
CompDTIMe: Computing one-dimensional
invariant manifolds for saddle points of

discrete time dynamical systems

A. Panchuk

February 20, 2015

Abstract

This paper describes briefly main functionalities and exploited nu-
merical methods of the package CompDTIMe which consists of several
Matlab routines. This package allows one to calculate two-dimensional
bifurcation diagrams, to find periodic points not depending on whether
they are attracting, to compute one-dimensional stable and unstable
manifolds of saddle points. Certain functions are also provided for
plotting the numerical outcome by means of Matlab.

1 Introduction

Dynamical systems with discrete time arise as models to describe various
economic, engineering, or physical phenomena. Describing certain dynamical
aspects of these models usually gives prediction about real system behaviour.
Direct simulation is a powerful tool, however it can be used for quite restricted
number of tasks. For instance, in case of slow convergence to an attractor the
computation time can become rather large. Moreover, using direct simulation
one cannot find unstable periodic points or compute invariant manifolds.
Bifurcation theory provides a better framework for such investigation, but
most analytical techniques are limited to simple systems.

Concerning studies of asymptotic behaviour and bifurcation phenomena
in discrete and continuous time dynamical systems, there is a large num-
ber of numerical methods implemented by different software tools and rou-
tines, such as Dynamics[?], AUTO[?], CONTENT[?], DsTool[?], Numerical

1

Recepies[?], and many others. However, some of these programmes run only
on Linux/Unix systems which makes them impossible to be spread among
Windows users. Furthermore, certain pieces were developed some time ago
and are not supported currently, therefore they cannot be run on newer op-
eration systems. In addition, not many of known tools are able to compute
stable and unstable invariant manifolds of saddle periodic points.

This paper describes a package CompDTIMe meant to be run in Matlab
(compatible with the version R2010b) which is consisted of several routines
for analysing certain aspects of dynamical behaviour of discrete time dynam-
ical systems. In particular, it can calculate 2D bifurcation diagrams in the
parameter space of a map, find periodic points and determining their type,
compute invariant 1D stable and unstable manifolds.

The rest of the paper is organised as follows. In Sec. 2 we present main
numerical methods used by CompDTIMe. Sec. 3 describes briefly basic prin-
ciples of the package usage together with simple illustrative examples. Sec. 4
concludes.

2 Description of the Methods

Let us consider a map F : Rn+m → Rn written in general form as

F : x 7→ F(x, µ) =


F1(x, µ)
. . .
Fn(x, µ)

(1)

where x = (x1, . . . , xn) ∈ Rn is the variable vector, µ = (µ1, . . . , µm) ∈ Rm

is the parameter vector, and Fi : Rn+m → R, i = 1, . . . , n. The related
discrete time dynamical system is then defined as

xt+1 = F(xt, µ), t = 0, 1, (2)

Starting with an arbitrary initial condition x0 = (x01, . . . , x
0
n) a particular

orbit {xt}∞t=0 of (2) is defined. Asymptotically the behaviour of this orbit
can be regular (a fixed point, an n-cycle) or non-regular (chaos, divergence).
Clearly, in case of coexistence of several attractors asymptotic dynamics of
two distinct orbits may be different.

2

2.1 Finding periodic points: Newton’s method

One of the basic tasks in numerical analysing of a dynamical system (2) is to
find its periodic points, namely, the points x ∈ Rn which satisfy FT (x, µ) = x
for some integer T ≥ 1. Technically the problem of finding periodic points is
reduced to finding roots of the equation

Gµ(x)
def
= FT (x, µ)− x = 0 (3)

with Gµ = (G1, . . . , Gn) : Rn → Rn with some fixed parameter vector µ.

2.1.1 One-dimensional problems

In one-dimensional case
Gµ(x) = 0, (4)

Gµ : R → R, x ∈ R, there exists a variety of iterative methods for deriving
solutions of (4). All these methods use the same principle: one starts from an
approximate trial solution which is then improved until some predetermined
convergence criterion is satisfied. However, it is often very important to have
a good first guess for a solution.

One of the most popular among one-dimensional root finding iterative
methods is Newton’s method, called also Newton-Raphson method (see, e. g.,
[?]). This method is distinguished from other methods because it requires the
evaluation of both the function Gµ(x), and its derivative G′µ(x). The latter
can be either given explicitly or approximated by a numerical difference

G′µ(x) ≈ Gµ(x+ dx)−Gµ(x)

dx
, dx� 1.

The reason is that Newton’s method iterative formula is based on the familiar
Taylor series expansion of a function in the neighbourhood of a point:

Gµ(x+ δ) ≈ Gµ(x) +G′µ(x)δ +
G′′µ(x)

2
δ2 + . . . (5)

If δ is small enough and Gµ is well-defined, then higher-order terms are
negligible, thus, one constructs an iterative law

xk+1 = xk −
Gµ(xk)

G′µ(xk)
, k ≥ 0. (6)

3

After choosing a trial guess x0 expression (6) is iterated until a desired ac-
curacy is reached, that is, when |xk+1 − xk| < ε with a certain predefined
0 < ε� 1.

Newton’s method is considered to be rather efficient. Indeed, when
the initial guess is appropriate (close enough to a root) then the sequence
{x0, x1, . . .} converges to the root quadratically. However, if the initial guess
is far from a root then the higher-order terms in the series are important,
which can lead to meaningless xk+1. For instance, when xk gets close to a
local extremum of Gµ the correction term in (6) becomes inaccurately large
because G′µ nearly vanishes.

One should also keep in mind that if the derivative G′µ is not given explic-

itly but approximated then the convergence rate is only
√

2. In case when
G′µ cannot be derived explicitly, it is advised to use other methods for finding
roots of (4), for instance, secant method (see, e. g., [?]).

2.1.2 Multi-dimensional problems

In multidimensional case with n > 1 solving (3) is more tricky, and there
are no good general root finding methods. Indeed, one has to find points
mutually common to n unrelated zero-contour hypersurfaces, each of dimen-
sion n − 1. Usually one has to use additional information, specific to every
particular problem.

Similarly to the case n = 1 Newton’s method again appears to be rather
powerful (also being the simplest), provided that an initial guess is suffi-
ciently good. On the other hand, the method can fail to find the desired
root, because this root does not exist near the initial guess solution. To
improve such a situation one can combine Newton’s method with a globally
convergent strategy that will guarantee some progress towards the solution
at each iteration (as suggested, for example, in [?]).

First we obtain the iterative formula of Newton’s method similarly to the
one-dimensional case. In the neighbourhood of an arbitrary point x each of
the functions Gi, i = 1, n, can be expanded in Taylor series

Gi(x + δx) = Gi(x) +
n∑
j=1

∂Gi(x)

∂xj
δx +O(δx2), ‖δx‖ � 1. (7)

Or, equivalently, in matrix notation

Gµ(x + δx) = Gµ(x) + J(x) · δx +O(δx2), (8)

4

where J is a Jacobian matrix of Gµ. From (8) (omitting higher-order terms)
one obtains

xk+1 = xk + δxk = xk − J−1(xk) ·Gµ(xk). (9)

Next we notice that the problem of finding roots of (3) is closely related
to the problem of minimising the functional

f =
1

2
|Gµ|2 =

1

2
Gµ ·Gµ. (10)

More precisely, every solution of (3) also minimises (10). The opposite is
not true though, thus, simply solving minimisation problem for (10) will not
necessarily gives a root of (3). However, the Newton step

δx = J−1(xk) ·Gµ(xk) (11)

definitely gives a direction along which the functional f decreases. Indeed,

∇f(xk)·δxk = (Gµ(xk)·J(xk))·(−J−1(xk)·Gµ(xk)) = −Gµ(xk)·Gµ(xk) < 0.

In such a way one can derive the improved Newton method which consists
of the following. First the full Newton step is tried, since we have quadratic
convergence in the neighbourhood of the root. Then we check whether the
computed δxk also reduces the functional f (10). If it is not the case, we
backtrack along the Newton direction δxk until we have an acceptable step.
One of possible backtracking algorithms is described below.

Suppose that moving the full Newton step δxk does not decrease f . Let
us find a certain 0 < λ < 1 which guarantees that f(xk + λ · δxk) decreases
with respect to f(xk). For that we define

g(λ)
def
= f(xk + λ · δxk) (12)

so that
g′(λ) = ∇f(xk + λ · δxk) · δxk. (13)

We then approximate g with the most current information we have, and
choose λ to minimise this approximated expression. In such a way we itera-
tively construct a sequence {λkl}Nl=0 until λkN satisfies certain criteria. The
first criteria is, obviously,

Gµ(xk + λkN · δxk) < Gµ(xk). (14)

5

Then we need to require that f(xk + λkN · δxk) < f(xk). However, it might
happen that this mere condition is not sufficient, in particular, when f de-
creases too slowly with respect to the step lengths λkNδxk (for example, see
[?], p. 117). To avoid such a situation it is enough to require

f(xk + λkN · δxk) ≤ f(xk) + α∇f(xk)λkNδx (15)

with a fixed positive α < 1 (choosing α = 10−4 serves fine). The third criteria
is that the steps should not be too small, and we require that λk(l+1) ≥ 0.1λkl.

We always start from the full Newton step, and thus λk0 = 1. At this
time we know the values g(0), g′(0), and g(1). If λk0 is not acceptable then
we can approximate g(λ) by a quadratic expression:

g(λ) ≈
(
g(1)− g(0)− g′(0)

)
λ2 + g′(0)λ+ g(0). (16)

The minimum of (16) is attained at

λ = λk1
def
=

g′(0)

2
(
g(1)− g(0)− g′(0)

) . (17)

Here it can be also shown that λk1 . 0.5 for small α. If λk1 is not acceptable
neither, we should proceed.

On the second and subsequent backtrack iterations, we approximate g by
a cubic expression using the two most recent values g(λkl) and g(λk(l−1)):

g(λ) = aλ3 + bλ2 + g′(0)λ+ g(0) (18)

with[
a
b

]
=

1

λkl − λk(l−1)

[
1/λ2kl −1/λ2k(l−1)

−λk(l−1)/λ2kl λkl/λ
2
k(l−1)

]
·
[

g(λkl)− g′(0)λkl − g(0)
g(λk(l−1))− g′(0)λk(l−1) − g(0)

]
The minimum of the cubic (18) is at

λk(l+1) =
−b+

√
b2 − 3ag′(0)

3a

def
= λ∗kl.

We also enforce λk(l+1) to lie between 0.1λkl and 0.5λkl, that is, we put

λk(l+1) = min{0.5λkl max{0.1λklλ∗kl}}.

The procedure is repeated till a certain λkN satisfies both (14) and (15).
Then the next Newton step is performed.

6

2.2 Search circle algorithm

The method used to construct invariant manifolds is the Search Circle (SC)
algorithm [?, ?]. It grows iteratively a piecewise linear approximation for a
one-dimensional manifold by adding new points according to the local cur-
vature properties of this manifold. The difference of the SC algorithm from
other methods is that it does not need the inverse.

2.2.1 Stable manifold

The main idea of the method is as follows. Given a fixed point p0 we construct
a piecewise linear approximation of W s(p0) by computing successive points
M = {p0, p1, . . . , pk, . . .} at varying distance from each other. The first point
p1 is taken at a small distance δ > 0 from p0 along the stable eigenspace
Es(p0). For obtaining each successive point we draw a circle having the
centre in the last computed point pk and the radius ∆k (the adoptive step
value which may vary through the procedure). The new point pk+1 of the
manifold is searched on this circle by using the fact that pk+1 is mapped
under F to a piece of the manifold that was already computed. Namely,
there exists a point p̂ belonging to some already computed segment (pi, pi+1)
of the manifold, and F(pk+1) = p̂1.

Suppose that the manifold has been grown up to some point pk such that
M = {p0, p1, . . . , pk}. We draw a circle C(pk,∆k) of the radius ∆k with a
centre in pk (green colour in Fig. 1). Provided that ∆k is small enough, the
circle C(pk,∆k) intersects the manifold W s(p0) only twice, namely, in the
point p∗ (which belongs to the already computed segment, and thus, is not
the target point) and the target point pk+1. The image F(C(pk,∆k)) is then a
closed curve (magenta colour in Fig. 1), which is located near some segment
of the already computed manifold. Obviously, F(C(pk,∆k)) also has two
intersections with W s(p0), from which the one F(p∗) we are not interested
in (in Fig. 1 it belongs to (pi−2, pi−1)), while the other F(pk+1) (belonging to
(pi, pi+1)) is the image of the point pk+1 searched for.

The distance ∆k is chosen so that it is acceptable meaning that the inter-
polation error is within the desired accuracy which ensures that the approx-
imated manifold is of reasonable resolution. For that the method suggested
in [?] is used, namely, it is assumed that the angle αk between the lines

1Note, that in certain cases of non-invertible maps, the point pk+1 is mapped to the
previously calculated part of the manifold not by F, but by some its iterate Fj .

7

Figure 1: Piecewise linear approximation of the stable manifold by using SC
algorithm.

drawn through pk−1, pk and pk, pk+1 (see Fig. 2) lies within certain bounds
αmin < αk < αmax. If αk > αmax, the point pk+1 is too far apart from the
point pk, so the step should be reduced, and the procedure is repeated with
the decreased step. If αk < αmin, the point pk+1 is too close to pk, however,
for making the decision of enlarging the step or not we check also another
condition ∆kαk > (∆α)min, which is explained below.

Figure 2: The angle between the lines drawn through pk−1, pk and pk, pk+1.

We can ensure immediately that αk does not exceed αmax by only search-
ing the part of the circle C(pk,∆k) that satisfies this criterion. This search
region is the arc between the points pstart and pend, indicated by thicker green
curve in Fig. 1, and its image, which is the thicker magenta curve between
F(pstart) and F(pend), intersects the previously computed part of the manifold
only once, which automatically ensures that we do not accidentally search

8

for a pre-image of the point p∗ (that we are not interested in).
In addition, to control the local interpolation error, we also check that

the product ∆kαk lies between (∆α)min and (∆α)max. If ∆kαk > (∆α)max,
the step ∆k is halved and the procedure of finding pk+1 is repeated. If
∆kαk < (∆α)min together with αk < αmin, then for the next iteration the
step is enlarged ∆k+1 = 2∆k. This ensures that the number of points used
to approximate the manifold is in some sense optimised for the required ac-
curacy constraints. Note that, at sharp folds it may be necessary to accept
αk > αmax due to ∆k becoming very small. In this case we accept the “un-
acceptable” point if ∆k < ∆min, where ∆min is also a predefined parameter.

Finally, in order to find pk+1 we need to define which segment of the previ-
ously calculated manifold contains the intersection point with F(C(pk,∆k)).
We first try the segment (pi−1, pi) that was used in the previous step (to find
a candidate for pk). If the image F(pk+1) of the candidate for pk+1 lies on
the line through pi−1 and pi, but not in the segment (pi−1, pi), we discard
this point and repeat the algorithm with the following segment (pi, pi+1) to
find a new candidate for pk+1. (If the map has multiple pre-images then we
may need to search for F(pk+1) on the previous segment (pi−2, pi−1)). To
find the candidate for pk+1 we use the bisection method for the angle αk, and
allow the point F(pk+1) to lie at a maximum distance of some small εB (the
bisection error) from the detected segment, say, Ij = (pj, pj+1). Note, that
in this procedure the points F(pstart) and F(pend) must lie on the opposite
sides of the segment Ij. If they do not (for instance, if there is a sharp fold in
the manifold) the search region for the angle αk is increased, and a warning
message is printed.

To sum up, a single run of the algorithm may be briefly described by the
following steps:

1. We put ∆k = ∆k−1 and draw a circle C(pk,∆k).

2. We take the image of the arc between pstart and pend and check if
F(pstart) and F(pend) lie on the opposite sides of the line drawn through
pi−1 and pi. If not, we increase the search region for αk.

3. We use bisection method for finding the candidate pk+1 such that
F(pk+1) lies within the distance εB from the line drawn through pi−1
and pi.

4. If F(pk+1) lies outside the segment (pi−1, pi), we discard the point pk+1

and restart the procedure with using the segment (pi, pi+1).

9

5. If F(pk+1) lies inside the segment (pi−1, pi), we check the condition
∆kαk < (∆α)max, and if it fails, we assign ∆k = ∆k/2 and restart the
procedure.

6. If ∆kαk < (∆α)max, then we check also that ∆kαk > (∆α)min. If not
and additionally αk < αmin, we accept the found point, but assign
∆k+1 = 2∆k for the next run of the algorithm.

7. Finally, if the angle search region was enlarged and αk > αmax, we also
check if ∆k < ∆min. If yes, we accept the found point ignoring the
failed criterion.

2.2.2 Unstable manifold

The procedure for the unstable manifold is quite similar, with the main
difference that now mapping is in the reverse direction. So that, having
M = {p0, p1, . . . , pk} already computed, we would like to find a point pk+1

such that some point qk+1, which belongs to a certain already known segment
Ii = (pi−1, pi), is mapped to pk+1, that is, F(qk+1) = pk+1. We also assume
that the point pk+1 lies at an approximate distance ∆k from pk (see Fig. 3).

Figure 3: Unstable manifold approximation

Then, to find the candidate for pk+1, we find the images of the points of
the segment Ii, which are mapped to some neighbourhood of pk. We use the
bisection to detect the point qk+1 whose image is located near the point pk
so that ∆k − εB < ‖F(qk+1)− pk‖ < ∆k + εB. If such a point does not exist,
we take the next segment Ii+1 = (pi, pi+1) and repeat the procedure.

Finally, we check the same accuracy conditions

αmin < αk < αmax, (∆α)min < ∆kαk < (∆α)max,

10

adjusting the step as described for the stable manifold case. Similarly, we
accept the point pk+1 if αk > αmax, but ∆k < ∆min.

3 Description of the Routine

In this section we describe main features of CompDTIMe. The package
consists of a set of routines running in Matlab (compatible with the version
R2010b) which is a widely used environment for scientific computing [?]. The
package can perform the following tasks:

• Plot 2D bifurcation diagrams (period diagrams);

• Find periodic points of a predefined period and determining the type
of these points (stable, unstable, or saddle).

• Compute invariant 1D stable and unstable manifolds (for 2D maps
only).

CompDTIMe has no graphical user interface, but a number of routines are
provided to plot periodic points, invariant manifolds, and stability informa-
tion.

3.1 Initialisation

Before starting to use CompDTIMe it is necessary to define several constants
which control running numerical methods. The easiest way to do this is to
load the file init.m available in the routine’s root directory. This file will
add as well necessary directory paths to the Matlab’s PATH variable.

The default values of all required constants are also stored in the file
data/default.mat, which can be loaded to restore these values at any time.
The full list of constants together with their defaults and descriptions can be
found in Appendix A.

3.2 Definition of a new map

A new map of the form (1) can be defined by using a function handle (for
more details on function handles see [?]). Namely, a user has to create a new
Matlab script file and describe the right-hand side of the map F as presented
in Listing 1.

11

Listing 1: user map.m

function y = <user_map >(x, varargin)

% a comment and description

{ some optional commands }

y(1) = <equation 1>

....

y(n) = <equation n>

Here varargin is the variable-length input argument list, which should present
the related parameter vector µ of the map F.

A Jacobi matrix J(x0, µ) at the point x0 = (x01, . . . , x
0
n) for the user

defined map F with the parameter vector µ has the form

J(x0, µ) =


∂F1(x0, µ)

∂x1
. . .

∂F1(x0, µ)

∂xn
... . . .

...
∂Fn(x0, µ)

∂x1
. . .

∂Fn(x0, µ)

∂xn

 . (19)

This matrix may be given explicitly, which improves calculation speed of
methods for finding periodic points and obtaining their eigenvalues and eigen-
vectors. The function handle for J should be contained in a separate file,
which must have the name <user_map>_J.m, where <user_map>.m is the
name of the file which contains definition of the corresponding user map.
Furthermore, the Jacobi matrix function <user_map>_J must have the same
number of parameters as the map function <user_map>. For example, see
Listing 2.

Listing 2: user map J.m

function J = <user_map_J >(x, param1 , param2 ,)

% a comment and description

{ some optional commands }

J(1, 1) = <equation 11>

J(1, 2) = <equation 12>

....

J(n, n) = <equation nn>

The matrix J(x0, µ) may also be calculated numerically by using the
function derivative approximation scheme:

∂Fi(x0, µ)

∂xj
=
Fi(x1, µ)− Fi(x0, µ)

dx
,

12

where x1 = (x01, . . . , x
0
j + dx, . . . , x0n) ∈ Rn and the small increment of the

argument dx � 1. This scheme is implemented by using the predefined
function jacob, which has the following format

function J = jacob(fhandle, x0, dx, varargin)

Here fhandle is the map function handle, x0 is the target point x0, dx

represents the small increment, and varargin is the variable-length input
argument list, which should present the related parameter vector µ of the
map F.

For example, let us consider Hénon map H : R2 → R2

H :

(
x
y

)
7→
(
y + 1− ax2

bx

)
= H(x, y) (20)

with two parameters a and b. Listings 3 and 4 show files defining both the
new map and the related Jacobian matrix.

Listing 3: henon.m

function y = henon(x, a, b)

y(1) = b*x(2) + a - x(1)^2;

y(2) = x(1);

Listing 4: henon J.m

function y = henon_J(x, a, b)

J = zeros(2, 2);

J(1, 1) = -2*x(1);

J(1, 2) = b;

J(2, 1) = 1;

3.3 Period Diagrams

The procedure to produce 2D bifurcation diagrams (period diagrams) con-
sists usually of two steps. First, one obtains the data for the diagram, and
then uses this data to make the 2D colour plot.

The method for getting the period data is rather straightforward. For
two target function parameters µk and µl, 1 ≤ k ≤ n, 1 ≤ l ≤ n, k 6= l,
one defines a certain r × s uniform rectangular mesh M = {Mij}r,si=1,j=1,
Mij = (µki, µlj) (the remaining parameters stay fixed). For each pair Mij,
starting from the given initial orbit point x0 a target map F is iterated a

13

certain number of times T (transient time). Then the last obtained orbit
point xT is checked for being periodic or not with a predefined maximal
period value P .

3.3.1 Obtaining period data

For obtaining data for a period diagram the function period_bd_calc should
be used, which has the format

function [param1 , param2 , periods] = ...

period_bd_calc(fhandle , x0 , prange , dp , pidx , ...

trans , maxperiod , tolerance , divergence , varargin)

The meaning of the parameters is as follows:

• fhandle is a related function handle.

• x0 is an initial point for obtaining the orbit at each system run. If x0 is
a numeric array, then for each parameter pair the initial orbit point is
reset to x0. However, one may force the initial orbit point to be chosen
randomly if necessary. For this x0 must be set to a string of the form
’rand(<n>)’ where <n> is the dimension of the variable vector x.

• prange defines ranges for two target parameters µk and µl. It is a 2×2

matrix

(
µk1 µkr
µl1 µls

)
.

• dp is a 2-dimensional vector defining increments for two target param-
eters.

• pidx is a 2-dimensional vector defining the parameter indices.

• trans is a transient number of iterations T .

• maxperiod defines a maximal potential period P of the orbit.

• tolerance is an accuracy for checking parity of two orbit points. Namely,
if the norm ‖x1 − x2‖ is less than tolerance, then the points x1 and
x2 are considered to be equal.

• divergence is a limit for detecting divergence to infinity. Namely, if
at a certain iteration the norm ‖x‖ becomes larger than divergence,
then the related orbit is considered to diverge.

14

• varargin represents the parameter vector µ of the iterated map F,
which can be specified either as a comma separated list, or as a single
cell-array parameter. (For the two target parameters arbitrary values
can be given).

After finishing the calculation process the function period_bd_calc returns
three objects:

• param1 contains the mesh vector for the first target parameter
(µk1, . . . , µkr),

• param2 contains the mesh vector for the second target parameter
(µl1, . . . , µls),

• and periods is the r× s numerical matrix, whose cell ij represents the
calculated orbit period corresponding to the parameter pair Mij. Note,
that the value -1 is related to diverging orbits, while 0 means either
that dynamics is non-regular, or that the orbit period is larger than
maxperiod.

3.3.2 Plotting period data

The data obtained by period_bd_calc can be used to generate a period
diagram graph in either an external plotting program, or inside Matlab by
invoking the embedded function pcolor. For user convenience CompDTIMe
contains the predefined function bd_plot which calls pcolor and makes basic
settings of the figure. The format of bd_plot is

function [hfig , hcbar] = bd_plot(X, Y, C, maxperiod)

This function produces a pseudocolour plot2 of the elements of C at the
locations specified by X and Y. That is, X and Y are vectors of the length r and
s, respectively, which determine the grid, while C is an r × s matrix whose
elements define the colours to be used. Clearly, to plot the data obtained
by period_bd_calc one has to replace X with param1, Y with param2, and
C with period. The argument maxperiod means the highest periodicity to
be plotted. Namely, only those elements of the matrix C will appear on the
graph which are less than or equal to maxperiod.

2A pseudocolour plot is represented by a rectangular array of cells each being plotted
with a certain colour. For details see [?].

15

The plot will be produced by using the preset colour palette (defined in
data/bd_colors.mat). It is limited up to maximum of 62 colours, where
grey colour corresponds to the value -1 (divergence), and white colour is
related to 0 (higher periodic or non-regular behaviour). Note, that if the
matrix C contains cells with values being larger than maxperiod, then they
will be also coloured white in the produced plot.

The return values are

• hfig being a handle for the plotted figure window,

• and hcbar being a handle for the plotted colour bar.

These handles can be used for further customisation of the figure.

3.3.3 Period diagram example

Let us demonstrate an example for computing 2D bifurcation diagrams by
using Hénon map (20). Suppose we want to plot a period diagram of (20) for
the parameter range a ∈ [0.1, 2] and b ∈ [−0.5, 1]. To get nice resolution we
choose the step sizes δa = 0.01, δb = 0.005 and try to find periodic solutions
up to period 30. Listing 5 presents a sequence of commands which produces
the plot in Fig. 4(a). Three last lines are related to customising the figure:
we increase the font size and change ticks for the colour bar.

Listing 5: A sample command list for plotting period diagram.

>> init()

>> [param1 , param2 , periods] = ...

period_bd_calc(@henon , [0.9 0.8], [0.1 2; -1 1.5], ...

[0.01 0.005] , [1 2], 2000, 30, tolerance , ...

divergence , 1, 1);

>> [figbd , cbbd] = bd_plot(param1 , param2 , periods , 30)

>> axbd = get(figbd , ’CurrentAxes ’)

>> set(axbd , ’FontSize ’, 24)

>> set(cbbd , ’YTick’, (-1:2:29))

Moreover, to plot only periodicity regions related to solutions up to period
5 (see Fig. 4(b)) one should use the following command

>> [figbd , cbbd] = bd_plot(param1 , param2 , periods , 5)

16

(a) (b)

Figure 4: Bifurcation structure of the parameter plane (a, b) of H’enon
map (20). Periodicity regions are shown up to (a) period 30; (b) period
5.

3.4 Find periodic points

As it is described in Sec. 2.1, for finding periodic points Newton’s method is
used. In addition, for multi-dimensional maps a certain backtracking tech-
nique is also included to improve global convergence to the root. There-
fore, two separate functions find_periodic_1d and find_periodic_md cor-
respond to finding periodic points of scalar and vector maps, respectively.

3.4.1 One-dimensional maps

The function find_periodic_1d for 1D maps has the format

function xF = find_periodic_1d(fhandle , period , ...

interval , init_num , tolerance , max_step , rnd , varargin)

The meaning of the parameters is as follows:

• fhandle is a function handle corresponding to the desired map.

• period is a period of points searched for. Note, that the points with
periods being divisors of period are also may be found.

• interval is usually a two-dimensional vector representing an interval
from which the initial conditions are taken. However, when init_num

17

is zero, interval should be a single scalar value which is taken as a
predefined initial condition.

• init_num is the number of initial conditions to try. If init_num is zero,
the initial condition is taken from the parameter interval.

• tolerance is an accuracy for checking parity of points, namely, if
the distance (norm) between the two points x1 and x2 is less than
tolerance, then these points are considered to be equal.

• max_step defines the maximal number of Newton steps performed.

• rnd defines whether to set initial conditions randomly or not. If being
true (or 1), initial conditions are chosen randomly (in the total amount
of init_num). If being false (or 0), the search interval is divided into
init_num equal parts, and then a middle point of each subinterval is
tried for the initial condition.

• varargin represents the parameter vector µ of the iterated map F.

After finishing the calculation process the function find_periodic_1d

returns the value xF which contains a vector of the found (distinct) points
sorted in ascending order. This array can be further used as an argument to
the function period_classify which gives more detailed information about
the periodic points found (see Sec. 3.4.3). In particular, it checks whether
some of the points belong to the same cycle or not.

3.4.2 Multi-dimensional maps

The function find_periodic_md for higher dimensional maps has similar
form:

function xF = find_periodic_md(fhandle , period , ...

range , init_num , tolerance , max_step , rnd , varargin)

We describe only those arguments which are different from the 1D case:

• range is similar to interval of the function find_periodic_1d. How-
ever, here it usually is an n × 2 matrix R = {rij}n,2i=1,j=1 (n is the di-
mension of F). Each coordinate x0i of an initial condition vector x0 is
taken from the range [ri1, ri2]. However, if init_num is zero then range

should be an n-vector of a predefined initial condition.

18

• Initial conditions can be chosen in three different ways:

1. Random choice: One should set the parameter rnd to be true (or
1) and the parameter init_num to be an integer. This integer then
defines the total number of initial conditions to try. The initial
condition for each coordinate xi, i = 1, n, is taken randomly from
the interval [ri1, ri2] specified by range.

2. Regular grid: One should set rnd to be false (or 0) and init_num

to be an n-dimensional integer vector N = (N1, . . . , Nn). For
each coordinate xi, i = 1, n, the related interval Ri = [ri1, ri2]
(specified by range) is divided into Ni equally sized subinter-
vals Ri1, . . . , RiNi

. Then all possible products R1j1 × . . . × Rnjn ,
jk = 1, Nk, k = 1, n, are constructed, and centres of these paral-
lelepipeds are taken as initial conditions. So that the total number
of initial conditions to be tried is N1 · . . . ·Nn.

3. Predefined point: One should set rnd to be false (or 0) and
init_num to equal zero. Then range should be an n-dimensional
real vector x0 = (x01, . . . , x

0
n) which is considered as the initial

condition.

The return value of find_periodic_md is similar to that of
find_periodic_1d, however, now it is not a vector but a matrix having n
columns corresponding to the coordinates xi, i = 1, n. The values are sorted
in ascending order by the first coordinate (column).

3.4.3 Classifying periodic points

As the functions find_periodic_1d and find_periodic_md return only a
sorted array of points, neither indicating exact periods of them, nor giving
the information about their stability, one may need to organise this output.
In particular, some of the discovered periodic points may belong to the same
cycle, or some cycle points may not appear in the list. For performing fur-
ther classification and arrangement of the points, one can use the function
period_classify

function points = period_classify(fhandle , xF, ...

max_period , tolerance , varargin)

19

The function takes as parameters the iterated function handle fhandle,
the array of points xF, the maximal period max_period (which usually coin-
cides with max_period used in find_periodic_1d or find_periodic_md).
The values tolerance and varargin are the same as described above. After
finishing period_classify returns a cell-array points. It has the following
structure: each row has three cells, where the first cell contains the cycle (or
a fixed point) coordinates, the second cell is the exact period of the cycle, and
the third cell indicates the stability—’stable’, ’unstable’, or ’saddle’.

3.4.4 Periodic points example

We demonstrate usage of find_periodic_md and period_classify by Hénon
map (20). Let us find fixed points of H with a = 1.28, b = −0.3. We set a
reasonable search range for periodic points as Π = [−5, 5]× [−5, 5]. Calling
the command

>> xF = find_periodic_md(@henon , 1, [-5 5; -5 5], [10 10],

tolerance , max_step , false , 1.28, -0.3)

we get two fixed points L
(1)
1 = (x1, y1) ≈ (−1.9548,−1.9548) and L

(2)
1 =

(x2, y2) ≈ (0.6548, 0.6548). Then we classify these points by

>> points = period_classify(@henon , xF , 1, 1e-6, 1.28, -0.3)

which announces that both points are saddles. Comparing to the plotted
above 2D bifurcation diagram we discover that for these fixed parameter
values asymptotic dynamics corresponds to a solution of period 2. Hence we
retry finding periodic points but those being of period 2 now:

>> xF = find_periodic_md(@henon , 2, [-5 5; -5 5], [10 10],

tolerance , max_step , false , 1.28, -0.3)

Using again period_classify (putting max_period = 2) we get the fol-
lowing result

points =

[1x2 double] [1] ’saddle ’

[2x2 double] [2] ’stable ’

[1x2 double] [1] ’saddle ’

A new finding here is a 2-cycle L2 = {(xc1, yc1), (xc2, yc2)} with xc1 ≈
0.538, yc1 ≈ 0.762, xc2 = yc1, yc2 = xc1. Note that together with a 2-cycle L2

20

the routine finds also two saddle fixed points L
(1)
1 and L

(2)
1 mentioned above.

3.5 Invariant manifolds

3.5.1 Unstable manifolds

To compute the unstable manifold of a fixed point or a cycle the functions
sc_unstable or sc_unstable_cyc should be used, respectively.

function [p, arc_length] = sc_unstable(fhandle , p0, ...

arc_max , d, a_min , a_max , Da_min , Da_max , D_min , ...

cB, varargin)

function [p, arc_length] = sc_unstable_cyc(fhandle , ...

p0, period , arc_max , d, a_min , a_max , Da_min , ...

Da_max , D_min , cB , varargin)

The second one differs from the first one by a single parameter period which
indicates the exact period of the point p0. The other parameters are:

• fhandle is an iterated function handle.

• p0 is a saddle point whose manifold is to be computed.

• arc_max is a desired length of the manifold arc (is approximated as a
sum of vector norms ‖pk+1 − pk‖, where {pk}Nk=0 are computed points
of the manifold, see Sec. 2.2.2).

• d is an initial step size. Note that if d > 0 manifold is grown forward
(in the direction of the related eigenvector), while if d < 0 it is grown
backward (in the direction opposite to the related eigenvector).

• a_min is the minimal value for the angle between the two successive
manifold segments (see Fig. 2). If the angle αk between the vectors
(pk−1, pk) and (pk, pk+1) falls below this value, the step size is increased.

• a_max is the maximal angle value. The angle αk between the vectors
(pk−1, pk) and (pk, pk+1) is assumed to not exceed this threshold (for
possible exceptions see description of the method in Sec. 2.2.2).

• Da_min is the minimal value for the product ∆kαk.

• Da_max is the maximal value for the product ∆kαk.

21

• D_min is the minimal step size.

• cB is an accuracy coefficient for bisection method, it must be positive
and less than one.

The function returns two values: an array of computed manifold points p

and a computed manifold length arc_length.
Note, that only one-dimensional unstable manifolds can be calculated.

3.5.2 Stable manifolds

Similarly, to compute the stable manifold of a fixed point or a cycle the
functions sc_stable or sc_stable_cyc should be used, respectively.

function [p, arc_length] = sc_stable(fhandle , p0, ...

arc_max , max_iter , d, a_min , a_max , Da_min , Da_max , ...

D_min , eB , varargin)

function [p, arc_length] = sc_stable_cyc(fhandle , p0, ...

period , arc_max , max_iter , d, a_min , a_max , Da_min , ...

Da_max , D_min , eB , varargin)

These two functions take almost the same parameters as those for computing
unstable manifolds. We describe only parameters which differ:

• max_iter is a maximal number of iterates to try. This parameter is
useful in case of a non-invertible map, which may have several preim-
ages. The stable manifold of such a map may be mapped onto itself in
a complex way, so that it is required to iterate the map several times
until getting the right approximation for the next point.

• eB is an error for the bisection method used during search circle proce-
dure.

The return values are the same as in case of unstable manifold computation.

3.5.3 Plotting manifolds

There is one more useful function plot_manifolds which allows to plot com-
puted manifolds together with the periodic points found. It has the format

function hfig = plot_manifolds(points , umanif , smanif)

Its parameters are

22

• points is the cell array of periodic points, which should be of the same
structure as one obtained from the functions find_periodic_1d and
find_periodic_md.

• umanif is the cell array of unstable manifolds to be plotted (may be
empty {}). They are plotted in red.

• smanif is the cell array of stable manifolds to be plotted (may be empty
{}). They are plotted in blue.

The return value is a handle hfig for the plotted figure window, which may
be used for further customisation of the plot.

3.5.4 Invariant manifolds example

As before we use Hénon map (20) for demonstration. We fix parameter
values as in Sec. 3.4.3. Recall that there exists at least two saddle fixed
points L

(1)
1 = (x1, y1) and L

(2)
1 = (x2, y2) together with a stable 2-cycle L2 =

{(xc1, yc1), (xc2, yc2)} (see Sec. 3.4.4). We make the assignments

>> fp1 = points{1, 1} % fixed point (x_1 , y_1)

>> fp2 = points{3, 1} % fixed point (x_2 , y_2)

>> c21 = points{2, 1}(1, :) % cycle point (x_{c1}, y_{c1})

>> c22 = points{2, 1}(2, :) % cycle point (x_{c2}, y_{c2})

To compute the manifolds of the first fixed point we call two commands
(computing forward and backward):

>> [um_fp1_f , arc] = sc_unstable(@henon , fp1 , arc_length , d,

a_min , a_max , Da_min , Da_max , D_min , cB , 1.28, -0.3);

>> [um_fp1_b , arc] = sc_unstable(@henon , fp1 , arc_length , -d,

a_min , a_max , Da_min , Da_max , D_min , cB , 1.28, -0.3);

Both commands run with success producing two branches of the unstable
manifold of L

(1)
1 . However when we do the same for L

(2)
1 we get the following

message

WARNING: Unable to find next point, aborting computation.

Manifold is computed up to 5 point, arc length = 0.00110769

Similar message we get when trying to compute the manifold backwards.
Making some additional investigation we discover that at some point the un-
stable manifold of L

(2)
1 becomes rather ‘slow’, that is, the distance between

23

two successive manifold points becomes very small and less than D_min. Re-
placing D_min with D_min/100 improves things and both branches of the
manifold are computed. In Fig. 5 we show computed unstable manifolds of
both fixed points, L

(1)
1 and L

(2)
1 (cyan triangles), together with a stable 2-

cycle L2 (orange circles). Plot (b) is the enlargement of the box indicated in

plot (a), and one can see that unstable manifold of L
(2)
1 is in fact a part of

the stable manifold of the 2-cycle L2.

(a) (b)

Figure 5: Unstable manifolds of the fixed points (x1, y1) and (x2, y2) of Hénon
map (20). (b) is the enlargement of the window shown in (a).

Let us turn now to stable manifolds of both fixed points. We compute
both branches of stable manifold for L

(1)
1 (similarly for L

(2)
1) by

>> [sm_fp1_f , arc] = sc_stable(@henon , fp1 , 30, 1, d, a_min ,

a_max , Da_min , Da_max , D_min , eB , 1.28, -0.3);

>> [sm_fp1_b , arc] = sc_stable(@henon , fp1 , 30, 1, -d, a_min ,

a_max , Da_min , Da_max , D_min , eB , 1.28, -0.3);

Note that since Hénon map is invertible (provided that b 6= 0) it is enough to
put max_iter = 1. A couple of examples for handling non-invertible maps
are included in the CompDTIMe distribution.

The resulting plot can be seen in Fig. 6. This plot is obtained by using
plot_manifolds, namely

>> hfig = plot_manifolds(points , {um_fp1_f , um_fp1_b ,

um_fp2_f , um_fp2_b}, {sm_fp1_f , sm_fp1_b , sm_fp2_f ,

sm_fp2_b });

24

The figure handle hfig is then used to customise fonts, labels, and arrows,
similarly to how it is done in example presented in Sec. 3.3.3.

Figure 6: Stable and unstable manifolds of the fixed points L
(1)
1 and L

(2)
1 of

Hénon map (20).

4 Conclusion

In this paper we described main functionalities of CompDTIMe developed
for investigating discrete time dynamical systems. The package consists of
several Matlab routines which allow one to calculate data for two-dimensional
bifurcation diagrams (period diagrams) in the parameter space of a map;
to find periodic points of a predefined period and to classify these points
(determine their type, group the points belonging to a single cycle, etc.); to
compute one-dimensional stable and unstable manifolds of a saddle periodic
point. CompDTIMe does not have any graphical user interface, but several
routines are provided to plot the numerical outcome (such as period diagrams,
periodic points including stability information, invariant manifolds) by means
of Matlab.

Numerical methods used by CompDTIMe are also briefly presented. In
particular, for finding periodic points Newton’s (Newton-Raphson) method
is chosen as being one of the most efficient. Computation of one-dimensional
invariant manifolds is performed by using the so-called Search Circle algo-
rithm, which differs from other similar methods by the fact that one does
not need to calculate the inverse map. This provides an efficient technique
for obtaining the stable invariant manifold even in case when the map is not

25

invertible.
For the moment the package CompDTIMe is designed to be run under

Matlab environment, but it is planned to translate it to QB64 and C++ (the
work is now in progress).

A Global parameters for numerical methods

Variable Value Description

divergence 100000 limit for detecting divergence to infinity

tolerance 1e-8 accuracy for checking parity of points

max_step 50 maximal number of Newton steps

arc_length 10 desired length of the manifold arc

d 0.001 initial step for manifold calculation

a_min 0.2 search circle minimal angle value

a_max 0.3 search circle maximal angle value

Da_min 1e-6 minimal value for the product ∆kα

Da_max 1e-5 maximal value for the product ∆kα

D_min 1e-4 search circle minimal step size

cB 0.2 bisection accuracy coefficient

eB 1e-6 search circle bisection error

Table 1: List of predefined parameters which control running numerical meth-
ods.

26

