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Abstract. These are notes of my talk on the seminar on J.Tate’s thesis held

at MPI in Bonn in Spring 2006.

1. Haar measure on Ideles

Let k be a number field, A be it’s ring of adeles. Then I = A× is a group of ideles
with multiplication restricted from A. An element (xp) ∈ I satisfies xp ∈ o×p = up

for all but finite number of places p. We define a topology on I as on restricted
product of k×p with respect to subgroups up. Note that this topology differs from
the one restricted from A: the set I∞ ×

∏
up is a neighbourhood of 1 in I but it

cannot be lifted to a neighbourhood of 1 in A since such a neighbourhood should
contain op at infinitely many places and op ∩ k×p 6= up.

k×p is an abelian locally compact group, also we have the modular function
|x|p : k×p −→R+. Recall that for each Haar measure dxp on the additive group kp

we have a corresponding Haar measure on k×p denoted by dxp

|x|p . This measure is
defined by the Haar integral (for k×p it means ”multiplication invariant” !)

f 7→
∫

kp−{0}

f(x)
|x|p

dxp

for f ∈ C0(k×p ) — continuous function with compact support. This integral is well
defined since f 7→ f(x)

|x|p is an isomorphism between C0(k×p ) and C0(kp − {0}).
We could define the Haar measure on I simply by

∏
p

dxp

|x|p , but we prefer the
following modification by constant:

dxI =
∏

p infinite

dxp

|x|p
×

∏
p finite

Np

Np− 1
dxp

|x|p
.

This modification will be important in Theorems ?? and ??.

2. Embedding of k× into Ideles

Multiplication by an idele is a continuous automorphism of A, so we have a
modular function | · | : I 7→ R+. Obviosly |(xp)| =

∏
|xp|p since dx =

∏
dxp on A.

Proposition 1. |x| = 1 for x ∈ k× ⊂ I.

Proof. Let D ⊂ A be a fundamental domain for k in A. For x ∈ k× we have xk = k,
so xD is a fundamental domain for k again. Thus D and xD can be devided into
countable number of pairwise congruent pieces D ∩ (y + xD) and xD ∩ (−y + D)
(y ∈ k). Then measure of xD equals measure of D, and by definition of modular
function we have |x| = 1. �

Let J = Ker(| · | : I −→R+) be a subset of ideles of norm 1. It is closed, and
we have k×−→ J due to the proposition. All ideles now can be considered as a
product of two subgroups

I = J × R+
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(layers consist of elements with fixed value of | · |). We fix an embedding of R+

into I as follows. Let p∞ be an arbitrary chosen infinite place, and we embed t as
x(t) = (t, 1, 1, 1, ·) with t at p∞ if p∞ is real and x(t) = (

√
(t), 1, 1, 1, ·) if p∞ is

complex. Then |x(t)| = t and any element y is represented as y
x(|y|) × x(|y|) with

y
x(|y|) ∈ J . We fix a Haar measure on R+ as dt

t . Then a Haar measure dxJ on J

should exist such that dxI = dxJ × dt
t .

Theorem 1. An embedding k× ⊂ J is discrete and the quotient J/k× is compact.

Proof. We prove this by constructing explicitly a fundamental doman E such that

J = ∪
x∈k×

xE.

Consider an infinite part of ideles I∞ = R×× . . . R××C× . . . C× with r1 factors
R× and r2 factors C×. It is mapped onto Rr1+r2 by the logarithm

Log(x1, . . . , xr1 , y1, . . . , yr2) = (log|x1|, . . . , 2log|yr2 |),

and we have the Tr : Rr1+r2 → R which is simply the sum of coordinates. So, we
have maps

k× ⊂ I∞
Log−→Rr1+r2 Tr−→R.

Let r := r1 +r2−1. Let u = o×k be global units. Obviosly u ⊂ Ker(Tr ◦Log), and it
is known (Dirihlet unit theorem) that u ∩Ker(Log) = µk (roots of unity in k) and
Log(u) ∼= Zr is a lattice of maximal rank in Rr ∼= Ker(Tr). We pick ε1, . . . , εr ∈ u
such that Log(εi) generate Log(u), and let P ⊂ Ker(Tr) be a paralelotope spanned
by Log(εi). µk is a cyclic group, let w = #(µk) be its order.

We again need an arbitrary infinite place p∞. Put

E0 = {x ∈ Log−1(P )|0 ≤ arg(xp∞) <
2π

w
}.

Obviously E0 is bounded (thus relatively compact), and has an interior in sense
of usual topology on the subspase of elements of I∞ with norm 1. Then E1 =
E0 ×

∏
p finite

up is also relatively compact and has interior as a subset of J . Now

we show that a finite number of translates of E1 is a fundamental domain we are
looking for.

Let I0 =
∏

p finite

k×p be finite part of ideles. Recall the map from I0 to fractional

ideals of k. Then
∏

up is its kernel

I0
/ ∏

up
∼= Ideals(k)

and
I0

/
k×

∏
up

∼= Cl(k)

Let h = #Cl(k) be the class number and x1, . . . , xh ∈ I0 be ideles which represent
all different classes. Obviously we can lift them all to J . Then

E = x1E1 ∪ x2E1 ∪ . . . xhE1

is a fundamental domain for k× in J . Indeed, let x = x∞×x0 ∈ J . Then for exactly
one i we have (xx−1

i )0 ∈ k×
∏

up. So, for some y ∈ k× we have (xx−1
i y)0 ∈

∏
up

and this y is defined up to a unit from u = o×k . Now a unit z ∈ u can be chosen so
that Log((xx−1

i yz)∞) ∈ P , and this unit is defined up to a root of unity in µk. Now
we finally choose a root of unity v so that 0 ≤ arg((xx−1

i yzv)∞p∞) < 2π
w . So we get

for our x ∈ I that x× (yzv) ∈ xiE1, where yzv ∈ k× is unique by construction. �
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Although a fundamental domain E we have just constructed depends on a num-
ber of choises, its measure is a fixed number which doesn’t depend on the choises.
In fact

Theorem 2. Let E be a fundamental domain for k× in J . Then∫
E

dxJ =
2r1(2π)r2hR

w
√
|d|

where R = |det(log |εi|pj
)| is the regulator of the field k (here pj runs over all but

one r1 + r2 infinite places, and the value of R doesn’t depend on the choise of the
place excluded).

Proof. We use the fundamental domain E constructed in the proof of the theorem
above.

Let µ∞ =
∏

p infinite

dxp

|x|p be the measure in multiplicative Minkovsky space I∞,

µp = Np
Np−1

dxp

|x|p be the measure in k×p for finite places. Then

µp(up) =
Np

Np− 1

∫
up

dxp

|x|p
=

Np

Np− 1

∫
up

dxp =
∫

op

dxp = [op : δp]−
1
2 ,

so
1√
|d|

= (Nδ)−
1
2 =

∏
p

[op : δp]−
1
2 =

∏
p

µp(up).

Obviously,∫
E

dxJ = h

∫
E1

dxJ = h

∫
[1,t]×E1

dxI

log t
= h

µ∞ ([1, t]× E0)
log t

∏
p finite

µp(up)

=
h√
|d|

µ∞ ([1, t]× E0)
log t

=
h

w
√
|d|

µ∞
(
[1, t]× Log−1(P )

)
log t

because Log−1(P ) is a disjoint union of translates of E0 by roots of unity in k.
It is easy to check (separately for each infinite place) that for Lebesque measure

λ in Rr1+r2 we have µ∞(Log−1X) = 2r1(2π)r2λ(X) for measurable X ⊂ Rr1+r2 .
Then, P is a subset of the hyperplane Tr = 0, image of [1, t] is the interval [0, log t]
along some axis in Rr1+r2 . Since all axes are under the same angle α to Tr = 0,
the ”volume” λ([0, log t]× P ) doesn’t depend on the choises, and obviously equals
log t sin(α) times the ”area” of P . Since sin(α) = cos(π

2 − α), this volume is log t
times the area of the projection of P onto the hyperplane orthogonal to our chosen
axis. This area is obviously R = |det(log |εi|pj

)|. �

3. Multiplicative characters

The quasi-character c on I is a continuous homomorphism to C×, so it is of the
form

c(x) =
∏

cp(xp)

where cp are quasi-characters on kp and all but finite number of them are trivial
on up.

We consider only those quasi-characters c, which are trivial on k×. For them:
1) c restricted to J is a character. Indeed, since J/k× is compact |c(x)| = 1 for

x ∈ J .
2) If c is trivial on J then c(y) = |y|s for some s ∈ C uniquely defined by c.
3) For given c there exist a number σ ∈ R such that |c(y)| = |y|σ. Indeed, |c(·)|

is a quasi-character trivial on J , so in is | · |σ for some σ ∈ C. And σ ∈ R because
this quasi-character takes values in R+.
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The number σ is called an exponent of c. Quasi-character is a character if and
only if its exponent is 0.

4. Zeta functions

The function f : A−→C is ”good” if
(i) f is continuous and in L1(A)
(ii) f(x)

∣∣∣
I
|x|σ ∈ L1(I) for σ > 1.

(iii)
∑

ξ∈k f(x(y + ξ)) is convergent for each idele x and each adele y, uniformly
in (x, y) ranging over D times any fixed compact subset of I

Definition 2. Suppose f and it’s Fourier transform f̂ are both ”good”. Then the
following function of quasi-characters of exponent greater then 1

ζ(f, c) =
∫

I

f(x)c(x)dxI

is called zeta function of the field k.

Let us call two quasi-characters equvalent if they are equal on J . Then equiva-
lence class is c0(·)| · |s, s ∈ C where c0 is any representative of the class. So, each
equivalence class is a complex plane.

For a quasi-character c we define ĉ(·) = |·|
c(·) . If σ is an exponent of c then 1− σ

is an exponent of ĉ.

Theorem 3. We can extend ζ(f, ·) to the domain of all quasi-characters so that
an extension is analytic on each equivalence class except the trivial one, where it
has poles at c = 1 and c = | · | with residues −κf(0) and +κf̂(0) correspondingly
with κ =

∫
E

dxJ . Moreover,

ζ(f, c) = ζ(f̂ , ĉ).

Proof. ∫
I

f(x)c(x)dxI =
∫ ∞

0

(∫
J

f(tx)c(tx)dxJ

)
dt

t
,

so we consider ζt(f, c) =
∫

J
f(tx)c(tx)dxJ . Then due to (iii)

ζt(f, c) + f(0)c(t)
∫

E

c(x)dxJ =
∑

ξ∈k×

∫
ξE

f(tx)c(tx)dxJ + f(0)c(t)
∫

E

c(x)dxJ

=
∑
ξ∈k

∫
E

f(ξtx)c(tx)dxJ =
∫

E

∑
ξ∈k

f(ξtx)

 c(tx)dxJ ,

and applying Poisson summation formula to expression in brackets we get

=
∫

E

 1
|tx|

∑
ξ∈k

f̂(
ξ

tx
)

 c(tx)dxJ =
∫

E

∑
ξ∈k

f̂(
ξ

tx
)

 ĉ(
1
tx

)dxJ

=
∫

E

∑
ξ∈k

f̂(
ξ

t
x)

 ĉ(
1
t
x)dxJ

since modular function of x 7→ 1
x is 1, and expression which we integrate is periodic

under x 7→ ξx for ξ ∈ k×. Analogously we get

ζt(f, c) + f(0)c(t)
∫

E

c(x)dxJ = ζ 1
t
(f̂ , ĉ) + f̂(0)ĉ(

1
t
)
∫

E

ĉ(x)dxJ
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If c is nontrivial on J we have
∫

E
c(x)dxJ = 0, otherwise it equals κ and c(x) = |x|s.

So we write
ζt(f, c) = ζ 1

t
(f̂ , ĉ) + {{f̂(0)κts−1 − f(0)κts}}

where expression in brackets is present only for characters of trivial class. So

ζ(f, c) =
∫ ∞

1

ζt(f, c)
dt

t
+

∫ 1

0

ζt(f, c)
dt

t

where expression under the first integral is convergent for characters of any expo-
nent. Indeed, |c1(x)|

|c2(x)| = |x|σ1−σ2 ≥ 1 when |x| ≥ 1 and σ1 ≥ σ2. Then

ζt(f, c) =
∫ ∞

1

ζt(f, c)
dt

t
+

∫ ∞

1

ζt(f̂ , ĉ)
dt

t
+ {{f̂(0)κ

∫ 1

0

ts−2dt− f(0)κ
∫ 1

0

ts−1dt}}∫ ∞

1

ζt(f, c)
dt

t
+

∫ ∞

1

ζt(f̂ , ĉ)
dt

t
+ {{ f̂(0)κ

s− 1
− f(0)κ

s
}}.
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