FUNCTIONAL EQUATION FOR ZETA FUNCTIONS

MARIYA VLASENKO

Abstract. These are notes of my talk on the seminar on J.Tate's thesis held at MPI in Bonn in Spring 2006.

1. Haar measure on Ideles

Let k be a number field, A be it's ring of adeles. Then $I=A^{\times}$is a group of ideles with multiplication restricted from A. An element $\left(x_{p}\right) \in I$ satisfies $x_{p} \in o_{p}^{\times}=u_{p}$ for all but finite number of places p. We define a topology on I as on restricted product of k_{p}^{\times}with respect to subgroups u_{p}. Note that this topology differs from the one restricted from A : the set $I^{\infty} \times \prod u_{p}$ is a neighbourhood of 1 in I but it cannot be lifted to a neighbourhood of 1 in A since such a neighbourhood should contain o_{p} at infinitely many places and $o_{p} \cap k_{p}^{\times} \neq u_{p}$.
k_{p}^{\times}is an abelian locally compact group, also we have the modular function $|x|_{p}: k_{p}^{\times} \longrightarrow \mathbb{R}_{+}$. Recall that for each Haar measure $d x_{p}$ on the additive group k_{p} we have a corresponding Haar measure on k_{p}^{\times}denoted by $\frac{d x_{p}}{|x|_{p}}$. This measure is defined by the Haar integral (for k_{p}^{\times}it means "multiplication invariant" !)

$$
f \mapsto \int_{k_{p}-\{0\}} \frac{f(x)}{|x|_{p}} d x_{p}
$$

for $f \in C_{0}\left(k_{p}^{\times}\right)$- continuous function with compact support. This integral is well defined since $f \mapsto \frac{f(x)}{|x|_{p}}$ is an isomorphism between $C_{0}\left(k_{p}^{\times}\right)$and $C_{0}\left(k_{p}-\{0\}\right)$.

We could define the Haar measure on I simply by $\prod_{p} \frac{d x_{p}}{|x|_{p}}$, but we prefer the following modification by constant:

$$
d x_{I}=\prod_{p \text { infinite }} \frac{d x_{p}}{|x|_{p}} \times \prod_{p \text { finite }} \frac{N p}{N p-1} \frac{d x_{p}}{|x|_{p}}
$$

This modification will be important in Theorems ?? and ??

2. Embedding of k^{\times}Into Ideles

Multiplication by an idele is a continuous automorphism of A, so we have a modular function $|\cdot|: I \mapsto \mathbb{R}_{+}$. Obviosly $\left|\left(x_{p}\right)\right|=\prod\left|x_{p}\right|_{p}$ since $d x=\prod d x_{p}$ on A.

Proposition 1. $|x|=1$ for $x \in k^{\times} \subset I$.
Proof. Let $D \subset A$ be a fundamental domain for k in A. For $x \in k^{\times}$we have $x k=k$, so $x D$ is a fundamental domain for k again. Thus D and $x D$ can be devided into countable number of pairwise congruent pieces $D \cap(y+x D)$ and $x D \cap(-y+D)$ $(y \in k)$. Then measure of $x D$ equals measure of D, and by definition of modular function we have $|x|=1$.

Let $J=\operatorname{Ker}\left(|\cdot|: I \longrightarrow \mathbb{R}_{+}\right)$be a subset of ideles of norm 1. It is closed, and we have $k^{\times} \longrightarrow J$ due to the proposition. All ideles now can be considered as a product of two subgroups

$$
I=J \times \mathbb{R}_{+}
$$

(layers consist of elements with fixed value of $|\cdot|$). We fix an embedding of \mathbb{R}_{+} into I as follows. Let p_{∞} be an arbitrary chosen infinite place, and we embed t as $x(t)=(t, 1,1,1, \cdot)$ with t at p_{∞} if p_{∞} is real and $\left.x(t)=(\sqrt{(} t), 1,1,1, \cdot\right)$ if p_{∞} is complex. Then $|x(t)|=t$ and any element y is represented as $\frac{y}{x(|y|)} \times x(|y|)$ with $\frac{y}{x(|y|)} \in J$. We fix a Haar measure on \mathbb{R}_{+}as $\frac{d t}{t}$. Then a Haar measure $d x_{J}$ on J should exist such that $d x_{I}=d x_{J} \times \frac{d t}{t}$.

Theorem 1. An embedding $k^{\times} \subset J$ is discrete and the quotient J / k^{\times}is compact.
Proof. We prove this by constructing explicitly a fundamental doman E such that

$$
J=\underset{x \in k^{\times}}{\cup} x E .
$$

Consider an infinite part of ideles $I^{\infty}=\mathbb{R}^{\times} \times \ldots \mathbb{R}^{\times} \times \mathbb{C}^{\times} \ldots \mathbb{C}^{\times}$with r_{1} factors \mathbb{R}^{\times}and r_{2} factors \mathbb{C}^{\times}. It is mapped onto $\mathbb{R}^{r_{1}+r_{2}}$ by the logarithm

$$
\log \left(x_{1}, \ldots, x_{r_{1}}, y_{1}, \ldots, y_{r_{2}}\right)=\left(\log \left|x_{1}\right|, \ldots, 2 \log \left|y_{r_{2}}\right|\right),
$$

and we have the $\operatorname{Tr}: \mathbb{R}^{r_{1}+r_{2}} \rightarrow \mathbb{R}$ which is simply the sum of coordinates. So, we have maps

$$
k^{\times} \subset I^{\infty} \xrightarrow{\text { Log }} \mathbb{R}^{r_{1}+r_{2}} \xrightarrow{\operatorname{Tr}} \mathbb{R}
$$

Let $r:=r_{1}+r_{2}-1$. Let $u=o_{k}^{\times}$be global units. Obviosly $u \subset \operatorname{Ker}(\operatorname{Tr} \circ \log)$, and it is known (Dirihlet unit theorem) that $u \cap \operatorname{Ker}(\log)=\mu_{k}$ (roots of unity in k) and $\log (u) \cong \mathbb{Z}^{r}$ is a lattice of maximal rank in $\mathbb{R}^{r} \cong \operatorname{Ker}(\operatorname{Tr})$. We pick $\varepsilon_{1}, \ldots, \varepsilon_{r} \in u$ such that $\log \left(\varepsilon_{i}\right)$ generate $\log (u)$, and let $P \subset \operatorname{Ker}(\operatorname{Tr})$ be a paralelotope spanned by $\log \left(\varepsilon_{i}\right) . \mu_{k}$ is a cyclic group, let $w=\#\left(\mu_{k}\right)$ be its order.

We again need an arbitrary infinite place p_{∞}. Put

$$
E_{0}=\left\{x \in \log ^{-1}(P) \left\lvert\, 0 \leq \arg \left(x_{p_{\infty}}\right)<\frac{2 \pi}{w}\right.\right\}
$$

Obviously E_{0} is bounded (thus relatively compact), and has an interior in sense of usual topology on the subspase of elements of I^{∞} with norm 1 . Then $E_{1}=$ $E_{0} \times \prod_{p \text { finite }} u_{p}$ is also relatively compact and has interior as a subset of J. Now we show that a finite number of translates of E_{1} is a fundamental domain we are looking for.

Let $I^{0}=\prod_{p \text { finite }} k_{p}^{\times}$be finite part of ideles. Recall the map from I^{0} to fractional ideals of k. Then $\prod u_{p}$ is its kernel

$$
I^{0} / \prod u_{p} \cong \operatorname{Ideals}(k)
$$

and

$$
I^{0} / k^{\times} \prod u_{p} \cong C l(k)
$$

Let $h=\# C l(k)$ be the class number and $x_{1}, \ldots, x_{h} \in I^{0}$ be ideles which represent all different classes. Obviously we can lift them all to J. Then

$$
E=x_{1} E_{1} \cup x_{2} E_{1} \cup \ldots x_{h} E_{1}
$$

is a fundamental domain for k^{\times}in J. Indeed, let $x=x^{\infty} \times x^{0} \in J$. Then for exactly one i we have $\left(x x_{i}^{-1}\right)^{0} \in k^{\times} \prod u_{p}$. So, for some $y \in k^{\times}$we have $\left(x x_{i}^{-1} y\right)^{0} \in \prod u_{p}$ and this y is defined up to a unit from $u=o_{k}^{\times}$. Now a unit $z \in u$ can be chosen so that $\log \left(\left(x x_{i}^{-1} y z\right)^{\infty}\right) \in P$, and this unit is defined up to a root of unity in μ_{k}. Now we finally choose a root of unity v so that $0 \leq \arg \left(\left(x x_{i}^{-1} y z v\right)_{p_{\infty}}^{\infty}\right)<\frac{2 \pi}{w}$. So we get for our $x \in I$ that $x \times(y z v) \in x_{i} E_{1}$, where $y z v \in k^{\times}$is unique by construction.

Although a fundamental domain E we have just constructed depends on a number of choises, its measure is a fixed number which doesn't depend on the choises. In fact

Theorem 2. Let E be a fundamental domain for k^{\times}in J. Then

$$
\int_{E} d x_{J}=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{w \sqrt{|d|}}
$$

where $R=\left|\operatorname{det}\left(\log \left|\varepsilon_{i}\right|_{p_{j}}\right)\right|$ is the regulator of the field k (here p_{j} runs over all but one $r_{1}+r_{2}$ infinite places, and the value of R doesn't depend on the choise of the place excluded).

Proof. We use the fundamental domain E constructed in the proof of the theorem above.

Let $\mu_{\infty}=\prod_{p \text { infinite }} \frac{d x_{p}}{|x|_{p}}$ be the measure in multiplicative Minkovsky space I^{∞}, $\mu_{p}=\frac{N p}{N p-1} \frac{d x_{p}}{|x|_{p}}$ be the measure in k_{p}^{\times}for finite places. Then

$$
\mu_{p}\left(u_{p}\right)=\frac{N p}{N p-1} \int_{u_{p}} \frac{d x_{p}}{|x|_{p}}=\frac{N p}{N p-1} \int_{u_{p}} d x_{p}=\int_{o_{p}} d x_{p}=\left[o_{p}: \delta_{p}\right]^{-\frac{1}{2}},
$$

so

$$
\frac{1}{\sqrt{|d|}}=(N \delta)^{-\frac{1}{2}}=\prod_{p}\left[o_{p}: \delta_{p}\right]^{-\frac{1}{2}}=\prod_{p} \mu_{p}\left(u_{p}\right) .
$$

Obviously,

$$
\begin{aligned}
\int_{E} d x_{J} & =h \int_{E_{1}} d x_{J}=h \frac{\int_{[1, t] \times E_{1}} d x_{I}}{\log t}=h \frac{\mu_{\infty}\left([1, t] \times E_{0}\right)}{\log t} \prod_{p \text { finite }} \mu_{p}\left(u_{p}\right) \\
& =\frac{h}{\sqrt{|d|}} \frac{\mu_{\infty}\left([1, t] \times E_{0}\right)}{\log t}=\frac{h}{w \sqrt{|d|}} \frac{\mu_{\infty}\left([1, t] \times \log ^{-1}(P)\right)}{\log t}
\end{aligned}
$$

because $\log ^{-1}(P)$ is a disjoint union of translates of E_{0} by roots of unity in k.
It is easy to check (separately for each infinite place) that for Lebesque measure λ in $\mathbb{R}^{r_{1}+r_{2}}$ we have $\mu_{\infty}\left(\log ^{-1} X\right)=2^{r_{1}}(2 \pi)^{r_{2}} \lambda(X)$ for measurable $X \subset \mathbb{R}^{r_{1}+r_{2}}$. Then, P is a subset of the hyperplane $\operatorname{Tr}=0$, image of $[1, t]$ is the interval $[0, \log t]$ along some axis in $\mathbb{R}^{r_{1}+r_{2}}$. Since all axes are under the same angle α to $\operatorname{Tr}=0$, the "volume" $\lambda([0, \log t] \times P)$ doesn't depend on the choises, and obviously equals $\log t \sin (\alpha)$ times the "area" of P. Since $\sin (\alpha)=\cos \left(\frac{\pi}{2}-\alpha\right)$, this volume is $\log t$ times the area of the projection of P onto the hyperplane orthogonal to our chosen axis. This area is obviously $R=\left|\operatorname{det}\left(\log \left|\varepsilon_{i}\right|_{p_{j}}\right)\right|$.

3. Multiplicative characters

The quasi-character c on I is a continuous homomorphism to \mathbb{C}^{\times}, so it is of the form

$$
c(x)=\prod c_{p}\left(x_{p}\right)
$$

where c_{p} are quasi-characters on k_{p} and all but finite number of them are trivial on u_{p}.

We consider only those quasi-characters c, which are trivial on k^{\times}. For them:

1) c restricted to J is a character. Indeed, since J / k^{\times}is compact $|c(x)|=1$ for $x \in J$.
2) If c is trivial on J then $c(y)=|y|^{s}$ for some $s \in \mathbb{C}$ uniquely defined by c.
3) For given c there exist a number $\sigma \in \mathbb{R}$ such that $|c(y)|=|y|^{\sigma}$. Indeed, $|c(\cdot)|$ is a quasi-character trivial on J, so in is $|\cdot|^{\sigma}$ for some $\sigma \in \mathbb{C}$. And $\sigma \in \mathbb{R}$ because this quasi-character takes values in \mathbb{R}_{+}.

The number σ is called an exponent of c. Quasi-character is a character if and only if its exponent is 0 .

4. Zeta functions

The function $f: A \longrightarrow \mathbb{C}$ is "good" if
(i) f is continuous and in $L_{1}(A)$
(ii) $\left.f(x)\right|_{I}|x|^{\sigma} \in L_{1}(I)$ for $\sigma>1$.
(iii) $\sum_{\xi \in k} f(x(y+\xi))$ is convergent for each idele x and each adele y, uniformly in (x, y) ranging over D times any fixed compact subset of I
Definition 2. Suppose f and it's Fourier transform \hat{f} are both "good". Then the following function of quasi-characters of exponent greater then 1

$$
\zeta(f, c)=\int_{I} f(x) c(x) d x_{I}
$$

is called zeta function of the field k.
Let us call two quasi-characters equvalent if they are equal on J. Then equivalence class is $c_{0}(\cdot)|\cdot|^{s}, s \in \mathbb{C}$ where c_{0} is any representative of the class. So, each equivalence class is a complex plane.

For a quasi-character c we define $\hat{c}(\cdot)=\frac{|\cdot|}{c(\cdot)}$. If σ is an exponent of c then $1-\sigma$ is an exponent of \hat{c}.

Theorem 3. We can extend $\zeta(f, \cdot)$ to the domain of all quasi-characters so that an extension is analytic on each equivalence class except the trivial one, where it has poles at $c=1$ and $c=|\cdot|$ with residues $-\kappa f(0)$ and $+\kappa \hat{f}(0)$ correspondingly with $\kappa=\int_{E} d x_{J}$. Moreover,

$$
\zeta(f, c)=\zeta(\hat{f}, \hat{c})
$$

Proof.

$$
\int_{I} f(x) c(x) d x_{I}=\int_{0}^{\infty}\left(\int_{J} f(t x) c(t x) d x_{J}\right) \frac{d t}{t}
$$

so we consider $\zeta_{t}(f, c)=\int_{J} f(t x) c(t x) d x_{J}$. Then due to (iii)

$$
\begin{gathered}
\zeta_{t}(f, c)+f(0) c(t) \int_{E} c(x) d x_{J}=\sum_{\xi \in k^{\times}} \int_{\xi E} f(t x) c(t x) d x_{J}+f(0) c(t) \int_{E} c(x) d x_{J} \\
=\sum_{\xi \in k} \int_{E} f(\xi t x) c(t x) d x_{J}=\int_{E}\left(\sum_{\xi \in k} f(\xi t x)\right) c(t x) d x_{J}
\end{gathered}
$$

and applying Poisson summation formula to expression in brackets we get

$$
\begin{gathered}
=\int_{E}\left(\frac{1}{|t x|} \sum_{\xi \in k} \hat{f}\left(\frac{\xi}{t x}\right)\right) c(t x) d x_{J}=\int_{E}\left(\sum_{\xi \in k} \hat{f}\left(\frac{\xi}{t x}\right)\right) \hat{c}\left(\frac{1}{t x}\right) d x_{J} \\
=\int_{E}\left(\sum_{\xi \in k} \hat{f}\left(\frac{\xi}{t} x\right)\right) \hat{c}\left(\frac{1}{t} x\right) d x_{J}
\end{gathered}
$$

since modular function of $x \mapsto \frac{1}{x}$ is 1 , and expression which we integrate is periodic under $x \mapsto \xi x$ for $\xi \in k^{\times}$. Analogously we get

$$
\zeta_{t}(f, c)+f(0) c(t) \int_{E} c(x) d x_{J}=\zeta_{\frac{1}{t}}(\hat{f}, \hat{c})+\hat{f}(0) \hat{c}\left(\frac{1}{t}\right) \int_{E} \hat{c}(x) d x_{J}
$$

If c is nontrivial on J we have $\int_{E} c(x) d x_{J}=0$, otherwise it equals κ and $c(x)=|x|^{s}$. So we write

$$
\zeta_{t}(f, c)=\zeta_{\frac{1}{t}}(\hat{f}, \hat{c})+\left\{\left\{\hat{f}(0) \kappa t^{s-1}-f(0) \kappa t^{s}\right\}\right\}
$$

where expression in brackets is present only for characters of trivial class. So

$$
\zeta(f, c)=\int_{1}^{\infty} \zeta_{t}(f, c) \frac{d t}{t}+\int_{0}^{1} \zeta_{t}(f, c) \frac{d t}{t}
$$

where expression under the first integral is convergent for characters of any exponent. Indeed, $\frac{\left|c_{1}(x)\right|}{\left|c_{2}(x)\right|}=|x|^{\sigma_{1}-\sigma_{2}} \geq 1$ when $|x| \geq 1$ and $\sigma_{1} \geq \sigma_{2}$. Then

$$
\begin{gathered}
\zeta_{t}(f, c)=\int_{1}^{\infty} \zeta_{t}(f, c) \frac{d t}{t}+\int_{1}^{\infty} \zeta_{t}(\hat{f}, \hat{c}) \frac{d t}{t}+\left\{\left\{\hat{f}(0) \kappa \int_{0}^{1} t^{s-2} d t-f(0) \kappa \int_{0}^{1} t^{s-1} d t\right\}\right\} \\
\int_{1}^{\infty} \zeta_{t}(f, c) \frac{d t}{t}+\int_{1}^{\infty} \zeta_{t}(\hat{f}, \hat{c}) \frac{d t}{t}+\left\{\left\{\frac{\hat{f}(0) \kappa}{s-1}-\frac{f(0) \kappa}{s}\right\}\right\}
\end{gathered}
$$

