What is a motivic gamma function?

- Joint project with Spencer Bloch

- Started on ideas from Vasily Golyshev

L is a differential operator on $P^1 \setminus S = U$

finite set of singular points

$\int_0^\gamma x^s \psi(x) \frac{dx}{x}$ defined up to

$\pm i\pi \text{ms mod } \mathbb{Z}$

γ is an oriented closed path in U

avoiding 0 and ∞

and contractible in $P^1 \setminus \{0, \infty\}$

ψ is a solution to $L \psi = 0$

defined in a neighbourhood of γ

and having trivial monodromy around γ

Remarks:

1) $\gamma \sim \sum n_i [0_i]$, $\psi_i \sim \text{const} \cdot \psi_i$

gamma functions form a module over $\mathbb{C}[e^{2\pi i}]$

2) $\int_0^\gamma x^s \psi(x)$ is called motivic when

L is of Picard-Fuchs type

and $\psi(x)$ is a period function

\mathcal{X}

$\psi(x) = \int \omega(x)$

\Rightarrow de Rham form

\mathcal{X} / \mathbb{Q}

\Rightarrow Betti cycle

Module of finite rank over $\mathbb{Q}[e^{2\pi i}]$
Example \[\psi(x) = (1-x)^{-\frac{1}{2}} \}

\[\int_{\bar{C_i}} \psi(s) = \int_{\bar{C_i}} \frac{x^s}{\sqrt{1-x}} \frac{dx}{x} = \]

\[= \int_0^1 -e^{-2\pi i s} \int_0^1 e^{-2\pi i s} \int_1^0 \frac{x^s}{1-x} \frac{dx}{x} = 2(1-e^{-2\pi i s}) \frac{\Gamma(s) \Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}+s)} \]

entire, motivic

Applications: - interpolation of recurrences
- Apéry constants (this talk)
- ...

Motivation:

\[\gamma \rightarrow s_2 \]

\[s_1 \text{ path between two singular pts} \]

\[\{ \psi^{(k)}_i \} \]

basis in the space of solutions to \(\psi \) near \(s_k \)

\[[x] \psi^{(k)}_i = \sum_j \psi^{(k)}_j C_{ij} \]

connection matrix

Special choice: Frobenius basis

\[\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \]

Jordan block of \([\delta_0] \)

local monodromy

\[\lambda = e^{2\pi i \rho} \]

regular singularity

unique under the condition \(\psi^{(n)}_0(0) = 1 \)

\(\psi^{(n)}_i(0) = 0 \quad i > 0 \)
Frobenius basis spans de Rham structure of the limiting MHS in mirror symmetry.

Quantum diff. e.q. of a Fano manifold \(\Rightarrow \) Picard-Fuchs diff. e.q. \(L \) connection matrices contain info about the original Fano.

Special case

\(\sigma_2 \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) SS point + pseudo-reflection

\(\sigma_1 \sim \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) MUM point

\(\sigma_0, \ldots, \sigma_{n-1} \) Frobenius basis near \(s_1 \)

Apéry constants are \(x_0 = 1, x_1, \ldots, x_{n-1} \in \mathbb{C} \)

s.t. \([\mathcal{A}] (\varphi_0 - x_0 \varphi_0) \) is \([\sigma_2] \)-invariant.

Ambiguity: \(x_0 = 0 \) \(\varphi_q (x) = \varphi_0 (x) \log (x) + \varphi_i^{ \alpha_i (x)} \)

\(x_i \sim x_i + 2\pi i \frac{\alpha_i}{\alpha_i - 1} \) \(x_i \in \mathbb{C} / 2\pi i \mathbb{Z} \)

\(\sigma_0^m \varphi_0, \ldots, \sigma_1^m \varphi_{n-1} \) is also a Frobenius basis.

\([\sigma_1] \sum \varphi_i (x) e_i (e) = e \sum \varphi_i (e) e_i \)

\(\Rightarrow x(e) = \sum x_i e_i \) is defined up to \(\times e \)

(Note similarity with the ambiguity of \(\prod (x) \! \))

(In fact, one can define "higher" \(x_n, x_{n+1}, \ldots \) and "complete" \(\mathcal{A}(x) \) to (almost) a gamma function! I am coming to this point after a short example.)
\[L = D^3 - x (2D + 1) (17D^2 + 17D + 5) + x^2 (D + 1)^3 \]
\[= x^3 (-34x + x^2) \frac{d^3}{dx^3} + \ldots \]

\[S = \{ 0, \infty, 17 \pm \sqrt{17^2 - 1} \} \]

\(x = 0 \) is MUM

\[g_0(x) = 1 + 5x + 73x^2 + \ldots \]

\[g_1(x) = g_0(x) \log x + \left(\frac{12x + 210x^2 + \ldots}{g_1(x)} \right) \]

\[g_2(x) = g_0(x) \frac{\log^2 x}{2!} + g_1(x) \log x + \left(\frac{72x^2 + 2160x^3 + \ldots}{g_2(x)} \right) \]

\[C = 17 - \sqrt{17^2 - 1} = 0.0294 \ldots \]

Reflection point \((0, 0, 0) \)

\(x_0 = 1 \quad x_1 = 0 \quad x_2 = -\frac{\pi^2}{3} \)

Lemma \(L = \sum_{i=0}^{r} x^i P_i(D) \) polynomial diff operator of order \(N \)

has MUM at \(x = 0 \) iff \(P_0(D) = D^N \)

\(\Rightarrow \) all \(D^k L \) have MUM at \(x = 0 \)

can construct higher Frobenius functions (Golyshen-Zagier)

\[\Phi_0(x), \Phi_1(x), \ldots \]

\[\Phi(x, \varepsilon) = \sum_{i=0}^{\infty} \Phi_i(x) \varepsilon^i \]

\[L \Phi = \varepsilon^N x^N \]

More interestingly; \(C = 0.0294 \ldots \) seems to staff a reflection point for all \(D^k L \)

G-Z compute

\[x_3 = 17 \log (3), \quad x_4, \ldots \quad x_{10}, \quad x_{11}, \quad \frac{x_{11}}{x_{10}} \]

ratio of combinations of ZVs of weight 41, \ldots, 110

\(S(3, 5, 3) \)!
Problem: understanding higher \(\xi_k \)'s as periods?

Geometric origin of \(D^k \)?

\(k = 1 \) Mahler measure, normal functions

\(k = 2 \) ... more \(K \)-theory

Theorem

\(c = 0.0294... \) remains

semisimple for all \(D^k \), \(k = 0, 1, 2, ... \)

(\(\Rightarrow \) \([\xi] \) is a reflection).

Therefore all higher Apéry constants exist and in fact

\[\mathcal{X}(\xi) = \sum_{i=0}^{\infty} x_i \xi^i = \left(\frac{2\pi i \xi}{e^{2\pi i \xi} - 1} \right)^3 \prod_{\sigma} f_0(\xi) \]

\[6^3 = 6_0^{-3} 6_1 \left(6_0^3 6_1^3 \right)\]

\[\psi = \text{unique } \left[6^3 \text{-invariant} \right]

solution to \(\mathcal{L} \) normalized so that \(\prod_{\sigma} f_0(0) = 1 \)

\[= -\frac{1}{3} \cdot \frac{1}{2\pi i} f_0 - \frac{1}{2} \cdot \frac{1}{(2\pi i)^2} f_1 + \frac{1}{3} \cdot \frac{1}{(2\pi i)^3} f_2\]

Remark: the presentation (RHS here) is non-canonical we can have

\[P(e^{2\pi i \xi}) \; \mathcal{X}(\xi) = \xi^N \prod_{\sigma} f_0(\xi)\]

a poly with root 1 of multiplicity \(2N \)

the canonical presentation is

\[\mathcal{X}(\xi) = \xi^N \int_0^\xi x^2 \delta(x) \frac{dx}{x} \]

\[\delta = \text{(uniquely normalized)} \]

\([\sigma_c] \delta = -\delta \]

reflection!
What is our benefit in understanding \mathcal{H} as periods

Theorem $\Rightarrow \mathcal{H} = \text{linear combinations of iterated integrals}

(\text{As Francis Brown and Richard Heintz just explained to us, iterated integrals are periods of a relative completion!})

... work in progress

$$\int_{\sigma_1}^{(0)} (x) = \int_{\sigma}^{0} \log^N(x) \psi(x) \frac{dx}{x}$$

Lemma $[\sigma]$ $\mathcal{D}^{-\mathcal{K}} \psi(x) = \mathcal{D}^\mathcal{K} \psi(x) + \sum_{j=0}^{k-1} \frac{\mathcal{D}_0^{(j)}(0) \log^{k-1-j}}{j!} (x)$

in definite iterated integral

Example polylogs $\psi = \frac{1}{1-x}$ $L_2 = (1-x) \frac{d}{dx} - 1$

$$\int_{\sigma_1}^{(0)} (s) = \int_{\sigma_1}^{0} \frac{x^5}{1-x} \frac{dx}{x} = -2\pi i$$

What does this tell us?

$[\sigma_1] \operatorname{Li}_k(x) = \operatorname{Li}_k(x) - 2\pi i \frac{\log^{k-1}(x)}{(k-1)!}$