##
W. I. FUSHCHYCH & A. G. NIKITIN

###
*Symmetries of Maxwell's Equations*

####
D. Reidel Publishing Company, Hardbound, ISBN 90-277-2320-6, 1987, 222
pp

####
Abstract

This monograph is devoted to description of local and nonlocal symmetry
properties of the Maxwell, Dirac, Kemmer-Duffin-Petiau equations

####
Table of Contents

**Chapter 1.** Various formulations of Maxwell's equations

**Chapter 2**. Relativistic invariance of Maxwell's equations

**Chapter 3.** Representations of the Poincaré algebra

**Chapter 4.** Conformal invariance of Maxwell's equations

**Chapter 5.** Nongeometric symmetry of Maxwell's equations

**Chapter 6.** Symmetry of the Dirac and Kemmer-Duffin-Petiau equations

**Chapter 7.** Constants of motion

**Chapter 8.** Symmetry of subsystems of Maxwell's equation

**Chapter 9.** Equations for the electromagnetic field invariant
under the Galilei group

**Chapter 10.** Relativistic equations for vector and spinor
massless field

**Chapter 11.** Poincare-invariant equations for a massless field
with arbitrary spin

**Conclusion**

**Appendix 1**

On complete sets of symmetry operators for the Dirac and Maxwell equations
and invariance algebras of relativistic wave equations for particles of
arbitrary spin

**Appendix 2.**

Symmetry of nonlinear equations of electrodynamics

**Appendix 3.**

On Ansatze and exact solutions of the nonlinear Dirac and Maxwell-Dirac
equations

**Appendix 4.**

How to extend symmetry of equations?

**Kluwer
web site**