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We consider an impulsive differential-difference system such that the corresponding system without
delay is linear and has an r-parametric family of w-periodic solutions. For this case, an equation
for the generating amplitudes s derived, and sufficient conditions are obtained for the existence of w-
peri?ldic solutions of the initial system in the critical case of the second order if the delay is sufficiently
small.

Poszagdaembea Heainiilina nepiodunna iMnYabcHa OuPepenyianbua CUCTEME 13 3ANISHENHAM Y Npuny-
WeHHI, Wo 810n08I0Na cucmena 6e3 3ani3HeNHA € ATHITHOI | MAE T-NAPAMEMPUNHY CIM 10 nepioduy-
nur po3e’askie. IIo6y0oeano pieHANHA 0aA NOPoOOACYIONUT amnaimyod maxoi 3adayi, w0 dae HeObTIONY
ymosy icHyeanng po3e’asxie. Odepocani Jocmamui ymosu icHY8aHHA nepioQuuHUT po3e A3Ki8 eurio-
HOT HEATNITIHOT cucTnemMU Y KPUMUNHOMY 8unadky 0pyzozo nopA0Ky npu Jocumb MALOMY APZYMEHMY,

WO 3aNI3HIVEMBCA.

1. Introduction. Impulsive differential equations [1] with delay describe models of real
processes and phenomena where both dependence on the past and momentary disturbances
are present. For instance, the size of a given population may be normally described by a delay
differential equation and, at certain moments, the number of individuals can be abruptly
changed. The interaction of the impulsive perturbations and the delay makes the qualitative
investigation of such equations difficult. In particular, the solutions are not smooth at the
moments of impulse effect shifted by the delay [2].

A classical problem of the qualitative theory of differential equations is the existence of
periodic solutions. Numerous references on this matter concerning differential equations with
delay and impulsive differential equations can be found in [3]. A traditional approach to this
problem is the investigation of the linearized system (also called system in variations) with
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respect to a periodic solution of the unperturbed system satisfying certain nondegeneracy
assumptions.

In [3], for an impulsive system with small delay, it is proved that if the corresponding system
without delay has an isolated w-periodic solution, then in any sufficiently small neighbourhood
of this orbit, the system considered also has a unique w-periodic solution. In an earlier version
of that paper, this result was proved under considerably more restrictive assumptions with the
use of the contraction mapping principle (see [4], §8). Moreover, this result was extended to
the case of a neutral impulsive system with small delay [5].

In the present paper, we consider an impulsive differential-difference system such that the
corresponding system without delay is linear and has an r-parametric family of w-periodic solu-
tions. In the critical case of the first order, in the paper [6], sufficient conditions were obtained
for the existence of w-periodic solutions of the initial system if the delay is sufficiently small.
Here, we consider the critical case of the second order. Necessary and sufficient conditions are
obtained for the existence of w-periodic solutions of the initial system for a sufficiently small
delay. The periodic problem for impulsive systems (without delay) as well as more general
boundary-value problems for differential systems with delay (and without impulses) and with
impulses (and without delay) in critical cases of the first and second order were considered in
several papers by Boichuk (see the monographs [7, 8]).

2. Statement of the problem. Preliminary assertions. Consider the impulsive
system of functional differential equations

2(t) = A@)z(t) + f(O) + H(t, z(t),z(t - k), t#ti, tFti+h,
Az(ti) = Biz(t:) + a; + Li(e(ti, z(ti — B)), 1€ Z, (1)
Az(t;+h)=0 if A >0,

wherez e QCR™ f: RS R", A: R - R™" [(t,2)z=g(t,z,T) (z—Z),9 : RXxQAXxQ —
— R™" Qis a domain in R"; Az(t;) = z(t;+0) —z(¢; —0) are impulses at moments ¢; {t;}icz

is a strictly increasing sequence such that ,lirin t; = +oo, a; € R, B; € R"*", [;(z,Z) =
t—>T oo

=Ji(z,2)(z - 2), J; : 2 x Q> R"*™(i € Z), and h > 0 is the delay.

As usual in the theory of impulsive differential equations, we assume that z(t;) = z(t; — 0)
at the points of discontinuity ¢; of the solution z(t). It is clear that, in general, the derivatives
&(t;), &(t; + h) do not exist. However, there exist the limits #(¢; +0), &(¢; + h £ 0). According
to the above convention, we assume that z(t;) = #(¢t; — 0), &(t; + h) = @(t;i + h — 0). Then
the differential equation in (1) is valid everywhere. For the sake of brevity, unless otherwise
stated, we use the following notation:

i(t) = x(t — h), &y = a:(t,').

Introduce the following conditions:

H1. The components of A(t), f(t) belong to the space C,{t;} of all w-periodic functions,
continuous or piecewise continuous with discontinuities of the first kind at the points ¢;, ¢ € Z.

H2. The function g(t,z,Z) is continuously differentiable with respect to z, z, and its
components belong to C,{t;} as functions of ¢.

H3. The functions J;(z,z) € C1(Q x Q,R™™), 1 € Z.

H4. There exists a positive integer m such that t;y,, = t; + w, Bit+m = Bi, @iym = a4,
Jppom (2,8) = Ji{2,8), t € Z, 2, T €L
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H5. The matrices E + B;, i € Z, are nonsingular (E is the unit matrix).
Suppose, for the sake of definiteness, that

0<ti<ta< <ty <w.
Let h; > 0 be so small that, for any h € [0, h1], we have
h<ty, ti+h<tiy1, i=1,m-1, t,+h<w.
Together with (1), we consider the so called generating system

(1) = A(t)z(t) + f(2),

Az(t;) = Bizi +a;, 1€ Z,

obtained from (1) for h = 0.
Let X (t) be the fundamental solution (i.e., X (0) = E) of the homogeneous system

z(t) = A(t)z(t),
(3)
Aw(ti) = B;z;, 1€ Z.

Denote Q = E — X(w), let @* be its transpose, and let @Q* be its Moore — Penrose
pseudoinverse [10]. If the matrix @ is nonsingular, we have to do with the so called noncritical
case considered under more general assumptions in [3]. Instead we consider here the critical
case where

H6. Rank Q = n; < n.

If we denote r = n — ny, then the homogeneous impulsive system (3) has an r-parametric
family of w-periodic solutions. Denote by P = Pg the orthoprojector R® — Ker (@) and by
P* = Pg» the orthoprojector R — Ker (Q*).

Then the nonhomogeneous system (2) has w-periodic solutions if and only if

u m
P*X (w) (/X-l(r)f(r) dr + ZXi"la,) = il (4)
0 =1
Here, again for the sake of brevity, we have denoted
Xi=X(ti+ 0) = (E + B,’)X(ti)

instead of X;'.

Since rank P* = n — rank Q* = n — ny = r, condition (4) consists of r linearly independent
scalar equalities. Denote by P = Pgs an (r X n)-matrix whose rows are r linearly independent
rows of P*. Then (4) takes the form

i=1

P:X(w)(/wX_l(T)f(T) dr + iXi_la,) = 0. (5)

If condition (5) is satisfied, then system (2) has an r-parametric family of w-periodic solutions

zo(t,¢r) = Xr(t)er + /G(t,‘r)f(T) dr + iG(t,ti)ai, (6)
0

i=1
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where X, (t) is an (nxr) matrix whose columns are a complete system of r linearly independent
w-periodic solutions of (3), ¢, € R" is an arbitrary vector, and G(t, 7) is the generalized Green’s
function

XO(E+Q X (W)X (), 0<7<t<w,
G(t, 1) {

X®)Qt X (w)X~1(r), 0<t<7<w.

3. Main result. 3.1. Preliminaries. Equation for the generating amplitudes.
Let us find conditions for the existence of w-periodic solutions z (¢, h) of system (1) depending
continuously on h and such that, for some ¢, € R", we have z(t,0) = 20(t,¢,;). A necessary
condition for the existence of such solutions is given by the following statement:

Theorem 1. Let system (1) satisfying conditions HI-H6 and (5) have an w-periodic
solution z(t,h) which, for h = 0, turns into a generating solution xo(t,c}). Then the vector
cr € R" satisfies the equation

F() = P:X(w){/X“I(T)Q(T,wo(ﬂCZ),wo(T,CI))(A(T)%(T,CZ)+f(T))dT+

+ ZX H[Ji(o(ti, ), o(ti, f)) (Aswo(ti, ) + fi) +

+ 9t +0, (E+ Bi)zo(ti, ¢7) + aiy o(ti ¢;)) (Bizo(ti, ¢7) + a; )]} =0. (7)

This theorem was proved in [6] where the so called critical case of the first order was
considered. It will be proved here once again while reducing system (1) to an equivalent
operator system. Here, we need more precise expansions with respect to the ,small parameter”
h, which require the existence of a piecewise continuous second derivative of the solution z,
respectively piecewise continuous differentiability with respect to ¢ of the known functions
in system (1), and the existence of some second derivatives ensured by conditions H7, H8
introduced below.

Proof. In (1), we change the variables according to the formula

z(t,h) = zo(t,cr) + y(t, h) (8)

and are led to the problem of finding w-periodic solutions y = y(t, k) of the impulsive system
of functional differential equations

y(t) = A(t)y(t) + H(t, z(t, h), 2 (t = h, b)),
Ay(ti) = Biyi + Li(z(ti, h), (t: — by b)),
such that y(t,h) = 0 as h — 0.

We can formally consider (9) as a nonhomogeneous system of the form (2). Then the
solvability condition (5) becomes

HE 4 ©)
(/WX Hr)H (r,2(r, k), 2(r = hy h))dr+

0
+ix Li(z(ti, ), (ti—h,h))>=0. (10)

1=

—
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For the sake of later convenience, we denote by £(h, z) expressions tending to 0 as A — 0, and
satisfying the Lipschitz condition with respect to z with a constant tending to 0 as h — 0. We
shall sometimes write €(k) instead of €(k, z) and «(t) instead of z(t, k) if this does not lead to
misunderstanding. Thus, for instance, we may write ; instead of z(¢;, h), etc.

Since the left-hand side of equality (10) tends to 0 as h — 0, we first divide it by A and
then study its behaviour as h — 0. Unlike [6], we shall also need the terms linear in h. This
is why we introduce condition H7 which is not necessary just to derive equation (7), or to
consider the critical case of the first order.

H7. Conditions H1, H2 still hold if the functions A(t), f(t) , and g(t,z,Z) are replaced
by A(t), f(t), and %%(t,x,i:), respectively.

First, we note that

(zi—i)/h = &i—hii/2+he(h) =

= A+ fi + 9tz %) (2 — &) — (Aiwi + Asii + fi)h/2 + he(h)

since the interval (¢; — h,t;) contains no points of discontinuity of the function z(¢,h) or its
derivative.
This equality implies that

(E = hg(ti, zi, &) (2i — &) /h =
= Aiz; + fi — (Aiwi + fi + Ai(Aizi + £;))h/2 + he(h).
If h is small enough, we have
(z; — %) /h = (E — hg(t;, zi,%;)) " [Aizi + fi—
—(Aizi + fi + Ai(Aimi + fi))h/2] + he(h) =
= Aizi + fi + hg(ti(zi, 2:) (Aizi + fi) — (Aizi + fi + Ai(Aizi + £3)) /2] + he(h).
Thus,
Ii(z(ti, k), & (t; — by h))/h = Ji(zi, ) (2i — &) /h =

= Ji(zs, T;) x (Aizi + fi) + hdi(zs) +€(h), (11)
where
Ji(zi) = [J(zi,z)(g(ti, (zi, i) — Ai/2) -
- %J,-(:vi, &) (Aizi + f))(Awi + ;) = Jilwi, 23) (Aiwi + fi) /2. (12)

We can represent the integral [y’ in (10) by a sum of integrals over intervals containing
no points of discontinuity of the integrand. It is obvious that, for 7 € (¢;,t; + k), the interval
(t — h, T) contains the point of discontinuity ¢;, while for 7 inside the remaining intervals, the

m
interval (T — h,T) contains no such points. We denote A% = ,Ul(t,-,t,- + k), Ab = [0,w]\ A}
1=
and use the representation [5’ = fA{' +ng.
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We first begin with the ,bad” set A%. For any i € {1,..., m}, we can find a constant
6; € (0,1) such that

ti+h
Bt / XY H(r,z(r, h),z(r — h,h)) dr =

ti
= X——l(t,' + ()ih)H(ti + 6;h, .’t(t,‘ + 6;h, h), :I}(t,' - (1 — 0i)h, h)) =

= X' (g(t: + 0, (E+ Bi)z; + ai, ;) (Biwi + ;) + hGi(;)) +e(h), (13)

Gi(z;) = { [9i(3t - AD)g(t,2,7) + 0:9(t, 2, 2) (Ji(zi, %) (Aizi + £i) + 0 (A (Bizi + ai) + fiF)) -

t=t;+0
—(1 = 0,’)(959(1‘,, T, 5:)(/4,'1‘,' + f,) = (E + B,‘)z,‘ + a; } (B,‘:L‘i + a,-)+
T =1a;

+9(t: + 0, (E + Bi)z; + a;, @) (Ji(wi, 2i) (Aizs + fi)+
+6;(Af (Bizi + a;) + 1) + (1 - 6:) (Asz; + £3)). (14)
Recall that A = A(t; +0), X;F = X(t; +0), etc. (but X; = X (t; +0)).
On the other hand, for 7 in the ,good” set A%, we have as above (with z = z(r,h), Z =
=z(r - h,h), A= A(7), etc.):
(2= 2)/h= Az + f+hlg(r,z,5)(Az + f) = (Az + f + A(Az + £))/2] + he(h).
Thus,

Rl N XY H(r,z(r,h),z(T — h,h)) dT =

= [ X )(9(r,2,3) - hdag(r,2,8)(Az + f) + he(h)) X
Ah

x{Az + f + hlg(r,2,3)(Az + f) — (Az + f + A(Az + £))/2] + he(h)} dr =

X~Hr)(g(r,2(r, h), 2(r, k) (A(T)z (7, h) + f(7)) + hH (7, z(7, h))) dr—

O\E

— | X7 Y(n)g(r,z(r,h),z(r,h))(A(T)z(r, h) + f(7)) dT + he(h), (15)

h
1

>

where
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#H(r,2) = g(1,2,2)[g(7,2,2)(A(7)z + f(7)) - (A(T)e + f(r)+
+A(T)(A(m)z + £(7)))/2] - Bz9(7, 2,7) (A(T)z + f(7))*. (16)
Further,

=1

[ X7 )g(r 25, B, 2l W) (A )a(r, )+ F() dr = B Y X () + he(h),
Ah

where
gi(z:) = g(ti + 0, (E+ Bi)zi + a;, (E+ Bi)zi + ;) (A ((E + Bi)zi + a;) + f}).
In view of (11), (13), and (15), we can write the solvability condition (10) in the form

{/ (ryzo0(T, ¢}) + y(r,h), zo(T, c}) + y(r, h)) x
0
X[A(7)(zo(7, ¢f) + y(r, h)) + f(T)] + hH(T, z0(T, c7) + y(7, k)] dr+
+ 30 X7 Ji(wo(ti, €) + y(ti, k), wo(ti, €f) + y(ti, b)) X

X (Ai(zo(ti, &) + y(ti, b)) + fi) + hIi(zo(ti, f) + y(ti, b))+

+9(ti + 0, (E'+ Bi)(zo(ti, c7) + y(ti, b)) + ai, zo(ti, ¢7) + y(ti, b)) x

X (Bi(zo(ti, cf) + y(ti, b)) + ai) + h(Gi(zo(ti, ¢f) + y(ti, h)) -

—8i(o(ti, cf) + y(ti, b))+ he(h, )} = 0. (17)

We now easily see that (7) is obtained from (17) by passing to the limit as h — 0.

Equation (7) can be called an equation for the generating amplitudes (see, for instance, [9]
or numerous works of the first author, e.g. 7, 8]) of the problem of finding w-periodic solutions
of the impulsive system with delay (1).

3.2. Reduction of the problem to an operator system in a suitable function
space. Now suppose that ¢ is a solution of equation (7). Then the w—periodic solution y(t, h)
of system (9) such that y(¢,0) = 0 can be represented in the form

y(t, k) = X, (t)c + hyM (¢, h), (18)

where the unknown constant vector ¢ = ¢(h) € R" must satisfy an equation derived below
from (17), while the unknown w-periodic vector-valued function y((t, h) can be represented
as

y0(t,h) = ( [ G&H (ryz0(r, ) +y(r, ), aolr = hyf) + y(r = by ) drt
0

m

30 Gt ) (oot ) + (ki ), zalts = by ) +y(ts = o) )/

i=1
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By arguments similar to those above, we find

v (k) = [ Gt mg(r,a0(r, &) + y(r,b), ol ) + y(r, 1) x
0

X[A(T)(zo(T, ¢7) + y(r, h)) + f(7)] dr+

F 3G )i (wolte <) + yltis ), wolti, ) + y(ti ) X

=1
X (Ai(zo(ts, cr) + y(ti, b)) + fi)+
+9(t: + 0, (E + Bi)(zo(ts, ;) + y(ti, h)) + @i, zo(ts, c7) + y(ti, k) X
X (Bi(ao(ti, ) + y(tis b)) + as)] + (hy a(t, h)). (19)
We expand the left-hand side of (17) about the point y = 0. We have
9(m,2o(7, €7) + ¥, zo(7, ¢7) + y) (A(T) (z0(7, ¢7) + y) + f(7)) = go(7) + 91(7)y + g2(T, ),
where go(7, y) is such that
(r;0) =10 LJ (r,0)=0
g2\T, =y ayy? ’ =
Analogously, we have
Ji(zo(ti, ) + y, zolti, cf) + y) (Ai(zo(ti, ) +y) + fi)+
+9(t:i + 0, (E+ Bi)(zo(ti, c7) + ) + ai, zo(ti, ) + y) (Bi(zo(ti, ) + y) + i) =
= Joi + J1i(y) + J2i(y),

where Jo;(y) is such that

0
0,a

By virtue of the assumption F(c}) = 0, equality (17) now takes the form

J2i(0) = J2i(0) = 0.

{ /X (gl (T (T’ h’) + g2(T, y(T1 h)) + h?‘t(?’, ‘TO(T, c:) + y(T’ h))) dT+

+ ixi_‘l[‘]liy(tiv h) + J2i(y(tia h)) + hgi($0(ti1 C:) + y(tia h))]+
=1
+h51(h,w)} = 0, (20)

where Gi(x) = Ji(zi) + Gi(zi) — gi(2), 1=1,m.
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In view of representation (18), denote

Bo="P (/X (A ) dr 4 }T:Xi‘lJliX,(ti)),

which is an (r x r) matrix. Then

Buc = ~P;X () / X7Hr) (hga (1), )+ ga(r, (W) +

+hH (T, z0(T,C}) + y(7,h))) dT + ZX [RJriy™ (8, B)+

=1
Fai(y(tis b)) + hGi(wo(ti, <) + y(ti, b))] + hes (h, :c)}. (21)

In representation (19), we use the same expansions and obtain

vt ) = [ GElglr) +91(n) X (r)e+ by (7, W]+ ga(r,y(r, )] dr+
0

+ iG(tati)[Joi+Jli[Xr(ti)C‘f'hy(l)(tiyh)]+ J2i(y(t:, b))+

=1
+ e2(h, z(t, h)). (22)
Thus, we have reduced problem (1) to the equivalent operator system (8), (18), (21), (22).

Suppose that det By # 0. It is easy to see [7, 9] that this condition is equivalent to the
simplicity of the root ¢, = ¢} of the equation for the generating amplitudes:

F(c}) = 0, det (6_9_))

#0.
cr=cp
This is the so called critical case of the first order. Then equation (21) can be solved with
respect to ¢ and we obtain [9] a Fredholm operator system of the second type to which a
convergent simple iteration method can be applied.

Theorem 2 [6]. For system (1), let conditions H1-H6 and (5) hold. Then for any simple
(det By # 0) root ¢, = cf € R" of equation (7), there erists a constant hg > 0 such that,
for h € [0, ho), system (1) has a unique w-periodic solution x(t,h) depending continuously on
h and such that z(t,0) = zo(t,c}). This solution is determined by a simple iteration method
convergent for h € [0, ho).

3.3. Critical case of the second order. Now suppose that det By = 0. Denote by Bj
the matrix transpose to By, by Bg its Moore — Penrose pseudoinverse, and by Pg, # 0 and
Pp; the orthoprojectors of R” onto Ker (Bo) and Ker (Bg), respectively.

Equation (21) is solvable with respect to ¢ € R" if and only if its right-hand side belongs
to the orthocomplement of Ker (Bj), i.e.,
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PpsPos X (w {/Xl ) (hg1(T)yM (7, k) + ga(, y(r, b))+
0

+hH (7, zo(T, ;) + y(T, h)) d‘r+ZX thy (tiy h)+

i (i, b)) + hGi(wo(ti, &) + y(ti, h))] + hes (b, z)} —0. (23)

If this equality is satisfied, then from (21), we determine
c=-BfPo: X( {/X ) (hgy (1) y M (7, B) + ga(r, y(r, b))+

+hH (Tv Z‘o(T, C:) T y(Tv h))) dr+
+ 30 X7 Tyt h) + Jai(y(ti, b)) + hGi(zo(ti, €) + y(ti, b))+
=1

+heq (h, .27)} + ) = C(O)+c(1),

where c(!) is an arbitrary constant vector in Ker (Bp), ¢() = Pg,ec, ¢(® = (Id — Pg,)c. Then
equality (22) can be rewritten in the form

y (e, h) = Gy (1) eV + y (¢, h), e
where

/G (t, 7)g1(T) Xr(7) dT + ZG(t’t")J”Xr(ti)

s =1

and

y (e, h) = /G(t, )go(r) + 91 (T [X (1)@ + hyM (r, h)] + ga(7, y (7, b)) dr+
0

+ 37 Gt 1) [Joi + JulXo (1)@ + hyW (e, )] + Jai(y(ti, b))+

+ e2(h, z(t, h)). (25)
Now let us linearize the solvability condition (23) with respect to y. We use the expansion
%(Ta :EO(Ta C:) + y) = %(Ta xO(T» C:)) ¥ %I(T)y + #H2 (Ta y)v

where

%1(7') = BI'H(T, 1') 7‘(—2(7_1 0) = 07 ay%Q(T? 0) = 0’

z = 2o(T, C}),
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and, analogously,

Gi(zo(ti, cr) + yi) = Gi(zo(ti, cr)) + Griyi + Gai(vi),

G = azgl(.’,lt) g‘Zz(O) =0, ayg2i(0) =0.

% = Bgkly )
In view of equalities (12), (14), (16), these expansions require the existence of the contin-
uous derivatives 0;z9(t, 2, Z), 0zz9(t, 2, Z), OzzJi(z,Z), OzzJi(z,Z) ensured by the following
condition HS:

H8. Conditions H2, H3 still hold if the functions g and J; are replaced by the partial

derivatives 0zg and 0zJ;, respectively.
Let us denote

v(h) = /X_I(T)’H,(T, zo(T,cy)) dr + zm:X,-_lgi(zo(ti,c:)) + e1(h, zo),
0

=1
€1(hyy) =e1(h,zo +y) — €1(h, 20).

Thus, €1(h,0) = &1(0,y) = 0, while the quantity €1(h,zo) depends just on the generating
solution zq(t, ¢}), and so does y(h).
We can now rewrite equality (23) in the form

PegPar X@){ [ X7 (7) (has(r)y® (7, 1) + ga(r, y(r, 1)+

+hH1(T)y(7, h) + hHo (T, y(T, h))) dT+
+§fxﬂwhwmaum+Jmmnm»+h@mmnm+g%memn+

=1
+hy(h) + héi(h,y)} = 0. (26)

We substitute (24) into (26) to obtain a system with respect to c(!) = Pg,c € Ker(Bo):

hB1cl) = ~PgePos X (w) { / XY 1) (g1 (r)yP(r, h) + ga(7, y(7, b))+

+hH1 (1) (X (1)@ + hyM (7, b)) + hHa (7, y(7, b)) dT+

+ 30 X Ty ® (8, b) + Jaily (i, b))+

=1
+h(Gi (X (t:)c® + hyD (ti, b)) + Gai(y(ti, )] + hy(h) + héy (h, y)}, (27)

where
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B, = Pp:Po: X (w {/Xl G1(1) + H1(7) X, (1)) dT+

J. i XM (JuGa () + glin(ti))} P,

=1

is an (r x r) matrix.
As above, denote by B} the matrix transpose to By, by Bf its Moore — Penrose pseudoin-
verse, and by Pp, and Pp; the orthoprojectors of R” onto Ker(B;) and Ker (B7), respectively.

System (27) is solvable with respect to hc(!) € Ker (By) if and only if its right-hand side belongs
to the orthocomplement of Ker (B}), i.e.,

P PesPlas i { / X1(r) (hgy ()y (7, B) + ga(, y(r, b))+

+hH (1) (X (1) + hyD (7, b)) + hHo (7, y(r, b)) dr+

+ 3 X7 Ty P (b, ) + Jai(y(ti, b))+

+h(G1i (X, (t:) D + hyW(t;, h)) + Gai(y(ti, k)] + hy(h) + hé1 (A, y)} = 0.

Since no additional constraints are imposed on the solution sought y(t, k), the above con-
dition is fulfilled if PpsPpy = 0, i.e., Ker(B7) N Ker(Bg) = {0}. It is easy to see that this
condition is equivalent to Pp,Pp, = 0.

Thus, if

Po; #£0, Pg,Pp, =0, (28)

then system (27) is uniquely solvable with respect to hc(!) € Ker(By), and the operator system
(8), (18), (21), (22) is reduced to the operator system (8),
y(t, k) = X, (t)(Id = Pp,)c® + hG 1 (t)Pp,cV) + hy D (¢, h),

© = _BiPo.X(w { / X=1(r) (hg1(7) (G1 () Payc® + y®(r, b))+

o 92(7-» y(Ta h)) + h%(T, (L‘o(T, C:) + y(Ta h))) dr+

+ i X7 hJ1i(Ga () Pooc™ + y B (ti, h) + Jai(y(ti, b))+
1=1
+ hGi(wo(tis ) + y(ti, h))] + her (b, w)}, (29)
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he® = —Bf Pgs PQ:X(w){ / X71(7)(hg1 ()Y (r, ) + g2 (7, y(, k) +
0

+hHy (7) (X (7) (Id — Pp, )@ + hy D (1, b)) + hHo (7, y(r, b)) dr+

+ Z X7 iy (8, B) + Jai(y (8, b)) + R(Gri (X (61)(1d = Py )+
hy D03, 1)) + Gailytis W]+ y(8) + hs(h,y) . (30
vt 0) = [ G(t,7)lgolr) + 91(r)[X, (1) (1 = P, )+
0

+h(G1(T)Pr,c™ + y O (7, h)] + g2 (7, y (7, k)] dr+

+ZG(tt )[Joi + Jul X (t:) (1d — Pg,) @+

i=1
+ (G ()P c™ +y@ (i, )] + Jaily(ti, )]+ ea(hyz(t, h).
To this system, a convergent simple iteration method can be applied [9] starting with, say,
ve(t, ) = yD(e,h) = 0, k = 0,1, (31)

and the following assertion is valid:
Theorem 3. For system (1), let conditions H1 - H8 and (5) hold. Let c, =c; € R" be a
root of equation (7) such that (28) is satisfied as well as the condition

Pr;P: X (w { / XY (r)YH(r, zo(T, €2)) dr+

+ A{_n_:Xi'lg;(xo(t;, cy)) +ei(h, :co)} =0. (32)

=1

Then there ezxists a constant hg > 0 such that, for h € [0, ho], system (1) has a unique w-
periodic solution z(t,h) such that z(t,0) = zo(t,c}). This solution can be determined by a
simple iteration method convergent for h € [0, ho).

Condition (32) is obtained from the solvability condition (26) by virtue of (31). It is a
necessary and sufficient condition for finding

c((,O) —hBE P X (w {/X H(T, zo(T, C})) dT+

=1

+ 30X Ginaltn ) + €1 20)
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from (21). The finding of the subsequent iterations of c(®) from (29) is enabled by the choice
of the corresponding iterations of ¢(!) from (30).
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