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Abstract

This second part belongs to a series of two papers devoted Lo a constructive review of the relativistic
wave equations for vector mesons due to the recent impact of spin one developments.in connection
with parasupersymmetric quantum mechanics. Here, the mesons are interacting with external
(electroymagnetic fields but the simplest context of homogencous constant magnetic fields directed
along the z-axis is particularly studied. Discussions on reality of energy eigenvalues, on causal
propagation and on gyromagnetic ratios are especially presented. Supersymmetries and parasuper-
symmetries are analysed with respect to new pseudosupersymmetr ies suggested by these developments
in one particular conlext.

L Introduction

In the first paper [1] of this serics, we have systematically revisited the symmetric and
Hamiltonian forms of relativistic wave equations describing free spin one particles. The
motivation of such a study was effectively based on the recent interest enhanced by
developments [2, 3] in parasupersymmetrical quantum mechanics (PSSQM) as already
recalled in [1]. One of the main characteristics presented in that first part was the analysis
of the 16-dimensional reducible representation of the Lie algebra sl(2, C) in connection
with the different (symmetric) formulations for nonzero rest mass vector mesons proposed
in the literature: they effectively cover the wellknown wave equations due to BARG-
MANN-WIGNER [4] or DE BROGLIE [5], STUECKELBERG [6], KeMMER-DUFFIN-PETIAU [7]
(hercalter called the Kemmer equation) and to HAGEN-HURLEY [8]. In that free context,
we have proposed a covariant wave equation

(Bp,—m) ¥(x)=0 (1.1)
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where the f* (¢=0, 1, 2, 3)-matrices satisfy the following relations that we call the Tzou
relations [9]:

BB B+ BB B+ B BB+ BB B+ B B B+ BB B = 2g% B+ 287 B 4+ 207 B (1.2)

where the g"*s refer to the Minkowskian metric G = {g**|g°° = — g =1}, all the conventions
adopted here being identical to those given in [1]. Depending on specific choices of
fp*-matrices belonging to superpositions of irreducible representations contained in the
above l6-reducible one, we have thus characterized all these symmetric formulations
describing vector mesons through wave functions with decreasing numbers of components
such as 16 [4, 5], 11 [6], 10 [7] or 7 [8].

One of the main purposes of this second paper is to propose and to discuss a
generalization of eq. (1.1) to the interacting context dealing with vector mesons of charge
e in external electromagnetic fields, an already fundamental application at the first
quantized level with a view to extend it, later, to quantum field theory through interacting
Lagrangians constrained by gauge invariance principles. In fact, we have to recall, at the
start, that there are many problems related to such a programme. In particular, three of
them can immediately be pointed out here

i) the appearance of possible complex energy cigenvalues [10-12] for (electro)magnetic
fields of certain magnitudes,

ii) the causality of propagation [13-15],

iii) the acceptance of possible nonminimal interaction terms and the corresponding

value of the gyromagnetic ratio g =2 or g=! [16, 17] where s is the spin of the particle.
Through our proposal, such problems will be considered in the following with a particular
emphasis in the context of the Kemmer equation generalizing eq. (1.1), the latter taking
the new form [18]

{;‘j":rrﬂ—m + Py [iﬂ S,“,F-"-'—za':;% (F,, F‘”}“]} Y(x)=0 - (1.3a)
where Py is a Kemmer projector (P = Py) defined by

Py=8,8"—~2 (1.3b)
which also appears as given by

Pe=1—p2. (1.3¢)

Here, ¥(x) is a ten-component wave function describing charged spin onc particles of
nonzero rest mass m in external electromagnetic fields F =(E, B) = {F,,} where

Fx)=6,4,(x)—0,4,(x), x=(x")=(x°x%, x% x)=(1, %) (1.4)

while the matrices *, fi; are such that the Tzou relations (1.2) reduce to the Kemmer ones
[7,19]

ﬁ;:ﬁvﬁi +ﬁﬂﬁvﬁu=ggu'ﬁ)'.+gllvﬁ_u {15]

and that [20]
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i i
ﬁizzanv\gfrﬁnﬁ‘ﬁgﬁa' 8{512321‘ (16]

In eq. (1.3), we also notice the usual minimal electromagnetic coupling through the
substitution

P, RN:P_H—E'AI‘(XJ.. (17]

A(x)= {A"(x)} being the fourpotential fixed up to a gauge transformation on the scalar
part A°=V and the vector part A(x). This minimal coupling is supplemented by extra
terms characterizing anomalous (nonminimal) couplings where we recognize the covariant
form of the famous Pauli term when the relativistic spin tensor S, is given by

S =i, B1. (1.8)

Finally, there is also a nonlinear scalar term depending on a new parameter 4 and on an
exponent « which will be discussed hereafter.

The study of eq. (1.3) through many elements will be developed in Section 2 and will
represent the main part of this paper when we limit ourselves to the simplest case of
homogeneous constant magnetic fields and to the special choice of the exponent « =1.1In
strong relation with the free context and its associated wave equations discussed in the
first part of this series, we will then come back on the Hagen-Hurley (Section 3),
Bargmann-Wigner or de Broglie (Section 4) and Stueckelberg (Section 5) formulations.
Finally, in Section 6, we will summarize our results, give the main conclusions in
connection with the three above-mentioned problems (i, ii, i) and point out some further
remarks.

As already mentioned, our conventions will be identical to those given in the first part
of this series: morcover, for brevity, we will refer to formulas of this first part by adding a
capital I inside their reference numbers, so that no confusion could appear with the
present formulas. :

p2 The Kemmer Formulation with (Electro)Magnetic Interactions

Taking advantage of our general developments, it appeared that the Kemmer formulation
(described by a ten-component wave function) revealed itself as the richest one in order to
show the way of reasoning for all the descriptions. Thus, essentially for pedagogical
reasons, we propose to start our study by this Kemmer generalization of ¢q. (1.1) to the
interacting case, i.c. when charged, massive, vector mesons are subject to electromagnetic
external fields. In order to fix our specific considerations (when necessary), we will use the
explicit 10-dimensional representation (L 2.20) corresponding to a direct sum of the
sl (2, C)-representations D(1, 0), D(0, 1) and D(3, 1) [see (1.2.22)].
In that context, the matrix 85 =(1.6) takes the form

Bs=i(—ey+es—erstes—e361€53) @1
leading to

pi=3—f, B =e te;rtesstesatesstess (2.2a)
and, evidently, to

o
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Pr=e;,+es5te509+€1010- (2.2b)

Let us recall here that the notation e, refers to a d-dimensional matrix (f, k=1, 2, ..., d)
containing all zero clements except the one located at the intersection of the j' line and
k™ column which is equal to unity.

We propose to come, first, on a short historical survey (§ 2.A) completing a very recent
one [12, 15] in order to connect, as a second part, these developments to parasupersymmetric
properties [2, 3] by visiling some energy spectra (§ 2.B). Finally (§ 2.C), our third step is
devoted to the introduction of new nonlinear interaction terms in covariant form and to
their implications in a resulting new context dealing with pscudosupersymmetries in
particular.

2.A. Comments on a historical survey

The best review of the description of vector mesons in external electromagnetic fields can
undoubtedly be obtained by superposing some sections of two contributions due to
VIIAYALAKSHMI et al. [15] and to Daicic-FRANKEL [12]. The discussions on the appearance
of complex energies (for intense magnetic fields) and on the causality of propagation are
quoted there in connection with the superposition of minimal coupling terms with
anomalous (magnetic moment) coupling ones. For brevity, we refer to these references [12,
15, and relerences therein] while here we want to present a new characterization of the
above difficulty on complex energies by giving an appropriate generalization of the
equation (1.1) containing the minimal coupling as well as an anomalous magnetic moment
coupling in the Kemmer case.
So, let us analyse the relativistic Kemmer equation

|:ﬁ“?rp —m+ Py % SMF“"] P(x)=0, (2.3)

which corresponds to eq. (1.3) when A=0. It is the more gencral CPT-invariant
and covariant equation corresponding to the gyromagnetic ratio g=2 which has
alrcady been proposed: it includes the minimal electromagnetic coupling (1.7) and
an anomalous coupling expressed in terms of the tensors (1.4) and (1.8). It is
easy to convince ourselves that such a system of ten equations reduces to Lhe
CORBEN-SCHWINGER equations [21] on the four components ¢, = Y¥,,, ¢, =¥, ¢, =¥;,
@3="Y, or lo the SHAY-Goon formulation [22] on the six components ¥,...., ¥,.
Morcover, expressed in Tamm-Sakata-Taketani Hamiltonian form [25], it leads
to a Hamiltonian which is unitary equivalent to the Daicic-FRANKEL one [12]
as it is easily verified. Due to the wellknown properties of the preceding developments,
we immediately deduce that the formulation based on eq. (2.3) satisfies the causality
principle but leads to an energy spectrum containing possible complex energy eigenvalues
(for some values of the magnetic field, in particular). Indeed, if we limit ourselves
to the (very often studied) simplest context of homogeneous constant magnetic fields,
Le. F=[E=0,B=(0,0, B]] derived from the gauge symmetrical potential [26]

Ay,=A4;=0, A, =-Bx,, A,=-Bx,, F,=8, (2.4a)
and implying that

Mg =Py, A3=p3. A;=p +eBx,, my=p,—eBx,. (2.4b)
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our equation (2.3) becomes
eB
I:,b’“?r# —m+ Py - 23—| Y(x)=0 (2.5)
m

where, inside the so-chosen Kemmer representation, the matrix Zy is given through eq. (1.8) by
=S, =—lley,—ey  teq s —€s 4t ey 5 egq) (2.6)

Let us also notice that the 6-dimensional Tamm-Sakata-Taketani formulation associated
with eq. (2.5) is

’l

COx(x)

I -
t

-

= Hygp 2(x), (2.7a)

2

T 1
Higqr=m(I;®@a0,)+— 1, ® (0, +io ) +—eB(§; ®a,)—
2m m

3
Y mm(S; S ®ay) (2.7b)

dh=1

{

m

where we refer to direct products between 3 by 3 (unit I, and) S, S,, §; matrices
belonging to the D'-representation of su(2, C) with the usual Pauli matrices. Let us
notice that it coincides with the hamiltonian (1.3.12) in the free case, the identification of
the corresponding 6 by 6 matrices being evident. Such a formulation takes also the
Zaitsev-Feynman-Gell Mann form [23, 24]

(n*m,—m?—2eBS,® I,) 1(x)=0 _ (2.8)

showing that the gyromagnetic ratio implied in these developments is g = 2, a characteristic
value which will be discussed in the [ollowing (cf. Section 6).

From eqs. (2.7) or (2.8), it is easy Lo confirm by using JOHNSON-LIPPMANN arguments
[27] that we get relativistic energy eigenvalues such that

, 1
EZ=m>+ ZeB(rH-E-i-S) (2.9)

where n is the (principal) quantum number (=0, 1, 2, ...) associated with the resulting
one-dimensional harmonic oscillator issued from the so-called perpendicular contribution
[27] and where s denotes the eigenvalues (0, + 1) of the (diagonalized) matrix S, ® I,. For
specific values such as n=0, s= — 1, we thus point out possible ncgative eigenvalues E?
(depending on the relativistic strength of the magnetic field): the energy eigenvalues of our
problem become complex for

Bz — (2.10)

as already noticed since a long time by diflerent authors [10, 11, 21].
Let us now enlighten these difficulties through parasupersymmetric arguments.
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2.B. Some light from parasupersymmetry to spin one descriptions

PSSQM has effectively led to two approaches which, in particular, differ from permitting
[2] or not [3] negative eigenvalues of the nonrelativistic co rresponding parasuperhamiltonians
[28]. Let us try to connect the RUBAKOV-SPIRIDONOV characteristics [2] with the difficulty
pointed out in Section 2.A when the nonrelativistic limit of these developments is
considered. In fact, in correspondence with the (relativistic) equation (2.8) which explicitly
writes

P x(x)=(m*+ 7} + 72+ pl—2eBS, ®I,) 7(x) (2.11)

and with the (relativistic) energies (2.9), we can point out the nonrelativistic (m = p) spectrum

w_€B 1 1
E, =? n+5 -s )= n—l—;—s i (2.12)

a spectrum typically associated with the RUBAKOV-SPIRIDONOY approach to PSSQM [2]

when a parasupersymmetric harmonic oscillatorlike system Is studied. It is characterized
eB ; ’ s

by an angular frequency w=-— and assignes, at the start, a negative energy eigenvalue to
m

the fundamental groundstate. The Rubakov-Spiridonov nonrelativistic parasuperhamiltonian

associated with the eigenvalues (2.12) is

Lo o
2};(:@ +m3)—w S, (2.13)

Hygg =
where S is taken in its diagonal form Sy=diag(1,0, —1). Then, we can define two
parasupercharges 0, and Q, given by

1 _ 1
QJZT_ (S;my+S,m,), Q,=——(S,7,+8,m,) (2.14)
% 2m l_.f 2m

and show that we easily recover the typical structure relations of the RUBAKOV-SPIRIDONOV
algebra [2], i.e.

[Hpss. 0,1=0, Qf =i Q“ Hipg, a=1,2,
{010, +0,0,0,=0,Hp. {02.0,} +0,0,0,=0, Hpg. (2.15)

All thesc properties confirm the association of Rubakov-Spiridonov nonrelativistic
developments with the relativistic equation (2.11) and its possible complex energy eigenvalues
for magnetic fields characterized by a fixed strength according to eq. (2.10). The origin of
such dilficulties appears as enlightencd by such an association,

On this basis, we can try to exploit the other approach [3] of PSSQM., which is
preciscly characterized by nonnegative energy eigenvalues of the parasuperspectrum
corresponding to harmonic oscillatorlike system [3, 28]. Let us, indeed, recall that, with
respect to the Rubakov-Spiridonov spectrum (2.12), the Beckers-Debergh one takes the form

B 1 e
B o), Bl (2.16)
m 2 2
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and leads to threefold degeneracics already discussed. The main result is that it corresponds
to a fundamental groundstate with zero energy ensuring exacl parasupersymmetry [3]
and, consequently, excluding negative eigenvalues. Then, the critical point connected with
the use of the Beckers-Debergh approach in PSSQM in order to solve the above difficulty
is that we have to go the way back from nonrelativistic developments. A recent approach
solving such a problem has alrcady been proposed [29]: it leads to remarkable results
obtained by JoHNSON and LipPMAaNN [27] in the sense that the particular solution [29]
requires not only the usual operators m, (¢=1,2) given in egs. (2.4b) but also the
Johnson-Lippmann I1, (a =1, 2) defined by

Mm,=p,+ed,=1,=p —eBx,, I,=p,+eBx,. (2.17)

For brevity we refer to the original reference [19] for further details.

2.C. From spin one relativistic descriptions to pseudosupersymmetry

Let us now propose another method based on a generalization of the equation (2.3) or, at
the moment, of the equation (2.5) when we restrict the interaction context as already
mentioned to constant magnetic ficlds directed along the z-axis [18]. Let us modify eq.
(2.11) by adding a new term characterized by a real parameter A as follows

p2 y(x)=[m* +ni+n3+p3—2eBS;® I, +/eB] x(x), (2.18)

so that we now obtain, in correspondence with egs. (2.9) and (2.12),

A l = /" 0«
E;=m"+2¢B n—l—i- 5—9—5 (2.19a)
and
y B 1 i ' B
E,?R=%(n+2—s+%), £m =, (2.19b)

The introduction of this new parameter A permits a simple discussion in order to avoid
negative values of Eg® in correspondence with n=0 and s=1: this will always be the case
«for A=1 in the above considerations.
In fact, the new ferm introduced in eq. (2.18) corresponds to a further nonlinear
interaction term in eq. (2.5). We cffectively propose to write the new gencral Kemmer
equation on the form

eB e’
{ﬁ“nk —m+ Py |7¥ Zy—4 e Bz“—’} Yix)=0 (2.20)

where, besides /., we have introduced a supplementary real parameter which takes the
value o =1 for discussing our equation (2.18). By noticing that, in the special context ol
the magnetic field B, we have

(FMF““]“EE"BZ“. (2.21)
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we point out that the most gencral covariant form corresponding to our equation (2.20) is
effectively

5 1 .2a
{ﬁ“”p —m+ Py [Tém Suv F"‘:—z-g;:;—,_l (Fy F‘“‘]‘—l} Y(x)=0 (2.22)

which ensures not only the reality of the energy cigenvalues but also the causal
propagation as it can be tested through the method of characteristics [13] for any value
of the parameter o. This equation coincides with our original proposal mentioned in the
introduction (see eq. (1.3)).

In order to kecp the contact with previous results, let us once again consider the
particular equation (2.20). Let us then notice that it lecads to a new kind of Zait-
sev-Feynman-Gell Mann equation:

B\
(n'm,—m*+2eBX,) x(x)— im> (E?l) 7(x)=0 (2.23)

which evidently reduces to eq. (2.18) for the particular value x=1% and confirms —
according to egs. (2.19) — that, for %=}, the value 1=1 guarantees the reality of the
cnergy eigenvalues. By the same way of reasoning, we also deduce that the constraint

1 /m2\2t-1
sl L 2.24
i 4 (L’B) ( )

works for o = 1 cnsuring also real cigenvalues. Moreover, it is interesting to notice that, for
a=1, and, consequently, ).;ﬁ, or equation (2,22) or (2.23) cannot be included into the
family discussed by VuAyALAKSHMI etal. [15], so that we have to look at its causal
character by ourselves. Through the method of characteristics [13]. we are led to lightlike
normals and to the expected property which can also be extended for general electromagnetic
fields through steps associated with the study of the so-called parallel (F,) and perpendicular
(F)) electromagnetic fields [307. Let us finally stress out that, in that special context =1,
the A-constraint does not depend on the external field strengths while the general Kemmer
equation (2.20) is quadratic in these quantities.

Such encouraging results have then to be analysed in connection with PSSQM-arguments
and, more precisely, with the BECKERS-DEBERGH [3] approach due to the evident
nonnegative character of the energy eigenvalues in the nonrelativistic limit of eq. (2.23) or
(2.18). If we priviledge the specific allowed values =3 and A=1 [18], it is interesting to
point out that the resulting nonrelativistic (Johnson-Lippmann type) Hamiltonian takes
now the form

1 B
H™ = — (402 + 2 (I,-25,), w=22, (2.25)
2m 2 m

(compare with eq. (2.13)) and can once again results from two charges called here Q’; and
Q',. These charges generate with H™ a new structure of the type

[H™ 0/,1=0, Q3=0,H™ a=1,2, (2.26a)

0:0,=0,07=-0,0,0,=0,H™®, a+b. (2.26b)

"
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This 1s neither a Lie parasuperalgebra [31], nor a Lie superalgebra [32] but is called a Lic
pseudosuperalgebra [18] subtending pseudosupersymmetries and, physically, corresponding
to a model where usual bosons and (new) pseudofermions are superposed. Some connections
and differences with other recent proposals due to GREENBERG [33] or to KHARE etal.
[34] have already been pointed out [35]. A positive consequence of such particular
developments issued — let us remember it — [rom the interaction of veclor mesons in
magnetic fields, 13 the discovery of a {maybe) interesting new field that we call
“pseudosupersymmetric quantum mechanics”. Let us only mention here, in comparison with
PSSQM which is evidently subtended by parastatistics [36], that we have found
characteristics leading to a new kind of statistics, consistently called “pseudostatistics”, and
describing the above mentioned pseudofermions. In particular, the creation (b') and
annihilation (b) operators of these pseudofermions are such that

b2=(p"?=0, bbTh=b, bThh"=h'. (2.27)

These relations show, in particular, that pseudofermions are neither fermions, nor
parafermions, nor quons [33], nor p=2-orthofermions [34], but that they can be
interesting through welcome properties such as the one showing that they lead to small
violations of the Pauli principle. Pscudosupersymmetry will appear as a new concept
located, let us say, “hetween supersymmetry and parasupersymmetry”: one of its first
already positive effect is thus simply connected with reality of (relativistic) energies and
causality requirements in the study of vector mesons in external electromagnetic fields
when we study the particular context o =1 and A=1.

Let us end this section by mentioning that the pseudostatistical contents are nothing
else but a superposition of p =0-parafermions and p = 1-(para)fermions corresponding to a
direct sum of s=0 and s=; (para)particles. Such a property can be understood by
noticing that the pscudofermionic operators b and b' satisfying egs. (2.27) can be cast in
the following forms through a unitary transformation:

010 0 010 0

ubU'=[ 0,0 o ), ubrtu'={ 0,0 1 |, (2.28)
| |
0,1 0 0,0 0

where we recognize a direct sum of diagonal blocks referring to these two kinds of
parafermions. The corresponding properties (2.26) are evidently verified and the associated
nonrelativistic Hamiltonian takes the form

) S [ e I 0
(HM) =UHMU = pata+1 2(10 )= 2.29)
I \ 0 h

| a a

where a and a' are the corresponding bosonic operators appearing in the charges. We
evidently recover the supersymmetric Hamiltonian (and spectrum) through the above 2 by
2-submatrix h,. From h,, we deduce for oscillatorlike considerations that

1
ho=wla'a+2) = (p?+w?x? +3wm) (2.30)

showing that the total Hamiltonian (2.29) is not equivalent to a direct sum of a trivial
p = 0-parasupersymmetry and an expected (p = 1)-supersymmetry, although the equivalence
is effective at the level of the charges.
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3. The Hagen-Hurley Equation with External Magnetic Fields

The 7-component description of spin one particles proposed by HAGEN and HURLEY [§]

1 :
corresponds to the direct sum D 5o | @ D(1, 0) (see eq. (1.2.25)) and can be characterized

by eq. (1.1) within a representation of the matrices i, given by eq. (1.2.24) and satisfying
the Tzou relation (1.2). These results, typical of our part I, have now to be handled in
order to test if the general covariant equation (1.3) is still valid for our interacting context
but in a consistent way with the free one. In fact, this happens if we replace the Kemmer
projector by the following Hagen-Hurley one Pyy,,:

Pup=pB.p8"—3=e; +te;,+e;5. (3.1)

The corresponding equation (3.1) then writes

: . ".e.?:t
{ﬁ“n“ —m+ Py |:’)L Sud . (Fyy I"'“]J—‘} Pim(x)=0 (3.2)

2m 2rpte!

and reduces the Hagen-Hurley developments to the same discussion as the one presented
in Section 2.C. We thus recover the correspondence between the Kemmer and Hagen-Hurley
formulations in this interaction case.

An interesting point is to discuss the meaning of the projector Py, in terms of a
fis -matrix which could be introduced in the Tzou algebra associated with this Hagen-Hurley
formulation. So. what matrix could play the role of 5 in the present developments
remembering that the definition (1.6) is only valid in the Kemmer algebra — called ¢ (4) —
characterized by the relations (1.5)7 Let us recall here that relatively elaborate algebraic
developments due to KEMMER [7] and others [37 40, and references therein] are already
subtended by the simple relations (1.5): in particular, the matrix f, =(1.6) then appears as
a unique fifth element leading to a Kemmer algebra 2#°(5) (with gs5 =+ 1, for example).
Through the Tzou relations (1.2), only similar but orientied questions can actually be
solved and we want to adopt such a point of view in all the present and following sections.
So, let us ask for the form of a fifth element fi of the Tzou algebra by taking the explicit
7-dimensional representation (1.2.24) in our developments. Il we parametrize such a
fs-matrix by 49 unknowns, we finally get three independent forms given by

B =iley 3 —e5 5 —iey 1 —ie; 4 —es o +eg5)s (3.3a)
PP =i(e;s—e3 1 —€s6+¢eaties +ies), (3.3b)
P=ile;—ey 1 —eystesy—ieg,—iess). (3.3¢)

Let us point out that, if, in the Kemmer context, the fifth element leads from % (4) to
#°(5), we can argue that, in the Tzou context, the matrices B, B2 and g% lead from an
algebra 7(4) to a new one called t(7) characterized by seven fundamental elements, i.e. the
four §,- and the three f{’-matrices, when the metric is chosen in the following form
(+,—.—,—.+,+,+). In terms of the matrices (3.3), we immediately get

Pnn=3_B§;1’2_ﬁ?'2_ﬁiﬁhl (3.4)

and realize in that way the above connection.
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4. The Bargmann-Wigner or de Broglie Context

Through the fusion method developed by DE BROGLIE [6] and discussed by Tzou [9], we
learncd [17] that the free BARGMANN-WIGNER [4] and de Broglie formulations are equivalent:
they are characterized by a 16-component wave function ¥ (x) and 16 by 16 Tzou matrices
satisfying the relations (1.1) and (1.2) respectively. If each of the preceding (10-component)
Kemmer and (7-component) Hagen-Hurley contexts refer to spin one particles only, let us
point out that this (l6-component) de Broglie description contains, from the start,
parasitic (5-component) spin zero and (1-component) trivial formulations. This has casily
been noticed through the relations (1.2.3)—(1.2.5) and the resulting direct sum of
s1(2. C)-irreducible representations leading to the matrices

g0 0
ﬁ.ﬂ = 0 LO) 0 [4 I)
0 0 0

where i, B refer to representations of Kemmer matrices for spin one (10 by 10) and for
spin zero (5 by 5) respectively. In order to fix our choices (when necessary), let us
remember that we will use the explicit 10-dimensional representation (1.2.20) for the spin
1-Kemmer description and the following 5-dimensional one for the spin 0-Kemmer
description:

. U .
B =iles. —e1,2) pi = i(ey s +e5,1),

[;;201 =i(eg 4 +e4,) ﬁfx”’ =ife, s +es54) (4.2)

so that we have an explicit representation of the matrices f,=(4.1) which evidenlly satisfy
the structure relations (1.5). '

Once again but now in this Bargmann-Wigner or de Broglie context, we claim that we
can propose and ad-hoc covariant equation of the type (1.3) or (3.2) solving our problems.
This equation reads:

> Let®
{f)’-“ T, —m+ Py [Z(Tn 5 Fer = E“n:m (F,, F* ”)":H Yow(x)=0 (4.3)

where we have introduced the new Bargmann-Wigner projector Pyy constructed as follows:

1 : 13
Paw=—¢ (B“B.) (BB, — 1) (B"B,—2) (b"“ Bu— 7) (4.4)

becoming simply
Pyw=eq 1 teggt€otCio10t 1111 (4.5)

The study of eq. (4.3) follows in a complete parallel way to the ones developed for the
Kemmer or Hagen-Hurley formulations in the preceding sections and we get equivalent
results.

Let us now inquirc about possible connections between our projector (4.4) and
acceptable fi;-matrices in this 16-dimensional context. We first notice that the definition
(1.6) cannot be trivially extended to the 16-dimensional case although we know [41, 42]
that the matrix #% is identically equal to zero in the spin 0 formulation. Indeed, a general
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search for a fifth 16 by 16 matrix satislfying the structure relations (1.5) leads to the
matrix

Bs=iley1—e1a—e;5+es5,—e56+€53+€11,16—€16.11)- (4.6)

We thus conclude that it is not possible to express our projector Ppy in terms of the
square of such a matrix.

5. The Stueckelberg Formulation

We also learned [1] that the STUECKELBERG formulation [6], referring to “interference
zones™ as quoted by Tzou [27], corresponds to the direct sum (1.2.16) and contains the
simultaneous descriptions of spins 0 and 1 through an 11-component wave function and
11 by 11 matrices given in egs. (I.2.15) and satisfying the Tzou relations (1.2). The
corresponding equation (1.1) appears as a difficult one to be generalized to the interaction
context for disconnecting the different spin descriptions. We can suggest a new projector
called Py, given by

1
PS'I': E (ﬁpﬁ# = 2] S““SUV (5 ]J

where S, has been defined in eq. (1.8). Let us mention that, within the representation
(1.2.15), we have already given the Stueckelberg spin components S, ,, §,; and S, in egs.
(I.2.18). The other three components take then the forms

So1=€37+ €7, €36—€53— €55 €95,

Soa=—€ 7—€ 1 +e35+es3 €5 10— €03,

Sos=¢€1.6+€,1— €25 €5 2—€5 11 —€y1 4, ' (5.2)
so that we obtain
S8 =8(ey ey teyytes steggtes )
+6leg g t+e50+€1p10+€0 11) (5.3)
The projector Pg; finally is
Pygr=eg ytegoteigioter (5.4)

and the corresponding Stueckelberg covariant equation writes

2z

¢ le* - )
{ﬁ“ﬂp —m+ Pgp [21?1 S, FN_W (F, . F ‘“]’:l} Yo (x)=0. (5.5)

Once again, we recover its correspondence with the other formulations in this interacting case.

Let us now come on the question concerning the existence of a matrix f; in the Tzou
algebra characterized by the relations (1.2) but by using the explicit 11-dimensional
representation (I.2.15). If we parametrize the matrix f5 by 121 unknowns and require once
again that g55 =+ 1. we finally obtain four independent forms given by
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g = il€) 10— €20te  te;g—€g 7+ 3—¢€p, e 1,4)s (5.6a)
PP =i(—e, 1 +es0tes 10t Co s €6~ € 3—€C0atCi11), (5.6b)
P =i(—ey 1 +es g—€s9—€s gt egsteg s —€03+e), (5.6¢)
P§ =iley g+ €50+ €5 10+ €711 T ates steio6t 7). (5.6d)

In conclusion, we learn that, if, at the start, the four matrices f§, given in the realization
(1.2.15) generate a Tzou algebra that we call t(4), the cight matrices {f,, 8", B, ¢, 5}
are the fundamental elements of an algebra 7(8) with the choice of a metric consistently
determined as (4, —, —, —, +, +. +. +). As an opposite result with respect to the one
obtained in the Hagen-Hurley context (see eq. (3.4)), it is not possible here to express our
projector Pg; in terms of the squares of these fi;-matrices.

6. Summary, Conclusions and Comments

Let us summarize the results obtained in Sections 2, 3, 4 and 5 considering, respectively,
the four formulations due to KeEmMER [7], HAGEN-HURLEY [8], DE BROGLIE [5] and
STUECKELBERG [6] and describing, essentially, vector mesons when they interact with
external magnetic fields which are constant and homogeneous in Minkowskian space.
Each of these formulations has its own characteristics already pointed out in 1 when the
free context is under study: two of them (Kemmer and Hagen-Hurley) refer to spin one
particles only although the two others (de Broglie and Stueckelberg) contain simultaneous
information on spin zero and one particles, these superpositions leading to a more difficult
separation between the spins zero and one. When the interacting context is considered, we
have also shown in alf the formulations that the minimal electromagnetic coupling
supplemented by only an anomalous magnetic moment coupling lead to difficulties in the
(relativistic) energy spectrum: it contains unphysical eigenvalues when the strength of the
magnetic field becomes such that the inequality (2.10) is satisfied. Such a delect being
common to the four formulations, we have then proposed to eliminate it by adding a
further nonlinear coupling and to relate these considerations when the magnetic field is
constant and homogeneous to very recent developments referred to as parasupersymmetry
[2, 3] and pseudosupersymmetry [18, 35], two concepts extending the very constructive
and wellknown supersymmetry [43, 44] mainly applied in quantum mechanics. In fact, the
Kemmer formulation (Section 2) was handled with more details in order to explain the
main features — defects and qualities — contained in our approach. The other three
formulations were developed with the specific aim to come back on equations already
encountered in the Kemmer case (up to certain numbers of components in the wave
functions).

Let us conclude that all these considerations are subtended by the covariant equation
(1.3) with specific projectors in cach case and where, in order to be as general as possible,
we have introduced the parameters A and o in the new nonlinear coupling term. Such a
proposal eliminates the problem (i) quoted in the introduction, i.e. the one pointing out
the appearance of possible complex energy eigenvalues in the corresponding spectrum
when we limit ourselves Lo constant and homogeneous magnetic fields. In fact, we have
shown that the values 7 =1 and o= are already sufficient for our purpose. We have also
shown that our equation satisfics the principle of causality eliminating in that way the
problem (ii) also quoted in the introduction, this result being obtained for any nonzero
value ol A or a. In particular, let us insist on the fact that, for x=1 and /’,Zﬁ, our results
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significantly improve the Vijayalakshmi etal. discussion [15]. Finally, by maintaining the
anomalous magnetic moment coupling term in our equation (1.3) and its implications, we
have ensured the value g =2 of the gyromagnetic ratio for vector mesons interacting with
magnetic fields according to recent results [17] but obtained in ficld theory through
Lagrangian considerations, a result which can be combined with the one obtained for
clectrons, in particular, and which illustrates the (g=2)-value for all “truly clementary
(pointlike) particles of any spin™ [17]. Once again, this deals with the problem (iii) quoted
in the introduction and with the inclusion of nonminimal coupling terms: the guiding
mark of this (g = 2)-value is located in all the Zaitsev-Feynman-Gell Mann equations that
we have obtained in our developments. These results are consistent with those obtained by
Daicic-FRANKEL [12]. DURAND [45] and WEAVER [46] besides the FERRARA et al. [17]
Ones.

Moreover, we notice that the equations without redundant components for arbitrary
spin and nonzero mass particles [47, 48] also lead to the value g =2 when the electromagnetic
minimal coupling principle is implied [49].

Let us end this Section by a few algebraic comments. If the study of the free case has
been particularly interesting for enlightening the different formulations as issued from
direct sums of sI(2, C)-irreducible representations (explaining the spin contents as well as
the numbers of associated components in the wave functions), the interacting case has also
had an important impact from an algebraic point of view. Indeed, the scarch for a fifth
element in the corresponding Tzou algebras was a positive point leading to welcome
information on the basis elements of such algebras: the Hagen-Hurley (Section 3) and
Stueckelberg (Section 5) representations are particularly instructive at this point of view
by using specific finite dimensional realizations of the matrices. By passing, let us mention
the interesting algebraic problem of studying in an abstract way the Tzou algebras
characterized by the structure relations (1.2), such a study having, in our opinion, to be
developed through an ad hoc algorithm. Let us also recall the rich parallelism between
Dirac (spin 3) developments and Kemmer (spin 1) ones based on Clifford algebras, i.e. on
%(, ® 6/, with N =2*=47 in the Dirac case and on %7, ® 6/, with N=2%=162 in the
Kemmer one, such a parallelism being thus simply related to parastatistical considerations
for the order p=1 in the Dirac case and the order p=2 in the Kemmer one, these last
remarks having already been exploited in different contexts [50].

In order to be as complete as possible, we finally want to point out that if, in Part I of
this series, we have studied some explicit parasupersymmetries associated with the
symmetric forms of the spin one particle relativistic free descriptions (see Section [.4), it is
evident that we could also obtain some corresponding results from our new equations
(1.3) in each description when the (clectro)magnetic interaction is included. Here, we have
preferred to insist on the fact that, in Part II of this series, parasupersymmetry has helped
us to solve the three main problems already pointed out in the Introduction when the
interacting context is considered.
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