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We have considered a nonlinear fractional order Covid-19 model in the Atagana-—Baleanu fractional
derivative sense for the analytical and computational studies. The model consists of six classes inclu-
ding susceptible, protected susceptible, asymptomatic infected, symptomatic infected, quarantined and the
recovered individuals. The model is studied for the existence of solution with the help of the successive
iterative technique with the limit point as the solution of the model and the Hyers — Ulam stability is studied
with the basic results notions. A numerical scheme is produced and tested with the support of the available
literature. The graphical results show prediction of the curtail of the spread in the next 5000 days. And
there is a gradual increase in the population of the protected susceptible.

PosristHyTo HeniHiiHY Monenb npobosoro nopsanky Covid-19 y po3dyMiaHi 1poboBoi moxigHoi AtaraHa—
Baneany mis aHamiTHIHUX 1 KOMIT IOTePHUX TOCIiIKeHb. MoIeNb CKIIaTaeThes 3 IIECTH KJIaciB JIIOMel,
K1 CIIPUAHATIINBI, 3aXUILEHO CIPUAHATINBI, 6€3CMMIITOMHO iH(]iKOBaHi, CHUMIITOMHO iH(QIKOBaHi, i301b0-
BaHi Ha KapaHTHHI Ta OMy>KaBIlli. 3a JOIOMOTO0 METONY MOCJIiIOBHUX HAOIMKEHD TOCIIIXKEHO iICHYBaHHS
PO3B’SI3Ky MOJIeIi 3 TPaHIMYHOIO TOUKOI0, a TAKOX CTIMKicTh Xaiepca — Yirama. 3 BAKOPHCTaHHSIM HassBHOT
JIiTepaTypy 3allpOIIOHOBAHO I BUIIPOOYBaHO 4MCeIbHY cxeMy. I'padiuHi pe3yabTaTH HPOTHO3YIOTh CKO-
pouenHHs nommpeHHs yepe3 5000 mHiB. Takok MOCTYHOBO 30iNBIIYETHCS KiJIbKICTh JIIOIEH, SIKi MaloTh
3aXUIeHY CIIPUHHSITINBICTD.
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1. Introduction. Coronavirus infection 2019 (Covid-19) is a communicable respiratory disease.
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus) is a disease caused by a newly
discovered virus strain [1]. In Wuhan, China, Covid-19 was first identified in December, 2019,
and spread quickly over four months. In a short period, more than 2.9 million inhabitants in
185 nations around the world were infected and 206 thousand person died [2]. On March 11,
2020, “The World Health Organization” announced this coronavirus infections is a pandemic [3].
This disease can spread primarily from small droplets via coughing, sneezing, person-to-person
or conversation. By contacting polluted surfaces, prone individuals can also be compromised.
The most prevalent signs of this disease are fever, nausea, dry cough, fatigue, breath shortages.
All these of signs are parts of Covid-19 [4]. Some patients can have joint pain such as nasal
stuffiness, runny nose, sore throat or diarrhea. The symptoms are typically mild, but can slowly
occur. In order to prevent infection, hand washing, nose covering or mouth covering while washing
sneezing or coughing, avoiding nose, mouth or mouth touch and preventive steps are advised for
the eyes and social distances.

Due to the seriousness of the Covid-19 pandemic, many states have done drastic decisions to
curb the distribution of Covid-19 infection. In addition, they checked and covered their healthcare
systems. Hence, they ruled the cancellation of public events, the closing of public events, schools,
public places, borders, restrictions on travel and lockout, etc.. While those measures were helpful,
that lockdown lead to socio-economic damage such as bankruptcy of many workplaces, several
staff have lost their respective positions and so on. Next, the shutdown has disrupted supply
chains and decreased productivity. The shutdown of China’s drug-producing plants, which are
the shutdown of second largest pharmaceutical product exporter, has been delayed the deliveries
of generic drug processing factories [5]. The sectors of tourism, air transport, and oil were visibly
influenced. It is also expected that invisible impacts are expected irrespective of the pandemic’s
duration. According to “The International Monetary Fund” the worldwide economy is expected
to shrink by 3% in 2020 [6].

Governments are to save the failure of the economy, thinking of security measures in order to
relax the lockdown. Some advanced countries intend to grant a immunity passport, which shows
immunity to the illness. However, this technique has been disapproved by “The World Health
Organization”, since there is a lack of adequate scientific proof that reinfection is aforementioned
approach is not possible. A risk balancing strategy was adopted by the South African government
to lift the lockout restrictions progressively.

We refer the readers for some scientific works done on infectious diseases to [7—9], in
particular, for developed several mathematical models related to Covid-19 to [10—12] and for
some recent scientific works on varius fractional mathematical models [10, 13 —34].

In this paper, we consider the following Covid-19 model for the existence, stability, and
numerical simulations by using Atanga —Baleanu fractional derivative in the Caputo’s sense. For
the detail, the readers can get benefit from [29, 35];

(1 —ar)(aomla + agnels + m3Q)S
S+Sp+Ia+Is+Q+ R

ABEDELS = Ay 4+9Q — o S — 1S,
ABOD3G, — a1S — puSp,
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(1 — o )(agnila + aznels +13Q)S

ABC 193
DY, =
o A S+8Sp+Ia+Is+Q+R

— (a2p+ aory + 1 — g + p) 1 4,

(‘?BCDI?MIS =agpla — (1 — a3+ agre + p+ 0)Ig,
07°DQ = (1 —ao)la + (1 —ag)ls — (v + 73+ p + 6)Q,

ABCDS R — agry 14 + asrals + R3Q — pR.

The the population is divided into six compartments. They are: .S for the susceptible, Sp are
the protected susceptible class, I, are asymptomatic infected but not quarantined, /s are the
symptomatic infected not quarantined class, the quarantined class is ) and recovered R. The
fractional orders ! € (0,1]. The parameters are: «; is fraction of protected susceptible, as
is fraction of unidentified asymptomatic infected, «s is fraction of unidentified symptomatic
infected, 7; contact rate between S and I4, 7, is contact rate between S and 4, 73 is contact
rate between S and @, p is disease progression rate from /4 to Ig, 71 is the recovery rate of 14,
ro is recovery rate of Ig, rs is recovery rate of @), § is the death rate due to Covid-19 disease,
is proportion of non-effected quarantine, p is natural mortality rate. About the ABC-fractional
calculus, we highlight the following useful literature.

Definition 1. The ABC-fractional differential operator on ¢y € H*(a,b), b > a, for p} €
€[0,1] is

ABCanfw(T) — B(@Tl /d)/(s)Ego* [_p*(T_S)p*:| dS, (1)

where B(p*) is satisfied the property B(0) = B(1) = 1.
Definition 2. For ¢ € H*(a,b), b > a, ©* € [0, 1], the ABR-fractional derivative is

oy 2 B d T —p*(r =)
ABR myp — et I LS S VA )
7o) = 2] 4 [uge | T
Definition 3. The AB-integral of ¢ € H*(a,b), b > a, 0 < p] <1 is given by

*

o] _ 11— 01 [ i-
AB 791(r) = *)ww»+3@ﬁﬁﬁﬁ)/w@x7—$@ Lds,

B(@l

Lemma 1. The AB fractional derivative and AB fractional integral of the function 1, satisfy
the Newton — Leibniz formula

ABaIfi‘ (ABCanfw(T)) = (1) — (a).
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2. Existence criteria. By the AB-fractional integral and Covid-19 model (1), we have

—aq)(aanila + asnals + 1n3Q)S

1—p] (1
t) — A - -
S(t) - 5(0) = 6@0{1+WQ ars - Cgeamia L Emls L QS _ 5| +
t
/ 5)“71 A +9Q — a1 S—
K)l F@l
0
(I —ar)(aemla + asnels + 13Q)S 1S |ds
S+Sp+Ia+Is+Q+R ’
t
$,(0) = 8,0) = 5l — il + o [(6 - 95 fars — il
r
B(p3) @2 05

TA(t) — 14(0) =

1— 5| (1—a1)(eamla + asmpls +13Q)S
5(@5) S+Sp+Ia+Is+Q+R

t

e A
930

(a2p+ agri + 1 —ag + p)la| ds,

—(ep+agry +1 =g+ p)la| +

" [(1 —aq)(aamla + agnels +13Q)S
S+Sp+Ia+Is+Q+R

1—
Is(t) — IS(O) = ©a [O@plA — (1 — Qa3 + [eRY M) +,U + J)ISOéQpIA—

B(e1)

—(1—043+C¥37‘2+/L+5)Is} +

*

§4 %
B(p1) (Tes)

(t — )91 [aopls — (1 — g + asry + p+ 6)Ig) ds

X
o\ﬁ

Q(t) — Q0) = 15(;5)5 (1 —ag)la+(1—a3)ls—(y+r3+p+06)Q]+

t

Fp /t_sm [(1— an)la + (1 — ag)ls — (v + 73 + p + 0)Q] ds,
5

0

1 _ *
R(t) — R(0) = B(QEJ)G [aar1a + asrols + R3Q — pR) +
6

t

/ p‘) 0427“1],4 + agrols + R3Q ,UR] ds.

F
p(so
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Assume the functions Y;, i = 1,...,6, are given below:

(1 —on)(aomla + agpls + 13Q)S
S+Sp+Isa+1s+Q+R

)/Q(tv Sp) == OélS - MSP)

Yi(t,S) = A1 +9Q — a1 S —

wS,

(1 —ar)(cenila + aznels +13Q)S

Y3(t,I4) =
3(t: La) S+Sp+Ia+Is+Q+R

- (a2p+a2r1 +1—as ‘|',U)IA,

Ya(t,Is) = agpla — (1 — a3 + agra + p+ 0)Is,
Y5(t,Q)=(1—a)la+ (1 —a3)ls— (y+7r3+p+0)Q,
Yo(t, R) = agrila + asgrels + R3Q — uR,

Y1 = a1+ k1 + p,

Yo = u,

Y3 = ko + (a2p + agr1 + 1 — ag + p),
Y4 = pc,

s =1— a3+ asro+ u+ 9,

Y6 = .

Assumption (B). We assume that, for S(t), S*(t), Sp(t), S,(t), La(t), T4(t), Ls(t), I3 (1),
Q(t), Q*(t), R(t), R*(t) € L|0,1], there exists constants k; > 0, i = 1,...,6, such that
IS < k1, [1Sp@) < K2y [La@)|] < 53, [L(1)]] < k4, Q)] < 55, [RE)|| < K6, and &,
& >0, and

[S(t) + La(t) + Q1) || < &,
[1s(t) + R(t)[| < &

Theorem 1. The Y;, i € NV, satisfy Lipschitz condition provided that Assumption (B) is
obeyed.
Proof. Consider for Y7, below

(1 —oq)(agnily + aznels +13Q)S
S+Sp+Ia+Is+Q+R

|Ya(t,8)=Y1(t,5)| = ||A1 +7Q — S — — uS—

<

_ (Al +9Q — a1 S* — (1 —aq)(agmIa+asnls+nsQ)S B ﬂS*)

S*+Sp+Ia+1Is+Q+R

(1 —aq) (el + agnals +n3Q) S*
S*+Sp+Ia+Is+Q+ R

<

ay +

+uWw—sw$
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< o + k1 + pl|Se = SEI| = ¢ l|S = S7. 2)
For the Y3(¢, E..), we have
[Ya(t.5,) = Ya (&, 53) | = I (@S = uSp) = (a1 — S, Il <
< [ul[ISe — EZ|| < ol Ee — EX|. 3)

The Y3(t, I’y) implies

(1 —a1)(aomla + agmppls + m3Q)S
S+Sp+Ia+Is+Q+R

1Ys(t, 1a) = Y3 (¢, I3)|| = H <

(a2p+a2r1+1a2+,u)l,4>

| Q= ar)(aem I} + aznals +3Q)S
S+Sp+Ii+Is+Q+R

<

—(agp+agr1 +1—as +M)IZ>

S ‘

+ (op + agri +1 —as + p)

(1 —aq)(aanils + asnals +13Q)S
S+Sp+Ia+Is+Q+R

+

4 = T4l <

< k2 + (a2p+agri + 1 —aa +p)lllle = L2 = ¢s |[Ia = T4l (4)

for Yy(¢,I).
We obtain

Va(t, I,) — Yi (£, I7)| = H(agpu — (1 — a3+ asrs + p+ 8)Ig)—

—(vopls — (1 — g+ agro + u+9) Ig) ’ <
<1 —asz+agro+p+0[| | Is — L] <
<[t-astamtu+dlL-LI<vll-L]  ©)
for Y5(t, Q).
We get

1¥5(8,Q) = Y5 (£,Q7) | = || (1 = ao)a + (1 = as)ls — (7 + 75+ + 8)Q) -

— (=) a4+ (1 —a3)ls —(y+7r3+p+90)Q%)

\ <
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<ly+rs+p+d1Q - Q| =45 1Q — Q|
for Ys(t, R).
Further, we have

[¥e(t, ) = Yo (6, B = [ (@ari L + agrals + 15Q — iR, )-

— (aorila + asrals + 13Q — pR¥)

< el 17 = B[l = 6 | R — R*|| .

(6)

(7

Thus, from (2) to (7), we have that the Y;, i = 1,...,6, satisfy the Lipschitz condition. And this

completes the proof.
Assuming that S(0) = S,(0) = 14(0) = Is(0) = Q(0) = R(0) = 0, then we have

*

S(t) = 9y 1, 5(1)) + @fl 5 /t—spl 1 (s, S(s))ds
0

5(@1)

Sy(t) = ;(‘f) Da(t, 5,(0) + / (t — )71 Ya(s, 5,(s))ds

La(t) = 15(;33 Va(t La(t)) + 53

(e | 9" s Lalods,

o — .

_ 1- @Z pz / — s @I—l S S S
1) = SR LO) + 5eSes 0/ (t — )9 Yy(s, I,(s))ds,

4 Blen)T (e
_1-g G [ i e ofes
Q) = G2 350,00 + gty 0/<t )95, Qs))ds,
1 — g 6 / _ 9% 1Y (s, R(s))ds
RO = ) PO+ g J 69 e

t
() = L= f)l Vit Spi(t) + /(t — $)%i LY (s, Sp_1(s))ds
0

Blei B(e1)T (¢})
1—p5 975 t %Y s
on(t) = /3(%) o) Vet I () + G 0/ (= )51 y(s, ) (5))ds,
L) = S35t Ly (1) + ——5— /t (¢ — )75 L5 (s, Lap_1(5))ds,
Ali) CICHN

®)

€))

(10)

(1)

(12)

(13)
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t
1*@2 1
Isn - ;Isn— - p4 sn d 5
(0= G 16 Fanr )+ 0/ (t— 8)7i=13,(s, Iy, (s))ds

_1—ps 5 —35“51 s L(s))ds
Qn(t) - B(p;) y5(t»Qn—1(t)) + ﬁ(pg)r(pg) O/(t yS( 7Qn— ( ))d

t

1= O 7@3 -3 S S
Rn(t) - B({QE) yﬁ(ta Rnfl(t))"" ﬁ(pé)r(pé) /(t ) yﬁ( Rn 1( ))

Theorem 2. The fractional order Covid-19 model (1) has a solution if we have

A =max{¥;} <1, icN}.

Proof. We define the function

K1n(t) = S (1) = S(0), K20(t) = Sy, oy (8) = Sp(0), K3u(t) = Lania () = La(0),

KAn(t) = Lsnsa (1) = Is(t),  Kdn(t) = Quyr(t) = Q(1),  K6,(t) = Rnpa(t) — R(?).

Then, by using the above equations, we find that

1 _ E3
KLl < ——2L 191 (8, Su(t)) — Vi (t, Snr ()] +

B(e)
t
/t—s Y[ V1(5, Sn(s)) = V(b Suor (8))1ds <
0
1} 1 _
< + Sp, =8| <
| B(e7) B(@‘{)F(@’{)_wl” H
1} 1 1" an
< + A5 =S
56n ety 10

and

1 _ *
120l < ——22{|¥a(t, Sp,, (1)) = Va(t: Sp,_y ()]|+

B(p3)
. t
+—2 /(t — 8)2 7| Wa(s, Sp, (5)) — a(t, Sp, ,())|lds <
B(p3)T(p3) )
iz, 1 s, — S, <

| B(e3)  Ble5)T(e3) |

1 s : A"[|Sy, — 8
B50e5) T BlepTiey | 1Sl

IN

ISSN 1562-3076. Heniniiini koausanns, 2021, m. 24, Ne 3

385



386

H. KHAN, M. IBRAHIM, A.KHAN, O. TUNC, TH. ABDELJAWAD

/ (t — )95~V Vs (5, Lan(5)) = Va(t, Lap_1 (1))l ds <
0

Similarly,
13, < 5(_ p)?’||y3(t Tan(t)) = Va(t, Lan—1(1)) |1+

1 — g3 1

< Tay — Ll <

S +5(@1)F( )}¢3|| A Al
1— o} 1 .

< + A™[Tay — Lall,
5(o%) 6(@’{)F(p§)} o= dal

1Kl < 2019, 1) —

5(03) Va(t, I,

sn—1())[|+

t
/ (t =) Vals, Lon(s)) —
0

11—} 1

< + I, — I,|| <
1— o} 1 .

< + A Is *Is ’
[ﬁ(m) FEA ]

*

15| < 15(_%”3’5“’ Qn(t))

" — V5(t, Qn-1(1))||+
95)

/ $)%5 1| Vs(s, Qn(s))
0

1—pf
Bz

<

1
+ T J%nczn Qll <

1— o} 1 A
+ ;

17 3
K6, || < p6||;vﬁ<t,Rn<t>>

— Ve(t, Rn—1())||+

B(9;)
/ $)%5 [ Ve(s, Rau(s))
0
1 — o5 1 _
= 0n) "Bl | YIRS

a(t, Isp1(1))[|ds <

= Vs(t, Qn-1(t))[lds <

— Vs(t, Bn1(1))|ds <
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1— ot 1 !
< ~ ” " A"||R; — R||.
[5(@6) 5(@6)F(@6)
Thus, we have K(t), — 0, : € 1,...,6, as n — oo for A < 1, which is the required proof.

3. Uniqueness solution. For our suggested model (1), we study the analysis of the uniqueness
of solution.

Theorem 3. The Covid-19 model (1) has unique solution if

1-— %2 + 1
Blpi) — Blwi)T(wi)

} v <1, ieNp. (14)

Proof. Let there exist another solution S(t), S.(t), 1a(t), is(t), Q(t), R(t) such that

Sy = L9 S / i1 s,5(s))ds,
S0) = G5 M6 50) + 5 / )91 Y1 (5, 5(s))d

iy L= 95 < £2 )91V (5.5 (s))ds
%@Bw@%w&wnﬁwwwm/u )15, 5, (9)d

e T I P
A1) MQR“““W+M@W@@!“ )99, Tals))ds,
11— — on ¢ — )17 1Y, (5, To(s))ds
a0 menwum+m@ﬁ@31@ Vs, Ty (s)ds,
1- pg | — S -1 S S
A = G B+ p5>/t Vs (s, Qls))ds,
R@=1‘%%wmm+%/Wwwﬁ%@mmw
B(w5) Blws)T(e5) J
Then,
Isie) - (M_ng%aﬂm—nmmmw

/ 9 Yi(s, S(s)) = Ya(t,5(8)) | ds <
0

1—of 1
s[ L }mw S|,

B(e1)  BleD)T(e})
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which implies

1—p1 V1
[ﬁ(pf) TP ey

By (14), the (15) is true if ||S — S|| = 0, which implies S(t) = S(t). Similarly, we have

- 1]||SS| > 0. (15)

15,6~ S0)]] < S22 [3n(t, 8,(6)) - Va (55(0) || +

= B(3)

: / (t — )51 ||Ya(s, Sp(s)) — Ya(t, 5y (1))]|| ds <
0

1- ) 1
= {5(@5) +5(p2)f‘(p ):|7/}2HSP—S |,

1— 95 o —
+ —1||ISp =5, || > 0, 16
[mp;)‘” T 3) }”P ol = e

which follows. By (14), the (16) is true if ||.S, — S,|| = 0, which implies S,(t) = S,(t). Now, for
14, we have

17a(t) — Ta()]| < il @)3 |95(t, Ta(1)) — Ya(t, Ta(t))|| +
t
/ “H|Ys(s, La(s)) — Ya(t, Ia(t))|| ds <
0
1 — 3 1 B
: {5(@3) MR >}‘!’3”” Tl

which implies

l—gp3 U3
[B(p}‘,) et

which implies by (14), the (17) is true if |14 — I4|| = 0, which implies I4(t) = Ta(t);

— 1| |[I4 — 14]| >0, 17
FICAN }”A al= an

120~ L) < 2290 |yut, 1) - Vit T | +

B(91)

; /(t—S)@lHn(s,Is(s)) Yi(t, I,(t))| ds <
0
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1—p} 1
: {5(@1) T BT (v} )} vu |1 = T,

which implies

11—} Yy —
+ —1|||Is_1Is|| > 0. 18
[5(@) Yt ST } .- 1] a8

By (14), the (18) is true if ||I; — Is|| = 0, which implies I5(t) = I (t). Now, for Q, we have

Q) - ML.(%H%tQD Ys(t, Q1)) +

@5(%)0/75_5 | (s, Q(s)) — Y5 (£.Q(1)) || ds <

1— ot
: [5(@) +5(p5) (p2) }%HQ Qll

which implies

1—p5 Vs
{ﬂ(pz) Bt ey 19 @l=0
|R(t) ||_ — 9% | V6(t, R(t)) — Ya(t, R(t))|| +

B(95)

o [t 975 Ya(s, Ris) - Yalt Ro) | ds <
0

Vo [|R - R,

1 — pg 1
= [mpz) BT

which implies

- ~R| >
e M R L )
which implies by (14), the (19) is true if || R — R|| = 0, which implies R(t) = R(t). Thus the (1)
has unique solution.

4. Hyers — Ulams stability.

Definition 4. The integral system (8)—(13) is Hyers— Ulam stable if for A; > 0, i € NP,
and ~; > 0, i € N7, such that

[1—% e

<71,

S(t) — (pp)l Vi(t,S(t)) — / (t—s) g’l 13}1 (s,5(s))ds
0
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Sp(t) —

Ta(t) -

We have S(t), S,
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;mgamu&a»—ﬁwgaﬁgja—ﬁﬁ*%@ﬁﬂﬁﬂsSw7
;(_g);’ Vs(t, La(t)) — M@ESWEC@?)) O/t(t — 5)%5 71 Ys(s, La(s))ds| < s,
7o) e mﬁ%ij“_ﬂmkhwk®ms<m
}@S%“Q@)ﬁwﬁﬁwyj“swl%“Q@ws<%
1B(_pf)6 Yolt, Q1) B(pég)olé“(@é) O/t(t_s)% el RN <7

(t), Ia(t), L(t), Q(t), R(t), which implies

t
*

S(t) = L at yl(t7S(t)> + % /(t - S)pi_1y1(87s(8))d87
0

such that

(%) B(p7)T

_ 19 ; o t —5)¥2 s,8,(s))ds
_ﬁwwww&”n+M@ﬁw®!“ D5, Sy(s))d

B ' 03 | ) s,14(s)) ds
= oty T+ iy [ (s o)

|50 = S(8)] < i,
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90(6) = S,(8)] < 0272
‘IA(t) - fA@)’ < 8373,

Ly(t) = Is(t)] < baya,

Q) — Q)| < b5,

R(t) — R(1)| < d¢76.

Theorem 4. If Assumption (B) is satisfied, then (1) is Hyers — Ulam-stable.

Proof. By Theorem 3, the Covid-19 model (1) has a unique solution, say, S(t), Spy(t), 1a(t),
I(t), Q(t), R(t). Let (S(t),Sp(t), Ia(t), Is(t),Q(t), R(t)) be an approximate solution of (1)
satisfying (8)—(13). Then, we have

’$m—SmH§2&§ “@S@*43@5®M+
. 50@511:0@’{) O/t(t — )77 [, S(s) = 11 (£.5(0) | ds <

1 - 1 :
= lﬁ(pi‘) +ﬂ(p’{)F(50’{)]¢1”S_S”'

lfpijr o1
B(ei) BT (e})

HS(t) - S(t)H < mA;.

Taking v1 = 91, A = , this implies

Similarly, for S,(t), Sp(t), Ia(t), La(t), Ls(t), Is(t), Q(t), Q(t), R(t), R(t) we have
[EXORSCHO ELH:

| 2a®) = 1a)]| < 720,

IS(t) - jS(t) < Y4y,

Q) = Q(t)|| < 543,

R(t) — R(t)|| < 766

This implies, the system (1) is Hyers — Ulam stable which ultimately, ensures the stability of (1).
This completes the proof.
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5. Numerical scheme. With the help of (2)—-(7), we produce the following numerical
scheme:

ABODIIS(1) = Yi(t, S),
ABODEES, () = Yalt, Sp),
ABCDFS (1) = Ya(t, 14),
. (20)
ABODPAL(t) = Ya(t, I,),
ABCDEQ(t) = Ya(t, Q),
ABCDRS R(t) = Yy(t, R).

With the help of fractional AB-integral operator, (20) takes the following form:

¢
S(t) —5(0) = o Wi(t,S) + % /(t — s)¥17 1Yy (s, S)ds,
0

B(p3)T (03
_ — 1—p3 ©3 | — )93 1ya(s s
La(t) = La(0) B(e5) ol La) + B(95)T (03) O/(t 57 Vale, La)ds
_1-g 1 / _ 91y (s <
L(5) = 1.(0) B(3) Valh L) + B(ei)T (037) O/(t T le: L,

_ _1-0 S —§)%6 1Y (s s
RO~ RO) = S8 B) + gt [0 0400 Ry

0
By dividing the assumed interval [0,¢] into subintervals by the help of point ¢,,;, for m =
=0,1,2..., we obtain

tr41
1—pf o1 - i1
S(tm - 5(0) = tm,S) + ————— tms1 — 8)F1 ,S)ds,
(i) = S(0) = Z 0,9 5(@)”@?);}5( b1 = ) (s, S)ds
n trt1
1— 3 05 i1
S (1) — S (0) = b ) + ——2 tma1 — 5)9 .S,)ds,
() = 85(0) = e DalonsS) + it S / (ms1 — )% Va(s, S,)ds
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thg
Ta(bms1) — L(0) = 15(;?)3 lima) + 5 ki/ bost — $)%5 V(5. 14)ds,
« b
fs<tm+1>—fs<o>=;(‘g)‘*aa(tm,fs) e kZ / (i1 — )7 D5, 1,)ds,
thi
Qltms1) — Q(0) = 15(‘@5’)5 (tm @) + s kZ / bt — )% 5(s, Q)ds,
th

n

BN ey o 06 g s
i) = RO = 50 68 0 ) + s> / (brost — )% V(s, R)ds.  (21)

Now, by using Lagrange’s interpolation, we get

Sltnen) = S10)+ G W0 )+ 5y S [mﬁ e

X ((m+1—k>pf(m—k:+2+p’{)—(m—k)”f(m—k:+2+2@i))—

_fw(<m+1_k>@f—<m—k>@f<m+1—k+@’f>)}

(pi +2)
B 1— o} 03~ | 2D (t, Sp)
Sp(thrl) = Sp(o) + 5(@;) yQ(tk’Sp) + B(p;) kz_o [ F(p; + 2) X

X ((m 4+ 1= B (m = k+ 2+ 03) = (m = k) (m — k+ 2+ 203) ) -

_ D2 a(tk-1, 5p) ((m+1—k)g’3—(m—k)p;(m+1_k+@;)>]’

F(p§+2)
1— 05 = | Y3ty T
1A<tm+1>:fA<o>+Bcp;<p)3y3<tk,fA Z[ J;SL)A )
3 0 3

x (<m+1—k>@3<m—k+2+p§>—<m—k>@ﬁ<m—k+2+2p§>)—

_ 18 Ys(ti1, 1a) ((m+1—k)g’§—(m—k)p§<m+1_k+p§)}’

I'(p3+2)
_ 1— ) OF <= | AP YVu(ty, L)
Bt =100+ ST 1+ TR
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X ((m+1—k)@ (m—k+2+pj)(m—k)"z(m—k+2+2pj{)) .

P altia, 1) ((m+1—k)@2_(m—k)@(mﬂ—“@i))}

I'(p} +2)
5 5/ k=0 5

x <(m+1—k)93(m—k+2+p§)(m—k)pg(m—k+2+2@§))—

W Y5 (-1, Q)

ot 1 9) ((m+1—kz)p3—(m—k)pg(m—i—l—k%—@;))}a

R 05~ | B Vs(tr, R)
R(t,, = R0+ —2 tr, R
(tm1) (0) + 500) Vs (t )+B(pg);)[ (ot +2) X

x ((m+1—k)@3(m—k+2+p§)(m—k)“5(m—k+2+2pé))—

—’W ((m+1—k)@% — (m— k)% (m+1—k+@§)>}

This numerical scheme will help us to predict the role of protected susceptible which has been
practically exercised in various nations as a control strategy. Although, this strategy has a worst
effect on the economy of a nation but it is essential to curtail the spread of the infection of lethal
Covid-19. The sensitivity analysis has been given in [36] which shows that the role of such a
strategy is very much effective in the curtail of the spread.

5.1. Numerical results. In this section, we are providing a detail of numerical results related
to the model with the available data in literature. The parameters and initial data was carried out
from the available literature. The initial values are: S(0) = 59300000, Sp(0) = 0, Is(0) = 0,
Q(0) = 0, I4(0) = 2079, R(0) = 903, and the parametric values are a3 = 0.0008, ay = 0.1,
etar = 0.25, p = 0.0001, ny = 0, n3 = 0.385, 71 = 0.2976, o = 0, v = 0, r3 = 0.2976,
= 0.00236/90, 6 = 0.017/90, a3z =1, Ay = 296425.875/90 [36].

In Fig. 1, we have a joint comparative simulation for the two classes S(t) and Sp(t) for the
orders 1.0, 0.99, 0.98, 0.97. The second figure that is Fig. 2, represents a graphical study of the
S(t) class for various orders 1.0, 0.99, 0.98, 0.97 for a long time of 5000 days. There is a decrease
in the population of the class. Also, as much the order is decreasing a comparative large decrease
is observed in the population while the behavior of the class remains similar. Figure 3 shows a
comparative analysis of the Sp(t) for the mentioned orders and a gradual increase can be seen in
the graph.

The Fig. 4 is for the infection population which shows an increase up to the 300 days while
a decrease is observed after 300 to 600. Figure 5 shows a numerical representation of the ()
class for the various orders and the Fig. 6 is for the R(¢) class.
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Fig. 1. Comparative analysis for the S(¢) and Sp(t) for the orders 1.0, 0.99, 0.98, 0.97.
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Fig. 2. Comparative analysis for the S(t) for the orders 1.0, 0.99, 0.98, 0.97.
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Comparison of Sp(f) for different orders

Comparison of 1,(r) for different orders
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Fig. 3. Comparative analysis for the Sp(t) for the orders 1.0, 0.99, 0.98, 0.97.
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Fig. 4. Comparative analysis for the I(t) for the orders 1.0, 0.99, 0.98, 0.97.
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Fig. 5. Comparative analysis for the Is(t) for the orders 1.0, 0.99, 0.98, 0.97.
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Fig. 6. Comparative analysis for the R(¢) for the orders 1.0, 0.99, 0.98, 0.97.
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6. Conclusion. In this article, we have focused on the theoretical as well computational
studies of the fractional order Covid-19 model in the ABC-sense of derivative. The existence,
uniqueness results were carried out with the help of iterative sequential approach with the limiting
point as the solution of the suggested model (1). We also estimated the Hyers — Ulam stability and
a numerical scheme based on the Lagrange’s interpolation was obtained. The numerical scheme
was then tested and very similar results like the integer order was obtained. The numerical results
were interpreted via six graphs. The details are: in Fig. 1, we have a joint comparative simulation
for the two classes S(¢) and Sp(t) for the orders 1.0, 0.99, 0.98, 0.97. The second figure that is
Fig. 2, represents a graphical study of the S(t) class for various orders 1.0, 0.99, 0.98, 0.97 for a
long time of 5000 days. There is a decrease in the population of the class. Also, as much the order
is decreasing a comparative large decrease is observed in the population while the behavior of
the class remains similar. Figure 3, shows a comparative analysis of the Sp(t) for the mentioned
orders and a gradual increase can be seen in the graph. The Fig. 4 is for the infection population
which shows an increase upto the 300 days while a decrease is observed after 300 to 600. Figure 5
shows a numerical representation of the Ig(¢) class for the various orders and the Fig. 6 is for the
R(t) class. The reader of the paper can work on the comparative analysis of different fractional
operators for more accuracy and better results.
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