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We establish some optimal, in a sense, general conditions sufficient for the unique solvability of the boun-
dary-value problem for a system of nonlinear second order functional differential equations. The class
of equations considered covers, in particular, neutral type equations. Concrete example is presented to
illustrate the general theory.

Встановлено новi, в певному сенсi, оптимальнi умови, достатнi для однозначної розв’язностi
крайової задачi для систем нелiнiйних функцiонально-диференцiальних рiвнянь другого порядку.
Клас рiвнянь, що дослiджувалися, може частково мiстити в собi рiвняння нейтрального типу.
Наведено приклад, що демонструє отриманi результати.

1. Introduction and problem statement. The aim of this paper is to establish new general condi-
tions sufficient for the unique solvability of a nonlocal boundary-value problem for systems of
nonlinear second order functional differential equations. Such problems arise in many appli-
cations and various kinds of them are widely studied in the literature (see, e.g., [9, 17] and
references therein).

The paper is motivated mainly by the recent works [2, 7, 10, 14 – 16, 18, 19, 21, 22]. By using
an abstract approach based upon order-theoretical considerations, we prove sufficiently general
statements on the solvability of such a problem which, in particular, extend several results of
[16, 21] that have been obtained directly by techniques of calculus. The idea of proof of our
theorems is based on the application of an abstract result ensuring the unique solvability of an
equation with an operator satisfying Lipschitz-type conditions with respect to a suitable cone.

The main results with proofs are introduced in Sections 3 and 5 correspondingly. Some
results for equations without derivatives in the right-hand side are in Section 6. An example
is presented in Section 7.

Here, we consider the nonlocal boundary-value problem

u′′k(t) = (fku)(t), t ∈ [a, b], k = 1, 2, . . . , n, (1.1)
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204 N. DILNA

u′k(a) = ϕ1k(u), k = 1, 2, . . . , n, (1.2)

uk(a) = ϕ0k(u), k = 1, 2, . . . , n, (1.3)

where fk : W 2([a, b],Rn) → L1([a, b],R), k = 1, 2, . . . , n, are, generally speaking, nonlinear
operators, ϕik : W 2([a, b],Rn) → R, i = 0, 1, k = 1, 2, . . . , n, are nonlinear functionals defined
on the space W 2([a, b],Rn) of vector functions with absolutely continuous components of u′.

It is worth mentioning that the right-hand side members of equations (1.1) may contain
terms with derivatives and, thus, the statements presented in what follows are applicable, in
particular, to neutral type functional differential equations (exception is Section 6).

2. Notation and definitions. Till the end of the paper, we fix a bounded interval [a, b] and a
natural number n.

(1) R := (−∞,∞); ‖x‖ := max1≤i≤n |xi| for x = (xi)
n
i=1 ∈ Rn.

(2) L1([a, b],Rn) is the Banach space of all the Lebesgue integrable vector-valued functions
u : [a, b] → Rn with the standard norm

L1([a, b],Rn) 3 u 7−→
b∫
a

‖u(ξ)‖ dξ.

(3) W k([a, b],Rn), k = 1, 2, is the set of vector-valued functions u = (ui)
n
i=1 : [a, b] → Rn

with u(k−1) absolutely continuous on [a, b] and the norm given by the formula

W k([a, b],Rn) 3 u 7−→ ‖u‖k :=

b∫
a

‖u(k)(ξ)‖ dξ +
k−1∑
m=0

‖u(m)(a)‖. (2.1)

(4) For k = 1, 2 and m = 0, 2, we put

W k
(m)([a, b],R

n) :=
{
u = (ui)

n
i=1 : [a, b] → Rn ∈ W k([a, b],Rn) :

vrai min
t∈[a,b]

u
(m)
i (t) ≥ 0 and u

(j)
i (a) ≥ 0 for 0 ≤ j ≤ m− 1, i = 1, 2, . . . , n

}
. (2.2)

In what follows, the symbols W 2([a, b],Rn), W 2
(2)([a, b],R

n), etc. corresponding to the fixed
a, b, and n will usually appear simply as W 2, W 2

(2), etc.
A solution of (1.1) – (1.3), as usual, is understood in the sense of the following definition

which is customary in the contemporary literature on the theory of functional-differential equa-
tions (see, e. g., [1]).

Definition 2.1. By a solution of problem (1.1) –(1.3), we mean an absolutely continuous
vector-valued function u = (uk)

n
k=1 : [a, b] → Rn such that its components satisfy conditions

(1.2) and (1.3) and equality (1.1) holds for almost all t ∈ [a, b].

We shall use a special class of linear operators. Let hi = (hik)
n
k=1 : W

2 → R, i = 1, 2, be
linear mappings.
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Definition 2.2. We say that a linear operator p = (pk)
n
k=1 : W

2 → L1 belongs to the set Sh1,h0
if the boundary-value problem

u′′k(t) = (pku)(t) + qk(t), t ∈ [a, b], (2.3)

u′k(a) = h1k(u) + c1k, (2.4)

uk(a) = h0k(u) + c0k, k = 1, 2, . . . , n, (2.5)

has a unique solution u = (uk)
n
k=1 for any {qk | k = 1, 2, . . . , n} ⊂L1 and {cik | k = 1, 2, . . . , n} ⊂

⊂ R, i = 0, 1, and, moreover, the solution of (2.3) – (2.5) possesses the property

min
t∈[a,b]

uk(t) ≥ 0, k = 1, 2, . . . , n,

whenever the functions qk, k = 1, 2, . . . , n, and the constants cik, i = 0, 1, k = 1, 2, . . . , n,
appearing in (2.3) – (2.5) are nonnegative.

A number of conditions sufficient for the unique solvability of the linear problem (2.3) –
(2.5) can be deduced, for example, from results of [2 – 4, 6, 8, 14, 20, 23].

Definition 2.3. A linear operator p = (pk)
n
k=1 : W

2 → L1 is said to be positive if

vrai min
t∈[a,b]

(pku)(t) ≥ 0, k = 1, 2, . . . , n,

for any u = (uk)
n
k=1 from W 2

(0).
The definition above describes a natural notion of positivity which means that a positive

operator p transforms nonnegative elements ofW 2 to almost everywhere nonnegative functions
from L1.

3. Sufficient conditions for the unique solvability. The theorem presented below provides
a general condition ensuring the unique solvability of the nonlocal nonlinear boundary-value
problem (1.1) – (1.3).

Theorem 3.1. Suppose that there exist certain linear operators p = (pk)
n
k=1 : W

2 → L1, p̃ =
= (p̃k)

n
k=1 : W

2→L1 and linear functionals hi = (hik)
n
k=1 : W

2→Rn and h̃i = (h̃ik)
n
k=1 : W

2→
→Rn, i = 0, 1, such that for arbitrary functions u = (uk)

n
k=1 : [a, b] → Rn, v = (vk)

n
k=1 : [a, b]→

→Rn from W 2 with the properties

uk(t) ≥ vk(t), t ∈ [a, b], k = 1, 2, . . . , n, (3.1)

the estimates

pk(u− v)(t) ≤ (fku)(t)− (fkv)(t) ≤ p̃k(u− v)(t), t ∈ [a, b], k = 1, 2, . . . , n, (3.2)

and

hik(u− v) ≤ ϕik(u)− ϕik(v) ≤ h̃ik(u− v), k = 1, 2, . . . , n, i = 0, 1, (3.3)

are fulfilled. Furthermore, suppose that the following inclusions are true:

p̃ ∈ Sh1,h0 ,
1

2
(p+ p̃) ∈ S 1

2
(h1+h̃1),

1
2
(h0+h̃0)

. (3.4)
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Then the boundary-value problem (1.1) – (1.3) has a unique solution.
The following statements are true.
Theorem 3.2. Assume that, for arbitrary functions u = (uk)

n
k=1 : [a, b] → Rn, v = (vk)

n
k=1 :

[a, b] → Rn from W 2 with properties (3.1), the inequalities

|(fku)(t)− (fkv)(t)− l1k(u− v)(t)| ≤ l2k(u− v)(t), k = 1, 2, . . . , n, (3.5)

and (3.3) are true for some linear functionals hi, h̃i : W 2 → Rn, i = 0, 1, and linear operators
l = (ljk)

n
k=1 : W

2 → L1, j = 1, 2, satisfying the inclusions

l1 + l2 ∈ Sh1,h0 , l1 ∈ S 1
2
(h1+h̃1),

1
2
(h0+h̃0)

. (3.6)

Then the boundary-value problem (1.1) – (1.3) has a unique solution.
Let us put l1 + l2 = l and l1 − l2 = 0 then Theorem 3.2 implies the following corollary.
Corollary 3.1. Let there exist certain linear operator l = (lk)

n
k=1 : W

2 → L1 and linear
functionals hi = (hik)

n
k=1 : W

2 → Rn and h̃i = (h̃ik)
n
k=1 : W

2 → Rn, i = 0, 1, such that the
inclusions

l ∈ Sh1,h0 ,
1

2
l ∈ S 1

2
(h1+h̃1),

1
2
(h0+h̃0)

(3.7)

hold, moreover the estimates (3.3) and

0 ≤ (fku)(t)− (fkv)(t) ≤ lk(u− v)(t), t ∈ [a, b], k = 1, 2, . . . , n, (3.8)

are fulfilled for any absolutely continuous functions u and v from W 2 with property (3.1).
Then the boundary-value problem (1.1) – (1.3) has a unique solution.
If l1 = 0 and l2 = l then Theorem 3.2 takes the next form.
Corollary 3.2. Assume that there exist certain linear functionals hi = (hik)

n
k=1 : W

2 → Rn
and h̃i = (h̃ik)

n
k=1 : W

2 → Rn, i = 0, 1, with property (3.3) such that for arbitrary functions
u = (uk)

n
k=1 : [a, b] → Rn and v = (vk)

n
k=1 : [a, b] → Rn from W 2 with the properties (3.1) the

inequalities

|(fku)(t)− (fkv)(t)| ≤ lk(u− v)(t), k = 1, 2, . . . , n, (3.9)

are true for some linear operator l = (lk)
n
k=1 : W

2 → L1 satisfying the inclusion

l ∈ Sh1,h0 . (3.10)

Then the boundary-value problem (1.1) – (1.3) has a unique solution.
Theorem 3.3. Assume that, for any {u, v} ⊂ W 2 with property (3.1), the functionals ϕ0 and

ϕ1 satisfy estimates (3.3) with certain linear functionals hi, h̃i : W 2 → Rn, i = 0, 1.
In addition, let there exist some positive linear operators gi = (gik)

n
k=1 : W

2 → L1, i = 1, 2,
and a constant γ ∈ (0, 1) such that

g1 + (1− 2γ) g2 ∈ Sh1,h0 , −γg2 ∈ S 1
2
(h1+h̃1),

1
2
(h0+h̃0)

, (3.11)
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and the inequalities

|(fku)(t)− (fkv)(t) + g2k(u− v)(t)| ≤ g1k(u− v)(t), k = 1, 2, . . . , n, (3.12)

hold on [a, b] for any vector-valued functions u = (uk)
n
k=1 and v = (vk)

n
k=1 from W 2 with

properties (3.1).
Then the boundary-value problem (1.1) – (1.3) has a unique solution.

Taking γ =
1

2

(
or γ =

1

4

)
Theorem 3.3 allows to obtain the next corollary.

Corollary 3.3. Let there exist and positive linear operators gi = (gik)
n
k=1 : W

2 → L1, i = 1, 2,
condition (3.12) be satisfied for all {u, v} ⊂ W 2 with property (3.1). Let, moreover, (3.3) hold
with certain linear functionals hi, h̃i : W 2 → Rn, i = 0, 1, and either

g1 ∈ Sh1,h0 , −1

2
g2 ∈ S 1

2
(h1+h̃1),

1
2
(h0+h̃0)

(3.13)

or

g1 +
1

2
g2 ∈ Sh1,h0 , −1

4
g2 ∈ S 1

2
(h1+h̃1),

1
2
(h0+h̃0)

(3.14)

are true.
Then problem (1.1) – (1.3) has a unique solution.
3.1. Optimality of conditions. Note that assumption (3.4), (3.6), (3.7), (3.10), (3.11), (3.13),

(3.14) we can not replaced by their weakly versions. For example, in Theorem 3.2 inclusion (3.6)
can not be replaced by the condition

(1− ε) (l1 + l2) ∈ Sh1,h0 , l1 ∈ S 1
2
(h1+h̃1),

1
2
(h0+h̃0)

nor by the condition

l1 + l2 ∈ Sh1,h0 , (1− ε)l1 ∈ S 1
2
(h1+h̃1),

1
2
(h0+h̃0)

,

where ε is an arbitrarily small positive number. In order to verified this, it is sufficient to use [20].
4. Auxiliary statements. We need the following statement on the unique solvability of an

equation with Lipschitz type nonlinear terms (see [12, 13]). Let us consider the abstract operator
equation

Fx = z, (4.1)

where F : E1 → E2 is a mapping between a normed space 〈E1, ‖·‖E1
〉 and a Banach space

〈E2, ‖·‖E2
〉 over the field R and z is an arbitrary element from E2.

LetKi ⊂ Ei, i = 1, 2, be cones [11]. The conesKi, i = 1, 2, induce natural partial orderings
of the respective spaces. Thus, for each i = 1, 2, we write x 5Ki y and y =Ki x if and only if
{x, y} ⊂ Ei and y − x ∈ Ki.
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Theorem 4.1 ([13], Theorem 49.4). Let the coneK2 be normal and reproducing. Furthermore,
let Bk : E1 → E2, k = 1, 2, be additive and homogeneous operators such that B−11 and (B1 +
+B2)

−1 exist and possess the properties

B−11 (K2) ⊂ K1, (4.2)

(B1 +B2)
−1(K2) ⊂ K1 (4.3)

and, furthermore, let the order relation

{Fx− Fy −B1(x− y), B2(x− y)− Fx+ Fy} ⊂ K2 (4.4)

be satisfied for any pair (x, y) ∈ E2
1 such that x =K1 y.

Then equation (4.1) has a unique solution for an arbitrary z from E2.
Let us recall two definitions (see, e.g., [11, 13]).
Definition 4.1. A cone K2 ⊂ E2 is called normal if there exists a constant γ ∈ (0,+∞) such

that ‖x‖E2 ≤ γ‖y‖E2 for arbitrary {x, y} ⊂ E2 with the property 0 5K2 x 5K2 y.
Definition 4.2. A coneK1 is called generating inE1 if every element u ∈ E1 can be represented

in the form u = u1 − u2, where {u1, u2} ⊂ K1.
Let us now formulate several lemmas.
Lemma 4.1. The following propositions are true:
(1) The set W 2

(0) is a cone in the space W 2.

(2) The set W 2
(2) is a normal and generating cone in the space W 2.

Proof. The assertions of Lemma 4.1 follow immediately from the definitions of the setsW 2
(0)

and W 2
(2) (see the notation in Section 2).

For any p : W 2 → L1 and hi : W 2 → Rn, i = 0, 1, let us define an operator Vp,h1,h0 : W
2 →

→ W 2 by putting

(Vp,h1,h0u) (t) := u(t)−
t∫

a

 s∫
a

(pu)(ξ)dξ

 ds− (t− a)h1(u)− h0(u) (4.5)

for all u ∈ W 2 and t ∈ [a, b].
Lemma 4.2. A function u from W 2 is a solution of the equation

(Vp,h1,h0u)(t) =

t∫
a

 s∫
a

q(ξ)dξ

 ds+ c1 (t− a) + c0, t ∈ [a, b],

where q ∈ L1 and ci ∈ R, i = 0, 1, if and only if it is a solution of the nonlocal boundary-value
problem (2.3) – (2.5).

The next lemma establishes the relations between the property described by Definition 2.2
and the positive invertibility of operator (4.5).

Lemma 4.3. If a linear operator p = (pk)
n
k=1 : W

2 → L1 satisfies the inclusion

p ∈ Sh1,h0 , (4.6)
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then the operator Vp,h1,h0 : W
2 → W 2 given by formula (4.5) is invertible and, moreover, its

inverse V −1p,h1,h0
has the property

V −1p,h1,h0
(W 2

(2)) ⊂ W 2
(0). (4.7)

Proof. Suppose that mapping p belongs to the set Sh1,h0 . Given an arbitrary function y =
= (yk)

n
k=1 ∈ W 2, consider the equation

Vp,h1,h0u = y. (4.8)

Since y ∈ W 2, we have that, in particular, y and y′ are absolutely continuous. In view of (4.6),
there exists a unique function u ∈ W 2 such that

u′′k(t) = (pku)(t) + y′′k(t), t ∈ [a, b], k = 1, 2, . . . , n,

and

u′k(a) = h1k(u) + y′k(a), k = 1, 2, . . . , n,

uk(a) = h0k(u) + yk(a), k = 1, 2, . . . , n.

By Lemma 4.2, it follows that u is a unique solution of equation (4.8). Due to the arbitrariness
of y ∈ W 2, it follows that V −1p,h1,h0

exists and, hence, u = V −1p,h1,h0
y.

Moreover, inclusion (4.6) also guarantees that if the functions yk, k = 1, 2, . . . , n, are such
that

y′′k(t) ≥ 0, y′k(a) ≥ 0, yk(a) ≥ 0, t ∈ [a, b], k = 1, 2, . . . , n, (4.9)

then the components of u are nonnegative and, therefore, V −1p,h1,h0
y ∈ W 2

(0). However, relations
(4.9) mean that y ∈ W 2

(2). Since y is arbitrary, we thus arrive at the required inclusion (4.7).
Lemma 4.4. The identity

Vp,h1,h0 + Vp̃,h̃1,h̃0 = 2V 1
2
(p+p̃), 1

2
(h1+h̃1),

1
2
(h0+h̃0)

(4.10)

holds for arbitrary linear operators p, p̃ : W 2 → L1 and linear functionals hi, h̃i : W 2 → Rn,
i = 0, 1.

Proof. This statement is an easy consequence of (4.5). Indeed, for any u ∈ W 2 and t ∈ [a, b],
formula (4.5) implies the equality

(Vp,h1,h0u)(t) + (Vp̃,h̃1,h̃0u)(t) = 2

(
u− 1

2

t∫
a

( s∫
a

((pu)(ξ) + (p̃u)(ξ)) dξ

)
ds−

− t− a
2

(h1(u) + h̃1(u))−
1

2
(h0(u) + h̃0(u))

)
,
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which, in view of the linearity of the operators p, p̃ and functionals hi, h̃i, i = 0, 1, leads us
immediately to (4.10).

5. Proofs. Proof of Theorem 3.1. By analogy to Lemma 4.2, it is easy to see that an absolutely
continuous vector-valued function u = (uk)

n
k=1 : [a, b] → Rn is a solution of (1.1) – (1.3) if, and

only if it satisfies the equation

u(t) =

t∫
a

 s∫
a

(fu)(ξ)dξ

 ds+ (t− a)ϕ1(u) + ϕ0(u), t ∈ [a, b]. (5.1)

Let us take E1 = E2 = W 2 and define a mapping F : W 2 → W 2 by setting

F := Vf,ϕ1,ϕ0 , (5.2)

where Vf,ϕ1,ϕ0 is given by (4.5). Then (5.1) takes the form (4.1) with z = 0. We shall show that,
under the conditions assumed, equation (5.1) has a unique solution.

Using notation (4.5), define the linear mappings Bi : W 2 → W 2, i = 1, 2, by putting

B1 := Vp̃,h̃1,h̃0 , B2 := Vp,h1,h0 . (5.3)

Let us also put

wu,v(t) := (Vf,ϕ1,ϕ0u)(t)− (Vf,ϕ1,ϕ0v)(t), t ∈ [a, b], (5.4)

for all u and v from W 2 with properties (3.1). Then, due to (4.5),

wu,v(a) = u(a)− v(a)− ϕ0(u) + ϕ0(v),

w′u,v(a) = u′(a)− v′(a)− ϕ1(u) + ϕ1(v)

and, therefore, we have the componentwise inequalities

(B2(u− v))(a) ≤ wu,v(a) ≤ (B1(u− v))(a), (5.5)

(B′2(u− v))(a) ≤ w′u,v(a) ≤ (B′1(u− v))(a). (5.6)

According to (3.2), we have

−p̃k(u− v)(t) ≤ −(fku)(t) + (fkv)(t) ≤ −pk(u− v)(t)

and, therefore, due to (4.5), the componentwise estimates

wu,v(t) ≤ u(t)− v(t)−
t∫

a

 s∫
a

p(u− v)(ξ)dξ

 ds− (t− a)h1(u− v)− h0(u− v) (5.7)
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and

wu,v(t) ≥ u(t)− v(t)−
t∫

a

 s∫
a

p̃(u− v)(ξ)dξ

 ds− (t− a)h̃1(u− v)− h̃0(u− v) (5.8)

hold for any u, v with properties (3.1) and t ∈ [a, b].
Let us put

K1 := W 2
(0), K2 := W 2

(2). (5.9)

By Lemma 4.1, both sets (5.9) are cones and, moreover, K2 is normal and generating in W 2.
According to the definition (2.2) of the set W 2

(2), estimates (5.5) – (5.8) mean that

{B2(u− v)− wu,v, wu,v −B1(u− v)} ⊂ W 2
(2)

or, equivalently,

{Vf,ϕ1,ϕ0u− Vf,ϕ1,ϕ0v −B1(u− v), B2(u− v)− Vf,ϕ1,ϕ0u+ Vf,ϕ1,ϕ0v} ⊂ W 2
(2) (5.10)

for arbitrary u and v from W 2 with property (3.1). Thus, relation (4.4) holds with F, B1, and B2

given by (5.2), (5.3) and the cones K1 and K2 defined by (5.9).
Recalling (5.3) and applying Lemma 4.4, we obtain the identity

B1 +B2 = 2V 1
2
(p+p̃), 1

2
(h1+h̃1),

1
2
(h0+h̃0)

. (5.11)

In view of assumption (3.4), Lemma 4.3 guarantees the invertibility of the operators Vp̃,h̃1,h̃0
and V 1

2
(p+p̃), 1

2
(h1+h̃1),

1
2
(h0+h̃0)

.Consequently, we haveB−11 = V −1
p̃,h̃1,h̃0

and, by (5.11), the equali-
ty

(B1 +B2)
−1 =

1

2
V −11

2
(p+p̃), 1

2
(h1+h̃1),

1
2
(h0+h̃0)

holds. The same Lemma 4.3 ensures the positivity of the inverse operators in the sense that

V −1
p̃,h̃1,h̃0

(W 2
(2)) ⊂ W 2

(0),

V −11
2
(p+p̃), 1

2
(h1+h̃1),

1
2
(h0+h̃0)

(W 2
(2)) ⊂ W 2

(0).

Therefore, inclusions (4.2) and (4.3) are true for operators (5.3) with respect to cones (5.9).
Applying Theorem 4.1, we establish the unique solvability of equation (5.1) and, hence, of

the boundary-value problem (1.1) – (1.3).
Theorem 3.1 is proved.
Proof of Theorem 3.2. This statement is proved similarly to [5] (Theorem 2). It is obvious,

that for arbitrary functions u and v from W 2 with property (3.1), condition (3.5) is equivalent
to the relation

−l2k(u− v)(t) + l1k(u− v)(t) ≤ (fku)(t)− (fkv)(t) ≤ l2k(u− v)(t) + l1k(u− v)(t) (5.12)
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for t ∈ [a, b] and k = 1, 2, . . . , n. Let us put

p := l1 − l2, p̃ := l1 + l2. (5.13)

Then (5.12) means that f satisfies condition (3.2). It is also clear that (3.6) ensures the validity
of condition (3.4) with p and p̃ given by (5.13). Application of Theorem 3.1 thus leads us to the
assertion of Theorem 3.2.

Proof of Theorem 3.3. Taking into account conditions (3.11), (3.12), one can check that the
operators li : W 2 → L1, i = 1, 2, defined by the formulae

l1 := −γg2, l2 := g1 + (1− γ)g2 (5.14)

satisfy conditions (3.5), (3.6) of Theorem 3.2. Indeed, estimate (3.12), the assumption that 0 <
< γ < 1, and the positivity of the operator g2 imply that, for any absolutely continuous functi-
ons u = (uk)

n
k=1 : [a, b] → Rn and v = (vk)

n
k=1 : [a, b] → Rn with properties (3.1), the relations

|(fku)(t)− (fkv)(t) + γg2(u− v)(t)| =

= |(fku)(t)− (fkv)(t) + g2k(u− v)(t)− (1− γ)g2k(u− v)(t)| ≤

≤ g1k(u− v)(t) + |(1− γ)g2k(u− v)(t)| =

= g1k(u− v)(t) + (1− γ)(g2k(u− v)(t)), t ∈ [a, b], k = 1, 2, . . . , n,

are true. This means that f satisfies estimate (3.5) with the operators li, i = 1, 2, defined by
formulae (5.14). Therefore, it only remains to note that assumption (3.11) ensures the validity of
inclusions (3.6) for operators (5.14). Applying Theorem 3.2, we arrive at the required assertion.

6. The case of an equation without derivatives in the right-hand side. In the general case, l
from equation (1.1) is given on W 2 only and, thus, the right-hand side term of equation (1.1)
may contain u′′, which corresponds to an equation of neutral type.

If the operator l in equation (1.1) is defined not only onW 2 but also on the entire spaceW 1,
then a statement equivalent to Theorem 3.1 can be obtained with the help of results established
in [5].

Given an operator p : W 1 → L1, we put

(Ipu)(t) :=

t∫
a

(pu)(s)ds, t ∈ [a, b], (6.1)

for any u from W 1, so that Ip is a map from W 1 to itself. We need the following definition [5].
Definition 6.1. Let h : W 1 → Rn be a continuous linear vector functional. A linear operator

p : W 1 → L1 is said to belong to the set Sh if the boundary-value problem

u′(t) = (pu)(t) + α(t), t ∈ [a, b], (6.2)

u(a) = h(u) + c (6.3)
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has a unique solution u = (uk)
n
k=1 for any α = (αk)

n
k=1 ∈ L1, c ∈ Rn and, moreover, the soluti-

on of (6.2), (6.3) has nonnegative components provided that the functions αk, k = 1, 2, . . . , n,
are nonnegative almost everywhere on [a, b].

In the case where the operator f, which determines the right-hand side of equation (1.1),
is well defined on the entire space W 1, results of the preceding sections admit an alternative
formulation. In particular, the following statements hold.

Theorem 6.1. Suppose that there exist certain linear operators p = (pk)
n
k=1 : W

1 → L1,
p̃ = (p̃k)

n
k=1 : W

1 → L1, satisfying the inclusions

Ip̃ + h1 ∈ Sh0 ,
1

2
Ip+p̃ +

1

2
(h1 + h̃1) ∈ S 1

2
(h0+h̃0)

,

where hi = (hik)
n
k=1 : W

1 → Rn, h̃i = (h̃ik)
n
k=1 : W

1 → Rn, i = 0, 1, are linear vector functi-
onals, and such that inequalities (3.2) and (3.3) hold for an arbitrary u and v from W 1 with
property (3.1).

Then the nonlocal boundary-value problem (1.1) – (1.3) has a unique solution.
Theorem 6.2. Assume that there exist certain linear operator l : W 1 → L1 and linear functi-

onals hi = (hik)
n
k=1 : W

1 → Rn, h̃i = (h̃ik)
n
k=1 : W

1 → Rn, i = 0, 1, satisfying the inclusion

Ip + h1 ∈ Sh0

and the estimations (3.9) and (3.3) are fulfilled for any absolutely continuous functions u and v
with property (3.1).

Then the boundary-value problem (1.1) – (1.3) has a unique solution.
Theorem 6.3. Let there exist certain positive linear operators gi = (gik)

n
k=1 : W

1 → L1,
i = 1, 2, and linear functionals hi = (hik)

n
k=1 : W

1 → Rn, h̃i = (h̃ik)
n
k=1 : W

1 → Rn, i = 0, 1,
which satisfy inequalities (3.3) and (3.12) for arbitrary u and v from W 1 with property (3.1), and,
moreover, are such that the inclusions

Ig1 + h1 ∈ Sh0 , −1

2
Ig2 +

1

2
(h1 + h̃1) ∈ S 1

2
(h0+h̃0)

hold.
Then the nonlocal boundary-value problem (1.1) – (1.3) has a unique solution.
To prove the Theorems 6.1, 6.2 and 6.3 we use the following lemma.
Lemma 6.1. If l : W 1 → L1 is a bounded linear operator, then the inclusion

Il + θ ∈ Sh (6.4)

implies that l ∈ Sθ,h.
Proof of Lemma 6.1. According to Definition 2.2, l belongs to Sθ,h if and only if problem

(2.3) – (2.5) has a unique solution for any q ∈ L1, ci ∈ Rn, i = 0, 1, and, moreover, the solution
is nonnegative for nonnegative q, c0, c1. By integrating (2.3), we can represent problem (2.3) –
(2.5) in the equivalent form

u′(t) = (Ilu)(t) + θ(u) + c1 +

t∫
a

q(s)ds, t ∈ [a, b], (6.5)

u(a) = h(u) + c0, (6.6)
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which, obviously, is a particular case of (6.2), (6.3) with p := Il + θ, and α :=
∫ ·
a q(s)ds + c1.

However, by virtue of Definition 6.1, the unique solvability of problem (6.5), (6.6) and the mo-
notone dependence of its solution on q follow from inclusion (6.4). Therefore, l ∈ Sθ,h.

7. Example of a functional differential equations of the second order. We consider the
boundary-value problem for the nonlinear scalar differential equation with argument deviati-
ons

u′′(t) = α(t) (d+ λ(t) sin (u(ω(t))))
1

2m+1 , t ∈ [a, b], (7.1)

u′(a) = 0, (7.2)

u(a) = µu(b) + c, (7.3)

where d ∈ R, c ∈ R, m ∈ N, ω : [a, b] → [a, b] is Lesbesgue measurable function, {α, λ} ⊂ L1,
are functions such that

t ≥ ω(t), α(t) ≥ 0 (7.4)

and

0 ≤ λ(t) < d. (7.5)

The next result is true.
Theorem 7.1. Let |µ| < 1 and the functions α, λ, ω satisfy the conditions (7.4), (7.5) for almost

all t ∈ [a, b], and

b∫
a

 t∫
a

α(s)λ(s)ds

(2m+ 1) (d− λ(s))
2m

2m+1

 dt < − ln |µ|. (7.6)

Then the boundary-value problem (7.1), (7.2), (7.3) has a unique solution.
To prove Theorem 7.1, we use the following propositions concerning the scalar linear functi-

onal differential equation:

u′(t) = (pu)(t) + q(t), t ∈ [a, b], (7.7)

where p is a map from C := C([a, b],R) to L1.
We shall say that p is positive if it maps nonnegative functions from C to almost everywhere

nonnegative elements of L1.
Proposition 7.1 ([8], Corollary 2.1a). Suppose that |µ| < 1 and the operator p in scalar linear

functional differential equation (7.7) is a positive Volterra operator and

|µ| exp

 b∫
a

(p1)(s)ds

 < 1. (7.8)

Then the boundary-value problem (7.7), (7.3) is uniquely solvable for an arbitrary q ∈ L,
c ∈ R. Moreover, nonnegativity of q implies the nonnegativity of the solution.
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Proof of Theorem 7.1. To prove Theorem 7.1 we use Theorem 6.2.
It is easy to see that the problem (7.1) – (7.3) is a particular case of (1.1) – (1.3) where n = 1

and the operator f1 : W 1 → L1 given by the formula

(f1u)(t) := α(t) (d+ λ(t) sin(u(ω(t))))
1

2m+1 , t ∈ [a, b], (7.9)

ϕ1 := 0, ϕ0 := µu(b) + c and h0 = µu(b) + c for any u from W 1. Using the Lagrange theorem
and taking (7.5) into account, we get that the relations∣∣∣α(t) (d+ λ(t) sin(u(ω(t))))

1
2m+1 − α(t) (d+ λ(t) sin(v(ω(t))))

1
2m+1

∣∣∣ ≤
≤ sup

ξ∈R

α(t)λ(t)| cos ξ| (u (ω(t))− v (ω(t)))
(2m+ 1)(d+ λ(t) sin ξ)

2m
2m+1

≤ α(t)λ(t) (u (ω(t))− v (ω(t)))
(2m+ 1)(d− λ(t))

2m
2m+1

hold for almost all t ∈ [a, b] and for arbitrary absolutely continuous functions u : [a, b] → R and
v : [a, b] → R possessing the properties (3.1).

Let us put

(lu)(t) :=
α(t)λ(t)u(ω(t))

(2m+ 1)(d− λ(t))
2m

2m+1

, t ∈ [a, b]. (7.10)

Taking into account (7.5) and (7.4) for u ∈ W 1, we see that (3.9) is true. Now we need to make
sure that χ ∈ Sh0 , where

χ := Il. (7.11)

It is clear from (7.9), (7.10) that f and l can be considered as a mapping from C to L1, so we
can use Proposition 7.1. It is easy to see, that χ is a positive operator, which, due to assumption
(7.4) is of Volterra type. It follows from (6.1), (7.10) and (7.11) that

b∫
a

(χ1)(t)dt =

b∫
a

 t∫
a

α(s)λ(s)ds

(2m+ 1)(d− λ(s))
2m

2m+1

 dt

and, hence, for µ 6= 0, assumption (7.6) implies the relation

b∫
a

(χ1)(t)dt < − ln |µ|.

This means that inequality (7.8) is fulfilled.
Applying Proposition 7.1, we show that χ ∈ Sh0 . Note that if µ = 0, then problem (7.3),

(7.7) reduces to a Cauchy problem at the point a and as is known in this case (see, e. g., [8]) the
inclusion χ ∈ Sh0 is guaranteed by the Volterra property of χ.

So, we have shown that all the conditions of Theorem 6.2 are fulfilled. Applying the Theo-
rem 6.2, we complete the proof.
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