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1 Routine name

CompDTIMe is an abbreviation which stands for “Computation of Discrete
Time Invariant Manifolds”...

2 Initialization

Before starting to use the routine one should load the file init.m from the
routine’s root directory. This file will add the necessary directory paths to
the Matlab’s PATH variable, and will also load the set of method parameters
with their default values. Namely, the following variables will be loaded:

Variable Value Description

divergence 100000 limit for detecting divergence to infinity (see
Sec. 4.1)

tolerance 1e-8 accuracy for checking parity of points (see
Secs. 5, 6)

max_step 50 maximal number of Newton steps (see Sec. 5)

arc_length 10 desired length of the manifold arc (see Sec. 6)

d 0.001 initial step for manifold calculation (see Sec. 6)

a_min 0.2 search circle minimal angle value (see Sec. 6)

a_max 0.3 search circle maximal angle value (see Sec. 6)

Da_min 1e-6 minimal value for the product ∆kα (see Sec. 6)

Da_max 1e-5 maximal value for the product ∆kα (see Sec. 6)

D_min 1e-4 search circle minimal step size (see Sec. 6)

cB 0.2 bisection accuracy coefficient (see Sec. 6.1)

eB 1e-6 search circle bisection error (see Sec. 6.2)

One is free to change the default method parameter values inside init.m
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adjusting them to one’s own needs, as well as to add different directory
paths to the Matlab’s PATH variable if required.

The default method parameter values are also stored in the file
data/default.mat.

3 New map definition

To start using the routine one would possibly like to define one’s own map
to study. For that it is enough to create a new Matlab script file with the
appropriate function, typical view of which is presented in Listing 1 (see also
Listing 2, other predefined sample files in the routine’s directory map/, and
Matlab package documentation [1] for more details).

Listing 1: user map.m

function y = <user_map >(x, param1 , param2 , ....)

% a comment and description

{ some optional commands }

y(1) = <equation 1>

y(2) = <equation 2>

Listing 2: henon.m

function y = henon(x, a, b)

% Henon map

if (length(x) ~= 2)

cprintf(’err’, ’ERROR: First argument must be ....’);

y = [];

return;

else

y(1) = x(2) + 1 - a*x(1)^2;

y(2) = b*x(1);

end

A Jacobi matrix for the user defined map may be given explicitly as well,
which appears to be useful while finding periodic points (with the Newton
method) and calculating their eigenvalues and eigenvectors. Important:
note, that the function for the user defined Jacobi matrix must be of partic-
ular specification (see Listing 3):
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• its name is of the form <user_map>_J, where <user_map> is the name
of the corresponding user defined map,

• it has the same set of parameters as the fucntion for the corresponding
user defined map <user_map>.

Listing 3: henon J.m

function J = henon_J(x, a, b)

% Jacobi matrix for the Henon map

if (length(x) ~= 2)

cprintf(’err’, ’ERROR: First argument must be ....’);

y = [];

return;

else

J = zeros(2, 2);

J(1, 1) = -2*a*x(1);

J(1, 2) = 1;

J(2, 1) = b;

end;

4 Period diagrams

The procedure to produce 2D bifurcation diagrams (period diagrams) con-
sists usually of two steps. First, one obtains the data for the diagram, and
then uses this data to make the 2D colour plot. The method for getting the
period data is rather straightforward: starting from the given initial point
a target map is iterated the certain number of times, and then the last ob-
tained point is checked for being periodic (with the period being not greater
than the given maximal value).

4.1 Obtaining period data

To obtain the period data for a 2D bifurcation diagram one should use the
function period_bd_calc defined in main/period_bd_calc.m.
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Listing 4: period bd calc.m

function [param1 , param2 , periods] = ...

period_bd_calc(fhandle , x0 , prange , dp , ...

pidx , trans , maxperiod , tolerance , ...

divergence , ....)

%

% Calculate the data for the 2D period diagram

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map, for
instance @henon for the Hénon map presented in Listing 2
(for more details on function handles see [1]).

x0 An initial point for obtaining the trajectory. Namely, for
each parameter pair the initial value is always reset to x0

if it is a numeric array. However, one may force the initial
condition to be chosen randomly at each cycle turn by spec-
ifying x0 as a string of the form ’rand(<n>)’ where <n> is
the required intial vector dimension (see Listing 5).

prange A parameter range which is a 2×2 matrix with the i-th row
corresponding to the i-th parameter (i = 1, 2). Namely, if
the first parameter changes from 0 to 2 and the second one
from -3 to 3, then prange should be [0 2; -3 3].

dp A 2-dimensional vector defining the parameter increments
(e. g., [0.05 0.01]).

pidx A 2-dimensional vector defining the parameter in-
dices. In the map definition the parameters al-
ways follow in the certain order, for instance, in
function y = skewtent(x, a, b, mu) the first parame-
ter is always a, the second is b, and the third one is mu.
For the diagram in the (a, b)-plane the parameter pidx is
[1 2], while for the one in the (a, mu)-plane it is [1 3].

trans A transient number of iterations which are skipped before
the orbit is checked for being periodic or not.

5



maxperiod A maximal period to search.

tolerance An accuracy for checking parity of points, namely, if the dis-
tance (norm) between the two points x1 and x2 is less than
tolerance, then these points are considered to be equal.

divergence A limit for detecting divergence to infinity, namely, if the
radius (norm) of the orbit point x is larger than divergence,
then the orbit is considered to go to infinity.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter (see List-
ing 5, note that {:} is important). It should be mentioned,
that for the two target parameters (which will be then var-
ied for obtaning the diagram), one should give their values
here as well, although these values will not be used.

Return values. The return values of the function are the following:

param1 A vector with the mesh in the first parameter

param2 A vector with the mesh in the second parameter

periods A matrix of the period values related to the resulting parameter
mesh. Note, that the value -1 corresponds to the orbits being
divergent to infinity, and 0 is related to either the case of non-
regular (e. g., chaotic or strange) behaviour, or to the orbits of
period larger than maxperiod.

The return values of period_bd_calc can be directly used in bd_plot

for plotting the bifurcation diagram. The further example of the function
usage may be found in do_bd_sample.m.
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Listing 5: do bd sample.m

% the skewtent map , predefined initial condition

[param1 , param2 , periods] = ...

period_bd_calc(@skewtent , 0.35, [0 3; -10 0], ...

[0.02 0.05] , [1 2], 2000, 15, 1e-8, 100000 , 1, -1, 1);

....

% the modified Ikeda map , predefined initial condition

param = {1, 0.9, 1, 0.4, 6};

% pay attention to the last parameter param {:}

% note , that {:} is important here

[param1 , param2 , periods] = ...

period_bd_calc(@ikeda , [1 2], [0.5 1.5; 0.5 1.5], ...

[0.05 0.05] , [1 2], 2000, 15, 1e-8, 100000 , param {:});

....

% the bimodal PWL map , random intial condition

[param1 , param2 , periods] = ...

period_bd_calc(@pwl3part , ’rand (1)’, [-1 15; -15 1],

...

[0.2 0.2], [3 4], 2000, 30, 1e-8, 100000 , ...

0.85, 0.8, 1, -1, 0, 0.3);

....

Displayed output. While running, the function displays some information
about the data calculation progress in the Command Window. At each
cycle turn, when the first parameter changes its current value is displayed in
orange, and the approximate time left is displayed in blue. (For colorizing
the output the utility cprintf is used, see [2]).

4.2 Plotting period diagram

To plot a 2D bifurcation diagram (period diagram) from the data obtained
by period_bd_calc one should use bd_plot defined in plot/bd_plot.m.

Listing 6: bd plot.m

function [hfig , hcbar] = bd_plot(X, Y, C, maxperiod)

%

% Plot colour -coded period diagram

....

Parameters. The function requires the following parameters:
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X A vector of horizontal axes mesh (one parameter)

Y A vector of vertical axes mesh (the other parameter)

C A matrix of the period values related to the given parameter
mesh

maxperiod maximal period to plot

The plot will be produced by using the preset colour palette (defined in
data/bd_colors.mat). It is limited up to maximum of 62 colours, where grey
colour corresponds to the value -1 (divergence), and white colour is related
to 0 (higher periodic or non-regular behaviour). Note, that if the matrix C

contains cells with values being larger than maxperiod, then they will be also
coloured white in the produced plot. The return values can be used for further
customization of the figure. (See Listing 7 and example/do_bd_sample.m).

Return values. The function returns the following values:

hfig A handle for the plotted figure window

hcbar A handle for the plotted colour bar

Listing 7: do bd sample.m

% plot BD data with the same max period as was calculated

bd_plot(param1 , param2 , periods , 30);

....

% plot BD data only up to periods 7

[hfig , hcbar] = bd_plot(param1 , param2 , periods , 7);

% further customizing created figure

% change figure size and position

set(hfig , ’Units’, ’centimeters ’);

set(hfig , ’Position ’, [2, 2, 18, 14]);

....

% change colorbar range and ticks

set(hcbar , ’ylim’, [-1.5 16.5] , ’YTick’, (0:2:16));
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5 Find periodic points

In order to find periodic points the Newton-Raphson method for approxi-
mating zero-roots of the function is used (see, e. g., [3, §9.6]). For multi-
dimensional maps certain modifications improving the method convergence
are added (ibid. §9.7).

5.1 One-dimensional maps

The method for 1D maps is implemented in the function find_periodic_1d

(see the file main/find_periodic_1d.m).

Listing 8: find periodic 1d.m

function xF = find_periodic_1d(fhandle , period , ...

interval , init_num , tolerance , diverge , max_step , rnd ,

....)

%

% Finding periodic points of the specified period

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

period A period of which the points are searched. Note, that the
points with periods being divisors of period are also may be
found. For instance, if period is 10, in general, the result
may contain 1-, 2-, 5-, and 10-periodic points.

interval Usually, defines a state variable interval from which the initial
conditions are taken, but if init_num is zero, then interval

is considered to be a predefined initial value.

init_num The number of initial conditions to try. If init_num is zero,
the initial condition is read from the parameter interval.

tolerance An accuracy for checking parity of points, namely, if the dis-
tance (norm) between the two points x1 and x2 is less than
tolerance, then these points are considered to be equal.
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max_step maximal number of Newton steps performed.

diverge A limit for detecting divergence to infinity, namely, if the
radius (norm) of the orbit point x is larger than diverge,
then the orbit is considered to go to infinity.

rnd Set initial conditions randomly or not. If true (or 1), then
initial conditions are chosen randomly (in the total amount
of init_num). If false (or 0), then the search interval is
divided into init_num equal parts, and then a middle point
of each subinterval is taken for the initial condition.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter (see List-
ing 9 and example/do_points_sample.m, note that {:} is
important).

Return value. The function returns the following values:

xF An array of the found (distinct) points sorted in acsending order.

Listing 9: do points sample.m

....

xF = find_periodic_1d(@logistic , 10, [0 1], 100, ...

1e-8, 100000 , 50, true , 3.8);

....

param = {0.47 , -9, 1};

xF = find_periodic_1d(@skewtent , 12, [-10 10], 100, ...

1e-8, 100000 , 50, true , param {:});

Displayed output. While running, the function displays some information
about the calculation progress in the Command Window. Each run (initial
condition tried) number appears in orange, the total number of Newton steps
is displayed in blue, and if the Newton method fails to converge a warning
is displayed in green. The final statistics about how many distinct periodic
points were found is printed in violet. (For colorizing the output the utility
cprintf is used [2]).
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5.2 Multi-dimensional maps

For finding the periodic points in multidimensional maps the function
find_periodic_md should be used (see the file main/find_periodic_md.m).

Listing 10: find periodic md.m

function xF = find_periodic_md(fhandle , period , ...

range , init_num , tolerance , diverge , max_step , rnd , ....)

%

% Find periodic points of the function

% multi -dimensional

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

period A period of which the points are searched. Note, that the
points with periods being divisors of period are also may be
found. For instance, if period is 10, in general, the result
may contain 1-, 2-, 5-, and 10-periodic points.

range Usually, defines a state variable interval from which the initial
conditions are taken, but if init_num is zero, then range is
considered to be a predefined initial value.

init_num The vector indicating the number of subdivisions for each co-
ordinate. Namely, the i-th element of init_num is the number
of pieces into which the i-th interval from range will be di-
vided. If the length init_num is less than the map dimension,
the missing elements are put to be 1. Note that if init_num is
zero, the initial condition is read directly from the parameter
range (see Listing 11).

tolerance An accuracy for checking parity of points, namely, if the dis-
tance (norm) between the two points x1 and x2 is less than
tolerance, then these points are considered to be equal.
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diverge A limit for detecting divergence to infinity, namely, if the
radius (norm) of the orbit point x is larger than diverge,
then the orbit is considered to go to infinity.

max_step A maximal number of Newton steps performed.

rnd Set initial conditions randomly or not. If true (or 1), then
initial conditions are chosen randomly (in the total amount
of init_num, which should be a single positive integer in this
case). If false (or 0), then

• either the parameter range is used as a predefined intial
condition (if init_num is 0);

• or the search range (given in range) is divided into
subdomains (n-dimensional parallelepipeds or parallelo-
topes) according to the integer vector given in init_num

(see also the description of the init_num parameter),
and then a center point of each such subdomain is taken
for the initial condition.

(see Listing 11 and example/do_points_sample.m)

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter (see List-
ing 11 and example/do_points_sample.m, note that {:} is
important).

Return value. The function returns the following values:

xF An array of the found (distinct) points sorted in ascending order by
the first coordinate.

Displayed output. While running, the function displays some information
about the calculation progress in the Command Window. Each run (initial
condition tried) number appears in orange, the total number of Newton steps
is displayed in blue, and if the Newton method fails to converge a warning
is displayed in green. The final statistics about how many distinct periodic
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points were found is printed in violet. (For colorizing the output the utility
cprintf is used [2]).

Listing 11: do points sample.m

....

param = {1, 0.9, 1, 0.4, 6};

% random initial conditions

xF = find_periodic_md(@ikeda , 2, [-5 5; -5 5], 200, ...

1e-8, 100000 , 50, true , param {:});

% uniformly distributed initial conditions

xF = find_periodic_md(@ikeda , 2, [-5 5; -5 5], [10 10],

...

1e-8, 100000 , 50, false , param {:});

% given initial condition

xF = find_periodic_md(@ikeda , 2, [0.5 0.2], 0, ...

1e-8, 100000 , 50, false , param {:});

5.3 Classifying found periodic points

As the functions find_periodic_1d and find_periodic_md return only a
sorted array of points, neither indicating exact periods of them, nor giving
the information about their stability, one may need to classify this output,
and check whether some of the points belong to the same cycle. For this, one
should use period_classify (defined in main/period_classify.m).

Listing 12: period classify.m

function points = period_classify(fhandle , xF, ...

max_period , tolerance , ....)

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for
more details on function handles see [1]).

xF A given array of points, which are to be classified.

max_period A maximal point period to be checked.
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tolerance An accuracy for checking parity of points, namely, if the dis-
tance (norm) between the two points x1 and x2 is less than
tolerance, then these points are considered to be equal.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter.

Return value. The function returns the following values:

points A cell-array of the classified cycles and fixed points. It has the
following structure: each row has three cells, where the first cell
contains the cycle (or a fixed point) coordinates, the second cell
is the exact period of the cycle, and the third one indicates the
stability—’stable’, ’unstable’, or ’saddle’ (see Listing 13).

Listing 13: Sample output of period classify

>> xF = find_periodic_1d(@logistic , 10, [0 1], 100, ...

1e-8, 50, true , 3.8)

....

xF =

-0.000000000000004

0.185626749794394

....

0.948498445176702

>> points = period_classify(@logistic , xF , 10, 1e-6, 3.8)

points =

[ -3.876193763738351e-15] [ 1] ’saddle ’

[10x1 double] [10] ’saddle ’

[ 5x1 double] [ 5] ’saddle ’

....

[10x1 double] [10] ’saddle ’

[ 0.736842105262070] [ 1] ’saddle ’
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6 Invariant manifolds

6.1 Unstable manifolds

For computing unstable manifolds the Search circle method is used (see,
e. g., [4]). In this method the manifold is grown iteratively with piecewise
linear approximation. At each step the cirlce is plotted, with the center
in the last calculated point pk and the radius ∆k (the adoptive step value
which may vary through the procedure). Further, it is assumed that the new
manifold point pk+1 lies on this circle, and there exists a point p∗ belonging
to a certain (already computed) segment (pi−1, pi) which is mapped to pk+1

under the action of the iterated map. Then, for searching the correct p∗ the
bisection method is used. The resulting manifold approximation consists of
a number of line segments (pk, pk+1).

6.1.1 Fixed points

To compute the unstable manifold of a fixed point one should use the function
sc_unstable defined in main/sc_unstable.m.

Listing 14: sc unstable.m

function [p, arc_length] = sc_unstable(fhandle , p0, ...

arc_max , d, a_min , a_max , Da_min , Da_max , D_min , ...

eB, diverge , ....)

%

% Find a 1D unstable manifold of a saddle fixed point

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

p0 A saddle point whose manifold is to be computed.

arc_max A desired length of the manifold arc (is approximated as a sum
of vector norms ‖pk+1−pk‖, where {pk}Nk=0 are computed points
of the manifold)
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d An initial step size. Note that if d > 0 manifold is grown for-
ward, while if d < 0 it is grown backward.

a_min A minimal angle value. If the angle α between the vectors
(pk−1, pk) and (pk, pk+1) falls below this value, the step size is
increased.

a_max A maximal angle value. The angle α between the vectors
(pk−1, pk) and (pk, pk+1) is assumed to not exceed this threshold
(for exception cases see [4]).

Da_min A minimal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1).

Da_max A maximal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1).

D_min A minimal step size.

cB A bisection accuracy coefficient, must be positive and less than
one. If the distance between the point p̂k+1 (where p̂k+1 is a
candidate for the next manifold point pk+1) and the mentioned
circle is less than cB · R, where R is the current circle radius, the
point pk+1 is assumed to be found and the bisection stops.

diverge A limit for detecting divergence to infinity, namely, if the radius
(norm) of the orbit point x is larger than diverge, then the orbit
is considered to go to infinity.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter (see example?,
note that {:} is important).

To understand more deeply the role of the parameters a_min, a_max,
Da_min, Da_max, D_min, and cB one is encouraged to refer to [4] and other
works of the same authors.

Return values. The function returns the following values:

p An array of the computed manifold points.
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arc_length A computed manifold arc length

Displayed output. While running, the function displays some output in
the Command Window. Information about the calculation progress is printed
in blue, warnings (e. g., about inability to find the next point, or acceptance
the point not satisfying the required constraints—for details see [4]) appear
in green. Certain auxiliary information is displayed in orange, and the final
data is printed in violet. (For colorizing the output the utility cprintf is
used [2]).

The example for usage of sc_unstable is presented in Listing 16.

6.1.2 Periodic points

To compute the unstable manifold of a periodic point with pe-
riod greater than one, the function sc_unstable_cyc should be used
(sc_unstable_cyc.m).

Listing 15: sc unstable cyc.m

function [p, arc_length] = sc_unstable_cyc(fhandle , ...

p0, period , arc_max , d, a_min , a_max , Da_min , ...

Da_max , D_min , eB , diverge , ....)

%

% Find a 1D unstable manifold of a saddle point

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

p0 A saddle point whose manifold is to be computed.

period A period of the target saddle point.

arc_max A desired length of the manifold arc (is approximated as a sum
of vector norms ‖pk+1−pk‖, where {pk}Nk=0 are computed points
of the manifold)
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d An initial step size. Note that if d > 0 manifold is grown for-
ward, while if d < 0 it is grown backward.

a_min A minimal angle value. If the angle α between the vectors
(pk−1, pk) and (pk, pk+1) falls below this value, the step size is
increased (see [4]).

a_max A maximal angle value. The angle α between the vectors
(pk−1, pk) and (pk, pk+1) is assumed to not exceed this threshold
(for exceptions see [4]).

Da_min A minimal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [4]).

Da_max A maximal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [4]).

D_min A minimal step size.

cB A bisection accuracy coefficient, must be positive and less than
one. If the distance between the point p̂k+1 (where p̂k+1 is a
candidate for the next manifold point pk+1) and the mentioned
circle is less than cB · R, where R is the current circle radius, the
point pk+1 is assumed to be found and the bisection stops.

diverge A limit for detecting divergence to infinity, namely, if the radius
(norm) of the orbit point x is larger than diverge, then the orbit
is considered to go to infinity.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma
separated list, or as a single cell-array parameter (see example?,
note that {:} is important).

Return values. The function returns the following values:

p An array of the computed manifold points.

arc_length A computed manifold arc length
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Displayed output. While running, the function displays some output in
the Command Window. Information about the calculation progress is printed
in blue, warnings (e. g., about inability to find the next point, or acceptance
the point not satisfying the required constraints—for details see [4]) appear
in green. Certain auxiliary information is displayed in orange, and the final
data is printed in violet. (For colorizing the output the utility cprintf is
used [2]).

The example for usage of sc_unstable_cyc is presented in Listing 16.

Listing 16: do unstab sample.m

% modified Ikeda map

param = {1, 0.9, 1, 0.4, 6};

p0 = [1.08331887404 -2.4079634834];

[uf1 , arc] = sc_unstable(@ikeda , p0, 10, 0.001 , 0.2, ...

0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 , param

{:});

[ub1 , arc] = sc_unstable(@ikeda , p0, 10, -0.001, 0.2, ...

0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 , param

{:});

....

% shallow map , period -2 point

p0 = [2.13884578746 -0.46130133276];

[uf, arc] = sc_unstable_cyc(@shallow , p0, 2, 30, 0.001 ,

...

0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 ,

param {:});

[ub, arc] = sc_unstable_cyc(@shallow , p0, 2, 30, -0.001,

...

0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 ,

param {:});

6.2 Stable manifolds

For computing stable manifolds the Search circle method is used (see [5])
The main advantage of the method is that the inverse is not needed. As well
as in the case of unstable manifold, the stable manifold is grown iteratively
with piecewise linear approximation. At each step the cirlce is plotted, with
the center in the last calculated point pk and the radius ∆k (the adoptive
step value which may vary through the procedure). Again it is assumed
that the new manifold point pk+1 lies on this circle, and there exists a point
p∗ belonging to a certain (already computed) segment (pi−1, pi) which is an
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image of pk+1. For searching pk+1 the bisection method is used as well.
The resulting manifold approximation consists of a number of line segments
(pk, pk+1).

6.2.1 Fixed points

To compute the stable manifold of a fixed point one should use the function
sc_stable defined in main/sc_stable.m.

Listing 17: sc unstable.m

function [p, arc_length] = sc_stable(fhandle , p0, ...

arc_max , max_iter , d, a_min , a_max , Da_min , Da_max , ...

D_min , eB , diverge , ....)

%

% Find a 1D stable manifold of a saddle fixed point

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

p0 A saddle point whose manifold is to be computed.

arc_max A desired length of the manifold arc (is approximated as a
sum of vector norms ‖pk+1−pk‖, where {pk}Nk=0 are computed
points of the manifold)

max_iter A maximal number of iterates to try. This parameter is useful
in case of a non-invertible map, which may have several preim-
ages. The stable manifold of such a map may be mapped onto
itself in a compex way, so that it is required to iterate the map
several times until getting the right approximation for the next
point (see [5, Example 4.3]).

d An initial step size. Note that if d > 0 manifold is grown
forward, while if d < 0 it is grown backward.

a_min A minimal angle value. If the angle α between the vectors
(pk−1, pk) and (pk, pk+1) falls below this value, the step size is
increased (see [5]).
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a_max A maximal angle value. The angle α between the vectors
(pk−1, pk) and (pk, pk+1) is assumed to not exceed this thresh-
old (for exceptions see [5]).

Da_min A minimal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [5]).

Da_max A maximal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [5]).

D_min A minimal step size.

eB A search circle bisection error, i. e.if the distance between the
image of p̂k+1 (where p̂k+1 is a candidate for the next manifold
point pk+1) and a certain segment (pi−1, pi) is less than eB, the
point pk+1 is assumed to be found and the bisection stops.

diverge A limit for detecting divergence to infinity, namely, if the ra-
dius (norm) of the orbit point x is larger than diverge, then
the orbit is considered to go to infinity.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma sep-
arated list, or as a single cell-array parameter (see example?,
note that {:} is important).

To understand more deeply the role of the parameters a_min, a_max,
Da_min, Da_max, D_min, and eB one is encouraged to refer to [5] and other
works of the same authors.

Return values. The function returns the following values:

p An array of the computed manifold points.

arc_length A computed manifold arc length
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Displayed output. While running, the function displays some output in
the Command Window. Information about the calculation progress is printed
in blue, warnings (e. g., about inability to find the next point, or acceptance
the point not satisfying the required constraints—for details see [4]) appear
in green. Certain auxiliary information is displayed in orange, and the final
data is printed in violet. (For colorizing the output the utility cprintf is
used [2]).

The example for usage of sc_stable is presented in Listing 19.

6.2.2 Periodic points

To compute the stable manifold of a periodic point with period greater than
one, the function sc_stable_cyc should be used (sc_stable_cyc.m).

Listing 18: sc unstable.m

function [p, arc_length] = sc_stable_cyc(fhandle , p0, ...

period , arc_max , max_iter , d, a_min , a_max , Da_min , ...

Da_max , D_min , eB , diverge , ....)

%

% Find a 1D stable manifold of a saddle point

....

Parameters. The function requires the following parameters:

fhandle A function handle corresponding to the desired map (for more
details on function handles see [1]).

p0 A saddle point whose manifold is to be computed.

period A period of the target saddle point.

arc_max A desired length of the manifold arc (is approximated as a
sum of vector norms ‖pk+1−pk‖, where {pk}Nk=0 are computed
points of the manifold)
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max_iter A maximal number of iterates to try. This parameter is useful
in case of a non-invertible map, which may have several preim-
ages. The stable manifold of such a map may be mapped onto
itself in a compex way, so that it is required to iterate the map
several times until getting the right approximation for the next
point (see [5, Example 4.3]).

d An initial step size. Note that if d > 0 manifold is grown
forward, while if d < 0 it is grown backward.

a_min A minimal angle value. If the angle α between the vectors
(pk−1, pk) and (pk, pk+1) falls below this value, the step size is
increased (see [5]).

a_max A maximal angle value. The angle α between the vectors
(pk−1, pk) and (pk, pk+1) is assumed to not exceed this thresh-
old (for exceptions see [5]).

Da_min A minimal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [5]).

Da_max A maximal value for the product ∆kα, where ∆k is the current
step size and α is the angle between (pk−1, pk) and (pk, pk+1)
(see [5]).

D_min A minimal step size.

eB A search circle bisection error, i. e.if the distance between the
image of p̂k+1 (where p̂k+1 is a candidate for the next manifold
point pk+1) and a certain segment (pi−1, pi) is less than eB, the
point pk+1 is assumed to be found and the bisection stops.

diverge A limit for detecting divergence to infinity, namely, if the ra-
dius (norm) of the orbit point x is larger than diverge, then
the orbit is considered to go to infinity.

.... The parameters of the iterated map, which may be specified
in two ways. They can be given either as a simple comma sep-
arated list, or as a single cell-array parameter (see example?,
note that {:} is important).
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Return values. The function returns the following values:

p An array of the computed manifold points.

arc_length A computed manifold arc length

Displayed output. While running, the function displays some output in
the Command Window. Information about the calculation progress is printed
in blue, warnings (e. g., about inability to find the next point, or acceptance
the point not satisfying the required constraints—for details see [4]) appear
in green. Certain auxiliary information is displayed in orange, and the final
data is printed in violet. (For colorizing the output the utility cprintf is
used [2]).

The example for usage of sc_stable is presented in Listing 19.

Listing 19: do stab sample.m

% modified Ikeda map

param = {1, 0.9, 1, 0.4, 6};

p0 = [1.08331887404 -2.4079634834];

[sf1 , arc] = sc_stable(@ikeda , p0, 10, 1, 0.001 , 0.2, ...

0.3, 1e-6, 1e-5, 1e-4, 1e-6, 100000 , param

{:});

[sb1 , arc] = sc_stable(@ikeda , p0, 10, 1, -0.001, ...

0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 ,

param {:});

....

% shallow map , period -2 point

%!!! another example , this does not work!

p0 = [2.13884578746 -0.46130133276];

[sf, arc] = sc_unstable_cyc(@shallow , p0, 2, 30, ...

0.001, 0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 ,

param {:});

[sb, arc] = sc_unstable_cyc(@shallow , p0, 2, 30, ...

-0.001, 0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, 100000 ,

param {:});

6.3 Plotting computed manifolds

To plot computed manifolds together with the periodic points
found one should use the function plot_manifolds (found in
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plot/plot_manifolds.m).

Listing 20: plot manifolds.m

function hfig = plot_manifolds(points , umanif , smanif)

%

% Plot previously calculated (un)stable manifolds

....

Parameters. The function requires the following parameters:

points The cell array of periodic points, which should be of the same se-
cification as one obtained from the functions find_periodic_1d
and find_periodic_md.

umanif The cell array of unstable manifolds to be plotted (may be empty
{}).

smanif The cell array of stable manifolds to be plotted (may be empty
{}).

Return values. The function returns the following values:

hfig A handle for the plotted figure window.

For the example of usage of plot_manifolds see Listing 21
(examples/do_manif_sample.m).
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Listing 21: do manif sample.m

% modified Ikeda map

param = {1, 0.9, 1, 0.4, 6};

xF = find_periodic_md(@ikeda , 2, [-5 5; -5 5], [10 10],

...

1e-8, 50, false , param {:});

points = period_classify(@ikeda , xF , 10, 1e-6, param {:});

fixed = points{2, 1}(1, :);

cyc1 = points{1, 1}(1, :);

cyc2 = points{1, 1}(2, :);

[u_fix_f , arc] = sc_unstable(@ikeda , fixed , 10, 0.001 ,

...

0.2, 0.3, 1e-6, 1e-5, 1e-4, 0.2, param {:});

....

[s_cyc2_b , arc] = sc_stable_cyc(@ikeda , cyc2 , 2, 10, ...

1, -0.001, 0.2, 0.3, 1e-6, 1e-5, 1e-4, 1e-6, param {:});

% construct cell arrays of computed manifolds

umanif = {u_fix_f , u_fix_b , u_cyc1_f , u_cyc1_b , u_cyc2_f ,

u_cyc2_b };

smanif = {s_fix_f , s_fix_b , s_cyc1_f , s_cyc1_b , s_cyc2_f ,

s_cyc2_b };

% plot points and manifolds

hfig = plot_manifolds(points , umanif , smanif);

hfig = plot_manifolds ({ points{1, :}; points{2, :}}, ...

{}, smanif);
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A File listing

File name Short description

init.m Initialization file (see Sec. 2)

data Directory with Matlab data files for defining the
colour palette and certain default parameter val-
ues

bd_colors.mat Matlab data file defining the colour palette for
plotting 2D period diagrams

default.mat Matlab data file containing default method pa-
rameter values and several auxiliary variables

doc Directory with documentation

description.pdf Routine user guide

example Directory with sample files

do_bd_sample.m sample Matlab code for plotting 2D bifurcation

do_manif_sample.m sample Matlab code for finding and plotting in-
variant manifolds (using Ikeda map)

do_points_sample.m sample Matlab code for finding periodic points

do_stab_sample.m sample Matlab code for growing stable manifolds

do_unstab_sample.m sample Matlab code for growing unstable mani-
folds

main Directory with main routine functions

find_periodic_1d.m find periodic points of the given period in 1D maps

find_periodic_md.m find periodic points of the given period in mD
maps, with m > 1

period_bd_calc.m calculate the data for a 2D period diagram
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File name Short description

period_classify.m classify the periodic points found by
find_periodic_1d.m or find_periodic_md.m,
and arrange them in cycles

sc_stable_cyc.m find a 1D stable manifold of a saddle periodic
point, uses the search circle algorithm

sc_stable.m find a 1D stable manifold of a saddle fixed point,
uses the search circle algorithm

sc_unstable_cyc.m find a 1D unstable manifold of a saddle periodic
point, uses the search circle algorithm

sc_unstable.m find a 1D unstable manifold of a saddle fixed point,
uses the search circle algorithm

map Directory with map definition functions

cubic.m cubic map

cutting_map.m cutting tool map (highly interrupted map)

gclm.m globally coupled logistic maps, dimension is de-
fined as a parameter

henon_J.m Jacobi matrix for the Hénon map in the given
point

henon.m Hénon map

ikeda_J.m Jacobi matrix for the modified Ikeda map

ikeda.m modified Ikeda map

Lambda_noinv.m a certain non-invertible map

logistic_J.m derivative of the logistic map

logistic.m logistic map

pwl3part.m piecewise linear map defined on 3 partitions
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File name Short description

shallow.m shallow map

skewtent.m skew tent map

plot Directory with plotting functions

bd_plot.m plot colour-coded period diagram

plot_manifolds.m plot periodic points and their invariant manifolds

util Directory with auxiliary functions

bisection.m bisection method for the search circle algorithm
(used in calculating stable manifolds)

calc_jacob_cyc.m calculate jacobian for a periodic point with period
larger than one

check_segment.m check if the given point lies inside the target seg-
ment

dist_point_segm.m find distance between the given point and a target
segment

find_angle.m find angle between the given vector and the verti-
cal axis

find_delta.m find step size for the search circle algorithm

find_period.m find period of the given point

find_segment.m find the segment which contains the preimage of
the next manifold point (used in the search circle
algorithm)

get_cartesian.m calculate the cartesian coordinates of the end
point for the vector given by polar-like coordinates
(the radius and the clockwise angle between the
vector and the vertical axis)

get_colour.m get appropriate colour for colorizing text output
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File name Short description

is_acute.m check if the angle between the two specified vectors
is acute (< π)

is_clockwise.m check if the given point is situated clockwise with
respect to the target vector

iterate.m iterate the function given number of times

jacob.m calculate approximately the Jacobian matrix in
the given point

make_subdiv.m divide a multi-dimensional domain into a number
of subdomains

search_circle.m the search circle algorithm for growing a 1D in-
variant manifold

vector_angle.m find the angle between the two vectors

util/cprintf cprintf utility source for producing colorized out-
put (see [2])

B Search circle algorithm

The method used to construct invariant manifolds is the Search Circle Al-
gorithm (SCA) [4, 5], which grows a one-dimensional manifolds in steps by
adding new points according to the local curvature properties of the mani-
fold. The difference of the SC algorithm from other methods is that it does
not need the inverse. It finds a new point close to the last computed point
that maps under the function f to a piece of the manifold that was already
computed.

B.1 Stable manifold

B.1.1 Growing the manifold

The algorithm produces a piecewise linear approximation of W s(p0) by com-
puting successive points M = {p0, p1, . . . , pN} at varying distance from each
other. The first point p1 is taken at a small distance δ > 0 from p0 along
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the stable eigenspace Es(p0). The distance between consecutive points is
adjusted according to the curvature of the manifold.

Suppose that the manifold has been grown up to some point pk such that
M = {p0, p1, . . . , pk}. We wish to find the next point pk+1 at a distance ∆k

from pk. The manifold is forward invariant, so new points, and in particular
pk+1, must map onto the piece of the manifold that has been computed so
far. Thus, we are trying to find a point pk+1 at a distance ∆k from pk
such that f(pk+1) belongs to some segment of already computed part of the
manifold1. For that we draw a circle C(pk,∆k) of the radius ∆k with a center
in pk (green colour in Fig. 1). Provided that ∆k is small enough, the circle
C(pk,∆k) intersects the manifold W s(p0) only twice, namely, in the point
p∗ (which belongs to the already computed segment, and thus, is not the
target point) and the target point pk+1. The image f(C(pk,∆k)) is then a
closed curve (magenta colour in Fig. 1), which is located near some segment
of the already computed manifold. Obviously, f(C(pk,∆k)) also has two
intersections with W s(p0), from which the one f(p∗) we are not interested
in (in Fig. 1 it belongs to (pi−2, pi−1)), while the other f(pk+1) (belonging to
(pi, pi+1)) is the image of the point pk+1 searched for.

Figure 1: Manifold piecewise linear approximation by the SCA

The distance ∆k is chosen so that it is acceptable meaning that the inter-
polation error is within the desired accuracy which ensures that the approx-
imated manifold is of reasonable resolution. For that the method suggested
in [6] is used, namely, it is assumed that the angle αk between the lines
drawn through pk−1, pk and pk, pk+1 (see Fig. 2) lies whithin ceratin bounds

1Note, that in certain cases of non-invertible maps, the point pk is mapped to the
previously calculated part of the manifold not by f , but by some its iteration fm.
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αmin < αk < αmax. If αk > αmax, the point pk+1 is too far apart the point
pk, so the step should be reduced, and the procedure is repeated with the
decreased step. If αk < αmin, the point pk+1 is too close to pk, however,
for making the decision of enlarging the step or not we check also another
condition ∆kαk > (∆α)min, which is explained below.

Figure 2: The angle between the lines drawn through pk−1, pk and pk, pk+1.

We can ensure immediately that αk does not exceed αmax by only search-
ing the part of the circle C(pk,∆k) that satisfies this criterion. This search
region is the arc between the points pstart and pend, indicated by thicker green
curve in Fig. 1, and its image, which is the thicker magenta curve between
f(pstart) and f(pend), intersects the previously computed part of the manifold
only once, which automatically ensures that we do not accidentally search
for a pre-image of the point p∗ (that we are not interested in).

In addition, to control the local interpolation error, we also check that
the product ∆kαk lies between (∆α)min and (∆α)max. If ∆kαk > (∆α)max,
the step ∆k is halved and the procedure of finding pk+1 is repeated. If
∆kαk < (∆α)min together with α < αmin, then for the next iteration the
step is enlarged ∆k+1 = 2∆k. This ensures that the number of points used
to approximate the manifold is in some sense optimized for the required
accuracy constraints. Note that, at sharp folds it may be necessary to accept
αk > αmax due to ∆k becoming very small. In this case we accept the
“inacceptable” point if ∆k < ∆min, where ∆min is also a predefined parameter.

Finally, in order to find pk+1 we need to define which segment of the previ-
ously calculated manifold contains the intersection point with f(C(pk,∆k)).
We first try the segment (pi−1, pi) that was used in the previous step (to find

32



a candidate for pk). If the image f(pk+1) of the candidate for pk+1 lies on the
line through pi−1 and pi, but not in the segment (pi−1, pi), we discard this
point and repeat the algorithm with the following segment (pi, pi+1) to find
a new candidate for pk+1. (If the map has multiple pre-images then we may
need to search for f(pk+1) on the previous segment (pi−2, pi−1)). To find the
candidate for pk+1 we use the bisection method for the angle αk, and allow
the point f(pk+1) to lie at a maximum distance of some small εB (the bisec-
tion error) from the detected segment, say, Ij = (pj, pj+1), of the previously
computed manifold part. Note, that in this procedure the points f(pstart)
and f(pend) must lie on the opposite sides of the segment Ij. If they do not
(for instance, if there is a sharp fold in the manifold) the search region for
the angle αk is increased, and a warning message is printed.

To sum up, a single run of the algorithm may be briefly described by the
following steps:

1. We put ∆k = ∆k−1 and draw a circle C(pk,∆k).

2. We take the image of the arc between pstart and pend and check if f(pstart)
and f(pend) lie on the opposite sides of the line drawn through pi−1 and
pi. If not, we increase the search region for αk.

3. We use bisection method for finding the candidate pk+1 such that
f(pk+1) lies whithin the distance εB from the line through pi−1, pi.

4. If f(pk+1) lies outside the segment (pi−1, pi), we discard the point pk+1

and restart the procedure with using the segment (pi, pi+1).

5. If f(pk+1) lies inside the segment (pi−1, pi), we check the condition
∆kαk < (∆α)max, and if it fails, we assign ∆k = ∆k/2 and restart the
procedure.

6. If ∆kαk < (∆α)max, then we check also that ∆kαk > (∆α)min. If not
and additionally αk < αmin, we accept the found point, but assign
∆k+1 = 2∆k for the next run of the algorithm.

7. Finally, if the angle search region was enlarged and αk > αmax, we also
check if ∆k < ∆min. If yes, we accept the found point ignoring the
failed criterion.
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B.2 Unstable manifold

the procedure for the unstable manifold is quite similar, with the main
difference that now mapping is in the reverse direction. So that, having
M = {p0, p1, . . . , pk} already computed, we would like to find a point pk+1

such that some point qk+1, which belongs to a certain already known segment
Ii = (pi−1, pi), is mapped to pk+1 (f(qk+1) = pk+1). We also assume that the
point pk+1 lies at an approximate distance ∆k from pk (see Fig. 3).

Figure 3: Unstable manifold approximation

Then, to find the candidate for pk+1, we find the images of the points of
the segment Ii, which are mapped to some neighbourhood of pk. We use the
bisection to detect the point qk+1 whose image is localted near the point pk
so that ∆k − εB < ‖f(qk+1)− pk‖ < ∆k + εB. If such a point does not exist,
we take the next segment Ii+1 = (pi, pi+1) and repeat the procedure.

Finally, we check the same accuracy conditions

αmin < αk < αmax, (∆α)min < ∆kαk < (∆α)max,

adjusting the step as described for the stable manifold case, and also accept
the point pk+1 if αk > αmax, but ∆k < ∆min.
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