd positive integers.

We shall also consider the two cases:

/ (p(lt)) T At 0, (12)

and

j(p(lt)) " At < o (13)

0

Since we are interested in the oscillatory and asymptotic behavior of solutions of (1.1) near
infinity, we assume that sup T = oo, and define the time scale interval [tg, c0)r by [tg, 00)T =
:= [to, 00) N T. Throughout this paper these assumptions will be supposed to hold. Let 7*(¢) =
= min{7(¢),d(t)} and let Ty = min{7*(¢) : ¢ > 0} and 7*,(¢t) = sup{s > 0 : tau™(s) < t} for
t > Ty. Clearly if 7#(t) < t, then 7*,(t) > tfort > Tp, 7*,(¢) is nondecreasing and coincides
with the inverse of 7*(¢) when the latter exists. Throughout the paper, we will use the following
notations:

z(t) == yt) +r@®y(r(t), M= pa®), 2P .= (@), (1.4)

By a solution of (1.1), we mean a nontrivial real-valued function y which has the properties = €
€ CL [, (to), ), and z1 € O [7*,(t), 00) where C.. is the space of rd-continuous functions.
Our attention is restricted to those solutions of (1.1) which exist on some half line [t,, c0) and
satisfy sup{|y(t)| : t > t1} > Oforanyt; > t,. A solution y of (1.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.

Much recent attention has been given to dynamic equations on time scales (or measure
chains), and we refer the reader to the landmark paper of Hilger [6] for a comprehensive
treatment of the subject. Since then several authors have expounded on various aspects of this
new theory [5]. A book on the subject of time scales, by Bohner and Peterson [4], summarizes
and organizes much of time scale calculus.

The three most popular examples of calculus on time scales are differential calculus, di-
fference calculus, and quantum calculus (see Kac and Cheung [9]), i.e., when T = R, T = N
and T =¢N =t:t=¢" ke N, qg> 1.

Dynamic equations on a time scale have an enormous potential for applications such as in
population dynamics. For example, it can model insect populations that are continuous while in
season, die out in say winter, while their eggs are incubating or dormant, and then hatch in a new
season, giving rise to a nonoverlapping population (see [4]). There are applications of dynamic
equations on time scales to quantum mechanics, electrical engineering, neural networks, heat
transfer, and combinatorics. A recent cover story article in New Scientist [14] discusses several
possible applications. A time scale T is an arbitrary nonempty closed subset of the real numbers

ISSN 1562-3076. Heainitini koausanns, 2010, m. 13, N2 3



OSCILLATION CRITERIA FOR SECOND-ORDER QUASILINEAR... 381

R. The set of all such rd-continuous functions is denoted by C,4(T). The graininess function p
for a time scale T is defined by u(t) := o(t) — ¢, and for any function f : T — R the notation
f9(t) denotes f(o(t)).

In recent years there has been much research activity concerning the oscillation and nonosci-
llation of solutions of second-order neutral dynamic equations on time scales, we refer the
reader to the papers [1-3, 7, 8, 11-13, 15, 16]. We note that all the results obtained in these
papers are given for neutral delay dynamic equations when (1.2) holds,

1=Bz L A0 20 and [ 5 Es)-rG(s)]As = . (15)

The question now is: If it is possible to find new oscillation criteria for (1.1) without (1.5)? Our
interest is to give an affirmative answer to this question and to establish some oscillation criteria
for (1.1) that do not require.

v=B>1, P20, / 59(5)a(s)[1 — r(6(s))]PAs = oo, (16)

The paper is organized as follows. In Section 2, we consider the case when (1.2) holds and in
Section 3, we consider the case when (1.3) holds. Our results are essentially new for (1.1) even
in the case when v = 3 and can be applied when v and/or 3 < 1. Applications to equations to
which previously known criteria for oscillation are not applicable are given.

2. Oscillation criteria when (1.2) holds. In this section, we establish some sufficient condi-
tions for oscillation of (1.1) when (1.2) holds. In the subsection 2.1, we consider the case when
d(t) > t and the case when (¢) < t will be considered in the subsection 2.2. To prove the main
results we need the following Lemmas which play important roles in the proofs of the main
results even in the case when (1.3) holds.

Lemma 2.1. Assume that (hy)—(hs), (1.2) hold and (1.1) has a nonoscillatory solution y on
[to, 00)T and x is defined as in (1.4). Then there exists T > to such that x(t)zM(t) > 0 fort > T.

Proof. Assume that y(t) is a positive solution of (1.1) on [tg, co)t. Pick t; € [tg, 00)T so that
t1 > top and so that y(t) > 0, y(7(¢)) > 0, and y(4(¢t)) > 0 on [t1,00)r. (Note that in the case
when y(t) is negative the proof is similar, since the transformation y(t) = —z(t¢) transforms (1.1)
into the same form.) Since y is a positive solution of (1.1) and ¢(¢) > 0, we have (by (h3)) that

(«M(#)* < —q(t)y”(5(t)) <0 for t € [t1,00)r. 2.1)
Then z[(t) is strictly decreasing on [t;,o0)r and of one sign. We claim that z[!l(t) > 0 on

[t1,00)T. Assume not. Then thereis a t € [t1, 0o)r such that (note z[!(¢) is strictly decreasing)
z1(t3) = ¢ < 0. Then from (2.1), we have z!)(t) < c¢fort > t, and therefore

1
5

(t)

(o)

2B (t) < for t € [ta,00)T. (2.2)

2=

p
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382 S. H. SAKER

Integrating the last inequality form ¢ to ¢, we find from (1.2) that

t t

x(t) = x(t2) —l—/xA(s)As < z(t2) -l—ci/ 1A(5) — —00 as t — oo, (2.3)
ta i, P78

which implies that z is eventually negative. This contradiction completes the proof.

Lemma 2.2. Assume that (h1)—(hs), (1.2) hold and (1.1) has a nonoscillatory solution y on
[to, o0)T and x is defined as in (1.4). Then there exists T > t, such that

(p(t) («2(t))")> + P()2"(5(t) <0 for > T, (2.4)
where

P(t) = q(t)(1 —r(5(t)))". (2.5)

Proof. Assume that y(t) is a positive solution of (1.1) on [tg, c0)t. Pick t; € [tg, 00)T so that
t1 > to and so that y(t) > 0, y(7(t)) > 0, y(7(7(t))) > 0 and y(5(¢t)) > 0 on [t1,c0)r. (Note
that in the case when y(t) is negative the proof is similar, since the transformation y(t) = —z(¢)
transforms (1.1) into the same form.) Since y is a positive solution of (1.1) and ¢(¢) > 0, from
Lemma 2.1, we see that (note z[!!(£) > 0 and p(t) > 0)

A
2(t) >0, z2() >0 and (;cm (t)) <0 for t>t. (2.6)
Since 7(t) < t and r(t) > 0, we have (1.4) and (2.6) that

z(t) = y(@) +r®)y(r(t) < y(t) +rB)z(r(t) < y(t) +r@)z(t) for ¢ >t

Thus y(t) > (1 —r(t))z(t) for t > ;. Then for t > to, where to > t; is chosen large enough,
we have

y(6(1)) = (1 —r(6(2)=(5(t))- (2.7)
From (2.1) and the last inequality, we have inequality (2.4) and this completes the proof.

2.1. Oscillation of (1.1) when §(t) > t. In this subsection, we establish some sufficient
conditions for oscillation of (1.1) when (1.2) holds and §(t) > ¢. We introduce the following
notations:

1

1/ s t 5
Q(t) := P(t) <p1/7(p (t)P(t,T)t)_t> (6, PT) = / <1> As,
T

tP(t,T) + of p(s)
and
1, it B=nr,
o o(t) By
OR ( I 3()&) it A<, (2.8)
p7 (s
1, it B >7,
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where T' > 1 is chosen sufficiently large and ¢; and ¢z are any positive constants. We start with
the following theorem.

Theorem 2.1. Assume that (h1)— (hs) and (1.2) hold. Let y be a nonoscillatory solution of
(1.1) and make the Riccati substitution

u(t) :== (2.9)

where x is defined as in (1.4). Then u(t) > 0 fort > T (here T is as in Lemma 2.2) and

WA )+ Q) + 17( | W ()7 <0 for te [T,o00)m (2.10)
p(t

Proof. Let y be as above and without loss of generality, we assume that there is a t; > g
such that y(t) > 0, y(7(t)) > 0, y(7(7(t))) > 0and y(6(¢)) > 0 for ¢ > t;. Then from Lemma
2.1 and (1.4), there exists 7" > t; such that

z(t) >0, zM@) >0, and zP) <0 for t>T.

By the quotient rule [4] (Theorem 1.20) and the definition of u(t), we have

P(al(e) — @ ()2 ) P @) @) )
21(0) (7 (1))

uP(t) = = .
© @) @) () @)
From Lemma 2.2, we see that

B
Ay < _pp &0 @Ol @2.11)

B (zo(®)”  a(t) (z7())"

By the Potzsche chain rule ([4], Theorem 1.90), if f2(t) > 0 and v > 1 (note f7 > f) we
obtain

(F1O) =7 [ [£&) +phfA@®)]" FAE)dn >

o _

> [ (F@O) 12 (0)dh = A (F(0) 1 FA@). (2.12)

o _

Also by the Pétzsche chain rule ([4], Theorem 1.90), if f2(t) > 0 and 0 < v < 1, we obtain

o —__

(PO =~ [ [F&) +hu@) fA0] " dh f2 1) >

(f7@) 7 dRfA () = A7) A (R). (2.13)

vV
2
o _
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384 S. H. SAKER
Now from (2.12) and (2.13), using f(t) = x(t) and the fact that z(¢) is increasing and z[!(¢) is
decreasing, we have, for v > 1, that

(@) 2@ _ 7 (@0@)7 (@)
@) @m) = e

prac(t) (27(t)) P (t)

Also for 0 < v < 1, we have

(27 ()™ =1 (¢) y(x[l](t))"((g;[ll)"(t))%: L e
FOEO) © poeoren o

Thus A
CHONEO) 1. L
Ty 2 T T fer v

Substituting in (2.11), we have

5(4))?
WA(t) < —P(t) (xg(t)),y @) for t>T (2.14)
@2()" " py @)
Next consider the coefficient of P in (2.14). Since 27 = z + puz™, we have

1

27 (t) z® u(t) (=)
=14 pult)— =1+ . 2.15
an T T e —

+
ﬂ\“
E
4\»—‘
N
g
o~
N———
g
»
V
—
=
=
2=
H\_.H-

It follows that
) (N
ol (t))% > T/ (p(s)) As = P(t,T) for t>T. (2.16)
This and (2.15) imply that
2 (t) _ ) ) @V0)T g OPET) + )
0 1+ p(t) (1) 71+p%(t) o0 < p%()P(t n for t>T.
Hence
) o P (PET) for 5T

[un
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Thus for ¢ > T, we have

P a0 alt) | (20 pOPHT)
zo(t)  a(t) xo(t) = < )p : (2.17)

Now, since 6(¢) > t and z(t) is increasing, we have
22 (t) > x(t). (2.18)

This and (2.17) guarantees that

( p> (1) P(t,T)
(@)~ \pr ()P, T) + o(t) — ¢

B
) ()’ for t>T. (2.19)

We consider the following cases. Case (1): 3 < . From Lemma 2.1, since z[!(¢) is positive and
decreasing, we see that z[!(¢) < z(ty) = cfort > t,. This implies that

a(t)

2(o(t)) < x(ts) + ¢ = As
2 Z p7(s)
Thus
() B—
PN o) > () / Loas| o, (2.20)
i p(s)

1\7?
where c; = (c> . Case (2): 8 = ~. In this case, we see that (z°(¢))°™" = 1. Case (3): 8 > 1.

In this case, since 2 () > 0, there exists t5 > t; such that z7(¢t) > z(t) > ¢ > 0. This implies
that (z7(¢))°™ > ¢, where ¢; = ¢?~7. Combining these three cases and using the definition
of n?(t), we see that

(27(1)777 = 07 (2).

This and (2.19) imply
B 1 B
(a*t)” 2( _ P WP®T) ) O for t3T. 221)
(7 (t)) pr (P, T) +o(t) —t

Put (2.21) into (2.14), we obtain the inequality (2.10) and this completes the proof.

Theorem 2.2 (Leighton — Wintner type). Assume that (hy) - (hs) and (1.2) hold. Furthermore,
assume that

/Q(S)As = oo. (2.22)
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386 S. H. SAKER

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(7(t)) > 0, y(7(7(¢))) > 0 and
y(6(t)) > 0fort > T (where T is as in Theorem 2.1). We consider only this case, because the
proof when y(¢) < 0is similar. Let u be defined as in Theorem 2.1. Then from Theorem 2.1, we
see that u(t) > 0 for t > T and satisfies the inequality

A > Q) + W ()7 > Q(t) for t>T. (2.23)

dﬂdﬂ+j(mgﬂ%0$m;brt>T

Taking into account that z[*/(¢) is positive and decreasing, we get

1

Ly
x(t)zx(TH(x[l](t)) T/<p(5)> As for t>T.

It follows that

-

u(t) = () /t<p1>iAs for ¢ € [T,o00)r,

which implies using (1.2) that lim; . u(t) = 0. Integrating (2.23) from 7" to oo and using
limy_, u(t) = 0, we obtain

u(T) > / Q(s)As,
T

which contradicts (2.22). The proof is complete.
In the following, we consider the case when

/Q(S)As < 00. (2.24)
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Theorem 2.3. Assume that (h1)—-(hs) and (1.2) hold. Furthermore assume that there exists a
positive rd-continuous A-differentiable function ¢(t) such that

/ s)((¢2(s))7 1!
tlg(r)lo sup/ [qﬁ(s)@(s) — 2(9§ i((lq;yjl;g(s) As = 0. (2.25)

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(7(t)) > 0, y(7(7(¢))) > 0 and
y(6(t)) > 0fort > T (where T is as in Theorem 2.1). We consider only this case, because the
proof when y(¢) < 0 is similar. Let u be defined as in Theorem 2.1. Then from Theorem 2.1, we
see that u(t) > 0 for ¢t > T and satisfies the inequality (2.10). From (2.10), we have

v+1

WAt < —Qt) — —— ()T for t>T. (2.26)
p (1)

Multiplying (2.26) by ¢(s) and integrating from 7" to ¢t (¢t > T'), we have

t

] (5)Q(s)As < — / $(s)u™(s)As — / 190) 2y s,
T T

T

Using integration by parts, we get

t ¢ .
/(b(S)Q(s)AS = “(T)¢(T)+/¢A(3)u“(s)A3—/7?(8) (W) As.
g T 1 p7(s)
Setting B = ¢ (s) and A = vé(s)p~/7(s) and u = u°, and applying the inequality
a+1 f)/'Y B’Y+1
Bu — Au ~ S("y—kl)'y—"_l A
we have
| [ p(s)(62(5) 741 (5)
T/ PGB St / (v + 1)+ (s) as
i.e.,

t

p(s) (@2 (s))7F ()

— A T)u(T

[ ot - B As < seryu),
to

which contradicts condition (2.25). Then every solution of (1.1) oscillates. The proof is complete.

From Theorem 2.3, we can obtain different conditions for the oscillation of (1.1) by using

different choices of ¢(t). For instance, if ¢(t) = ¢, we have the following result.
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388 S. H. SAKER

Corollary 2.1. Assume that (hy)— (hs) and (1.2) hold. Furthermore, assume that

t

tlggo sup/ [SQ(S) - (7—1—])1(;7)“57 As = oo. (2.27)
to

Then every solution of (1.1) oscillates.

Another method of choosing test functions can be developed by considering the function
class ® which consists of kernels of two variables. Following Saker [11], we say that a function
H € R provided H is defined for ty < s < t, t,s € [tg,00)T, H(t,s) > 0, H(t,t) = 0 for
t > s > to, and for each fixed t, H>i(t, s) is delta integrable with respect to variable i, i = 1, 2.
Important examples of H when T = R are H(t,s) = (t —s)™ form > 1. When T = Z,
H(t,s) = (t—s)k k € N, where t& = t(t —1)...(t —k+1).

The following theorem gives new oscillation criteria for (1.1) which can be considered as an
extension of Kamenev-type oscillation criterion. The proof is similar to that of the proof in [11]
(Theorem 3.3), if one uses the inequality (2.10) and hence is omitted.

Theorem 2.4. Assume that (hy)— (hs) and (1.2) hold. Let ¢(t) be defined as in Theorem 2.3,
H € R,and fort > s

. 1 p(s) (9 ()T (HA (1, 5)) ™
tlirglosupf‘f(t,to)/ [H(t75)¢(S)Q(S) - (v + 1)7F1g7(s)H (1, 5)

to

As = c0.  (2.28)

Then every solution of (1.1) oscillates.

With appropriate choices of the functions H one can establish a number of oscillation cri-
teria for (1.1) on different types of time scales. For instance if there exists a function h(¢,s) € R
such that

HA(t,5) = —h(t,s)HT (L, 5), (2.29)

we have from Theorem 2.4 the following oscillation result.
Corollary 2.2. Assume that (hy)— (hs) and (1.2) hold. Let ¢(t) be defined as in Theorem 2.3,
H € R, and fort > s

t

lim SuPH(tl,to)/ [H(t,s)qﬁ(s)@(s)

t—o00
to

PG (At )]
(3 + 177167 (s)

s = OQ.

Then every solution of equation (1.1) is oscillatory.

As a special case by choosing H(t,s) = (t —s)" for m > 1, we have from Corollary 2.2 the
following Kamenev-type oscillation criterion.

Corollary 2.3. Assume that (hy)—(hs) and (1.2) hold. If for m > 1

t

lim sup — [(t —9mQ(s)

t—o0 t

mp(s)((t — s)™ )7
(™

As = oo,

to
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OSCILLATION CRITERIA FOR SECOND-ORDER QUASILINEAR... 389

then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in this subsection. To obtain
conditions for oscillation we will use the facts

/j:oo7 if 0<v<1, and /Vs<oo, it v>1. (2.30)
s s
to to

For more details we refer the reader to [4] (Theorem 5.68 and Corollary 5.71).

Example 2.1. Consider the following second-order neutral dynamic equation:

AA
[y(t) + ;y(T(t))] + )\((y(?,)_l)y@(t)) =0 for te€ [2,00)T, (2.31)
where T is a time scale such that [[(o(s)/s*)As < oco. Here v = 1, 7(t) < ¢, and §(¢) > t,
7(t) and §(t) € T and limy—,oo 6(t) = limy_,oo 7(¢) = o0, 7(t) = 1/2, p(t) = 1, f(t,u) = q(t)u,

where
Ale(t) = 1)
q(t) = s
and A\ > 0is a constant. Now take any 7' > 2, and since p(t) = 1, we have P(¢,T) = P(t,T) =
= t — T This gives

P(t,T) Ao -1) =T Ao(t)—1) t-T

QO =PORG Ty o 1~ 28 i Tire® -t B o) T

It is easy to see that assumptions (h;)— (hs) hold and also (2.24) is satisfied, since

Jawas=d [zt ooty A fot Ly

2

To apply Corollary 2.1, it remains to discuss condition (2.27). Note

tli)rgo sup/t |:8Q(S) - (’YTLTl(;LlSJ As =

to

¢
L As(o(s)—1) s—T 1
N tll)nolosup/ < 2s3 o(s)—T 4s As >
2

t
. As? T 1
- tlirgosup/ (253 S 22(s—1) 45> As = oo,
t

provided that A > 1/2. Hence, by Corollary 2.1 every solution of (2.31) oscillates if A > 1/2.
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390 S. H. SAKER

2.2. Oscillation criteria when 6(t) < t. In this subsection, we establish some sufficient
conditions for oscillation of (1.1) when §(¢) < ¢t. We will use the following notation:

A(t) = P(t)a’ () (t),

where 77 (t) is defined as in (2.8), and

u

a(t) = Ip%(t)P(é(t),T) ,  where P(u,v) ::/ 11 As.
pr (H)P(t,T) + pu(t) 5 p(s)

Theorem 2.5. Assume that (h1)—(hs) and (1.2) hold. Let y be a nonoscillatory solution of
(1.1) and make the Riccati substitution

w(t) = (2.32)

where x is defined as in (1.4). Then w(t) > 0 fort > T (here T is as in Lemma 2.2) and

WA+ AW +y—— () (£) <0 for te [T, o00)r. (2.33)

Proof. Let y be as above and, without loss of generality, we assume that there is t; > ¢y
such that y(t) > 0, y(7(¢t)) > 0, y(7(7(t))) > 0 and y(6(¢)) > 0fort > t;. From the definition
of w, by the quotient rule [4] (Theorem 1.20) and as in the proof of Theorem 2.1, we get

5(t))” 1

w?(t) < —P(t) (=°()) e (TN for ¢ > T. (2.34)

(z7(2))" 5 (t

P (1)

Now, we consider the coefficient of P(t) in (2.34). Since z!l(t) = p (2)” (t) is decreasing for
t > T, we have

1
A ) iy ()
and this implies that
(1) sy 1
X X
<1+ / As. (2.35)
x(6(t x(5(t 5
(0(t)) (0(t)) sy 27 ()
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which leads to
—1

AV(5(0) |
20) / r A

From this and (2.35), we get that

) fg’S’p—%( JAs 7053 ()
T00) T RO A 20 s)

S As

pr ? As—i—fg(t -3 7(s)As

T =

fT p 7 (s)As
_ Jrr” v(s)AsTm O st
fT(t 7 (s)As a(t)

where we used the fact that, ft"(t) f(s)As = pu(t)f(t). Hence, we get

z(6(t)) > a(t)z’(t) for t>T. (2.36)
This implies that
(1))’
w > (a(t)? (7))’ for t>T.
As in the proof of Theorem 2.1, since (z7(¢))?™ > 57(t), we have
B
gi((?)g > ()P o (t) for t>T. (2.37)

Substituting (2.37) into (2.34), we have the desired inequality (2.33). This completes the proof.

Theorem 2.6 (Leighton — Wintner type). Assume that (hy) — (hs) and (1.2) hold. Furthermore,
assume that
/A(S)As = 0. (2.38)

to
Then every solution of (1.1) oscillates.

Proof. Suppose the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(¢) > 0, y(7(¢)) > 0, y(7(7(¢))) > 0 and
y(0(t)) > 0fort > T (where T is as in Theorem 2.5). We consider only this case, because the
proof when y(t) < 01is similar. Let w be defined as in Theorem 2.2. Then from Theorem 2.5, we
see that w(t) > 0fort > T and satisfies the inequality (2.33). From (2.33), we have

WA (t) > Al + L (W (1) > Q) for t>T. (2.39)
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From the definition of z[!(¢), we see that

Integrating from 7" to ¢, we obtain
t . 1
5
x(t) = x(T —i—/(xms) As for t>T.
=0+ [ (")

Taking into account that z!!1(¢) is positive and decreasing, we get

1

Ly
x(t)zx(TH(x[l](t)) T/<p(5)> As for t>T.

It follows that

0] / 1 ¥ B
w(t) = ;(ﬂ’(t) < (/ <p(8)> As) for ¢t e [T,OO)']T,

to

which implies using (1.2) that lim;_,., w(t) = 0. Integrating (2.39) from 7" to oo and using
limy—, o, w(t) = 0, we obtain

w(T) = / A(s)As,
T

which contradicts (2.38). The proof is complete.
In the following we consider the case when

/A(S)As < 00, (2.40)

and proceed as in the proof of Theorem 2.3 (use the inequality (2.33)) to get the following
results.

Theorem 2.7. Assume that (h1)—(hs) and (1.2) hold. Furthermore assume that there exists a
positive rd-continuous A-differentiable function ¢(t) such that

/ s Ag))rHL
tli>nolo sup/ [qﬁ(s)A(s) — Z()’(Y —)k(glq)bwr(li)“i(s) As = 0. (2.41)

Then every solution of (1.1) oscillates.
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Theorem 2.8. Assume that (hy)—(hs) and (1.2) hold. Let ¢(t) be defined as in Theorem 2.3,
H € R,and fort > s

t

Jin sup s [ (910040

to

p(s) (67 (5) 7T (HA (2, 5))
(v + 1)+ (s)H (2, s)

As = 00.  (2.42)

Then every solution of (1.1) oscillates.

With appropriate choices of the functions H one can establish a number of oscillation cri-
teria for (1.1) on different types of time scales. For instance if there exists a function h(¢,s) €
such that (2.29) holds, we have from Theorem 2.8 the following oscillation result.

Corollary 2.4. Assume that (hy)— (hs) and (1.2) hold. Let ¢(t) be defined as in Theorem 2.3,
H € R, and fort > s

t

Jim sup g [ (e 510940

to

_ p()((@ () (h(t, )T+
(v + )7+ 1g(s)

As = oo. (2.43)

Then every solution of equation (1.1) oscillates.

As a special case by choosing H (t,s) = (t —s)™ for m > 1, we have from Corollary 2.2 the
following Kamenev-type oscillation criterion.

Corollary 2.5. Assume that (hy)—(hs) and (1.2) hold. If for m > 1

() (= )™y

(1) — sy As = oo, (2.44)

t
tlim sup ﬂln/ [(t —s5)™A(s)
to

then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results. To obtain the conditions for
oscillation we will use the facts in (2.30).

Example 2.2. Assume that T = R and consider the second-order neutral dynamic equation

—1 _ ! v /
(j ((yu)ﬂé(?(t)ly(ﬂt)))) ) FROG0) =0, telLoo)s  (249)

where v > 0 and is a ratio of odd positive integers, 7(¢) and 6(¢t) € T and lim; .o 0(t) =
= lim oo 7(t) = o0, and 7(t) < t, 6(t) < t and we assume that 5~'(¢) (the inverse of the
function 0(¢)) exists. Here v = 5 > 0,

o
p(t) = tiZ ) =2 5_%) L 5_1( oand ()= 7. x>0
This gives (noting a(t) = 1, and n?(¢) = 1) that
A(t) = P(1) = a1~ (G0 = 5.
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We apply Theorem 2.7 It is easy to see that the assumptions (h1)—(hs), and (1.2) hold, since

/() At:/tht:oo.
p(t)
to to
Also (2.40) is satisfied, since
OOA As = [ d
(s)As = 1S < 0.
to to

Finally we discuss (2.41). Note, by choosing ¢(t) = ¢7, that

. ! s ¢A vax
o L.

t

i ; A 77“(37_1)7“
:gyw/FWH_WHWﬂﬂ%J@:

to
t

) by ,Y'H—l
= g [ 3~ e = o

to

provided that A > 0. Then by Theorem 2.7 every solution of (2.45) oscillates if A > 0. Note
that none of the results established in [1-3, 7, 8, 11-13, 15, 16] can be applied to (2.45), since
/ 2
pR(t) =p'(t) = —3 <0
3. Oscillation criteria when (1.3) holds. In this section, we consider the case when 0(t) <
< 7(t) < tand (1.3) holds and establish some sufficient conditions for oscillation of (1.1). We
will use the following notations:

p(s)

mw:wm—mw,ﬂm=7(lfA&

Remark 3.1. We note from the proof of Lemma 2.1 that if (1.2) holds, then the case x(t)
zM(t) < 0 is disregarded and z(t)z["(t) > 0 for t > T. So if (1.2) does not hold, i.e., when
(1.3) holds, we see that if y is a nonoscillatory solution of (1.1) on [ty, co)r and z is defined as
in (1.4), then z!1(¢) is of one sign and there exists T > t, (where T' > t; is chosen sufficiently
large) such that

z(H)z0(t) >0 for t>T, (3.1)
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or
z(t)zM(t) <0 for t>T. (3.2)

To prove the main results in this section when (1.3) holds, we need the following lemma.

Lemma 3.1. Assume that (h1)—-(hs3), (1.3) hold, T™(t) > 0 and r>(t) > 0. Suppose that
(1.1) has a nonoscillatory solution y on [ty, co)T and x is defined as in (1.4) such that (3.2) holds.
Then there exists T' > tgy such that

(p(t) (z2() )™ +g(t)2°(t) <0 for t>T. (3.3)

Proof. Assume that y(t) is a positive solution of (1.1) on [tg, c0)r. Pick t; € [tg, 00)T so that
t1 > to and so that y(t) > 0, y(7(t)) > 0, y(7(¢)) > 0 and y(4(t)) > 0 on [t1,00)r. (Note
that in the case when y(t) is negative the proof is similar, since the transformation y(¢) = —z(¢)
transforms (1.1) into the same form.) Since y is a positive solution of (1.1) and ¢(t) > 0, we
have

(M)A < —qt)y?(5(t)) <0 for t € [t1,00)r. (3.4)

Then z!!(¢) is strictly decreasing on [t;, 00)r and of one sign. Since y is a positive solution of
(1.1) and ¢(t) > 0, and (3.2) holds, we see that (note z[/(t) < 0 and p(t) > 0)

A
z(t) >0, z2(t) <0, and (xm(t)) <0 for ¢>t. (3.5)

Since z(t) is decreasing, we may assume without loss of generality that y(¢) is also decreasing. If
this is not the case, i.e., y(¢) and y(7) are increasing for t > ¢, we see that z(t) is also increasing
for t > tq, since

z2(t) =y (1) + r2 Oy (r(1) + 17 (y(7(1)> > y> () > 0

(note r(t) > 0 and r2(t) > 0), which is a contradiction with z2(t) < 0 for ¢ > ¢;. This implies
from (1.4) and (2.6) (note x(t) > y(¢)) that

z(t) = y(t) +r(t)y(r(t)) < y(7(8) +r@)z(r(t)) < y(r(E)L +r@)] for &=t

Thus

(1)
v = 1

Since 0 < r(t) < 1, we have 1 > 1 — r2(t), which implies that 1/(1 + r(t)) > (1 —r(t)).
Therefore

for ¢ > t;.

y(r(@) = x(t)(1 —r(t)) for ¢ >t.

Since §(t) < 7(t) for t > to, where t2 > t; is chosen large enough (note y(t) is decreasing), we
have

y(6(t)) = (1 —r(t)z(t) for t > to. (3.6)
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From (3.4) and the last inequality, we have inequality (3.3) and this completes the proof.

Theorem 3.1. Assume that (hy)—(hs), (1.3) hold, 7(t) > 0 and r>(t) > 0. Furthermore,
assume that (2.38) holds and there exists T € [to, oo)t such that

/(p(ls)/g(u)wﬁ(u)Au) As = oo. (3.7)
T T

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution of equation
(1.1). Without loss of generality we may assume that y(t) > 0, y(7(t)) > 0, and y(5(¢)) > 0
for t > T (where T is chosen large enough so the conclusions of Lemmas 2.2 and 3.1 hold).
We consider only this case, because the proof when y(¢) < 0 is similar. From Remark 3.1, there
are two possible cases: (3.1) and (3.2). First, we consider (3.1). In this case we proceed as in
the proof of Theorem 2.6 and define u(¢) as in (2.9) to get a contradiction with (2.38). Now,
we consider (3.2). Proceed as in the proof of Lemma 3.1 to get the inequality (3.3) where x(¢)
satisfies (3.5) for t > T. From (3.5), since z!/(t) < 0, we have for s > t > T that —z[(s) >
> —zl(t), or

p(s)(=22(s))" = p(t)(—z2(1))7,

and hence

—a(s) > (1)# (p(1) (=2 (1))

p(s)

Integrating from ¢(> T') to u (> t) and letting u — oo, yields

t)(—z>(t)m(t) for t>T.

2=

o(0) > —slo) +20) 2 (-2 0))* [ (1) 8 -
t

1
From this, since p7 ()(—z*(t) is decreasing, we have

(T)(—z®(T)x(t) = ex(t) for ¢ > T, (3.8)

2=

x(t) > p
where ¢ = p%(T)(—xA(T) > 0. Using (3.8) in (3.3), we get
(p(t) (z2 )2 + g)PrP(t) <0 for t > T,

Integrating the last inequality from 7' to ¢, we have

p(0) (220" 2 (1) (@AD) + ¢ [ gls)n ()85 = ¢ [ gls)n(s)s
T T
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or
. 1
—z2(t) > s 1/g(5)7r5(s)As
o \p®)
T
Integrating from 7" to ¢, we obtain
1
t 1 s 5
oo > z(ty) > z(ty) —x(t) > 05/ p(s)/g(u)ﬂﬁ(u)Au As,
T T

which contradicts (3.7). This completes the proof.

Remark 3.2. Note the difference between the inequality (2.4) when (1.2) holds, and the
inequality (3.3) when (1.3) holds.

Example 3.1. Assume that T = R and consider the neutral equation

/ ! K 2
<t2 <y(t) +(1— 1)y()\t)> ) + iy(%t) =0, telloog, (3.9)

t a(t)

where 7(t) = Xt > §(t) = %t and a(t) = P((t),T)/P(t,T) > 0 for any T" > 1. Here
vy=p8=1,0< A< 1, and
1
p(t) =3, r(t) = <1 — t> , and q(t) = xt?, where &k > 0.

This gives (noting 7 (t) = 1) that

and

n) = j%ym _ 7d .

It is easy to see that the assumptions (k1) —(h3), and (1.3) hold, since

170(19(1s)>i Bs = 173126[8 < . (3.10)

To apply Theorem 3.1, it remains to discuss (2.38) and (3.7). First, we discuss (2.38). It is clear
that (2.38) is satisfied since

o (0.9] 002
/A(S)As = /A(s)ds = //;Sds = 00.
to to 1
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It remains to discuss the condition (3.7). Note

7 p(ls)/sg(U)wﬁ(u)Au K As = 2,4;7 ;/ssiAu ds = m]o(;(s— 1)> ds = oo.
T T 1 1 /

Then by Theorem 3.1, every solution of (3.9) oscillates. Note that none of the results established
in[1,2,3,78,11-13, 15, 16] can be applied on (3.9), since (1.2) does not hold (see (3.10)).

Remark 3.3. In Theorem 3.1, we used the condition (2.38) to get a contradiction if the (3.1)
holds. Also we can use the conditions (2.41), (2.42), (2.43) and (2.44) to get a counteraction. For
the case when (3.2) holds we proceed as in the proof of Theorem 3.1 to get a contradiction with
(3.7). So that the following results can similarly be stated. There are, however, no new principles
involved.

Theorem 3.2. Assume that (hy)—(h3), (1.3), 7(t) > 0 and r®(t) > 0 hold. Furthermore,
assume that (2.41) holds and there exists T € [ty,o0)t such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.3. Assume that (h1)—(h3), (1.3) hold, 72(t) > 0 and r®(t) > 0. Furthermore,
assume that (2.42) holds and there exists T € [ty,00) such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.4. Assume that (hy)—(h3), (1.3) hold, 7(t) > 0 and r>(t) > 0. Furthermore,
assume that (2.43) holds and there exists T € [tg,00) such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.5. Assume that (hy)—(h3), (1.3) hold, T™(t) > 0 and r®(t) > 0. Furthermore,
assume that (2.44) holds and there exists T' € [ty,c0)r such that (3.7) holds. Then every solution
of (1.1) oscillates.

Remark 3.4. We note that the results in Theorems 3.1-3.5 are valid only when () < 7(¢) <
< t. So it would be interesting to consider the case when this condition is not satisfied and find
new oscillation criteria when (1.3) holds. Also it would be interesting to find new conditions
different from the condition (3.7).
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