## Simple things we don't know:

## reflections on doing research in number theory

Masha Vlasenko

Warsaw Doctoral School in Mathematics Open Day May 22, 2021

## Riemann zeta function

$$
\begin{aligned}
& \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \operatorname{Re}(s)>1 \\
& \zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \ldots \quad \zeta(2 k)=(-1)^{k+1} \frac{B_{2 k} 2^{2 k-1}}{(2 k)!} \pi^{2 k} \\
& B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, B_{6}=\frac{1}{42}, \ldots \quad \text { Bernoulli numbers }
\end{aligned}
$$

... rational numbers that show up everywhere, e.g.

$$
\begin{aligned}
& 1+2+\ldots+n=\frac{1}{2}\left(n^{2}+n\right) \\
& 1^{2}+2^{2}+\ldots+n^{2}=\frac{1}{3}\left(n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n\right) \\
& 1^{m}+2^{m}+\ldots+n^{m} \\
& =\frac{1}{m+1}\left(B_{0}\binom{m+1}{0} n^{m+1}+B_{1}\binom{m+1}{1} n^{m}+\ldots+B_{m}\binom{m+1}{m} n\right)
\end{aligned}
$$

## Bernoulli numbers

Atque si porrò ad altiores gradatim potestates pergere, levique negotio sequentem adornare laterculum licet:

Summae Potestatum
$f n=\frac{1}{2} n n+\frac{1}{2} n$
$f n n=\frac{1}{3} n^{3}+\frac{1}{2} n n+\frac{1}{6} n$
$\int n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} \pi n$
$\int n^{4}=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n$
$f n^{5}=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n n$
$\int n^{6}=\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n$
$\int n^{7}=\frac{1}{8} n^{8}+\frac{1}{2} n^{7}+\frac{7}{12} n^{6}-\frac{7}{24} n^{4}+\frac{1}{12} n n$
$\int n^{8}=\frac{1}{9} n^{9}+\frac{1}{2} n^{8}+\frac{2}{3} n^{7}-\frac{7}{15} n^{5}+\frac{2}{9} n^{3}-\frac{1}{30} n$
$\int \pi^{9}=\frac{1}{10} n^{10}+\frac{1}{2} n^{9}+\frac{3}{4} n^{8}-\frac{7}{70} n^{6}+\frac{1}{2} n^{4}-\frac{1}{12} \pi n$
$f n^{10}=\frac{1}{11} n^{11}+\frac{1}{2} n^{10}+\frac{5}{6} n^{9}-1 n^{7}+1 n^{5}-\frac{1}{2} n^{3}+\frac{5}{66} n$
Quin imó qui legem progressionis inibi attentuis ensperexit, eundem etiam continuare poterit absque his ratiociniorum ambabimus : Sumtâ enim $c$ pro potestatis cujuslibet exponente, fit summa omnium $n^{c}$ seu

$$
\begin{aligned}
& \int n^{c}=\frac{1}{c+1} n^{c+1}+\frac{1}{2} n^{c}+\frac{c}{2} A n^{c-1}+\frac{c \cdot c-1 \cdot c-2}{2 \cdot 3 \cdot 4} B n^{c-3} \\
& +\frac{c \cdot c-1 \cdot c-2 \cdot c-3 \cdot c-4}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} c n^{c-5} \\
& +\frac{c \cdot c-1 \cdot c-2 \cdot c-3 \cdot c-4 \cdot c-5 \cdot c-6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} D n^{c-7} \ldots \& \text { ita deinceps, }
\end{aligned}
$$

exponentem potestatis ipsius $n$ continué minuendo binario, quosque perveniatur ad $n$ vel $n n$. Literae capitales A, B, C, D \& c. ordine denotant coëfficientes ultimorum terminorum pro $\int \pi n, \int \pi^{4}, \int \pi^{6}, \int \pi^{8}, \& c$. nempe

$$
\mathrm{A}=\frac{1}{6}, \mathrm{~B}=-\frac{1}{30}, \mathrm{C}=\frac{1}{42}, \mathrm{D}=-\frac{1}{30} .
$$

## Jakob Bernoulli's

"Summae Potestatum", 1713


Barry Mazur's sketch of the unity of mathematics, 2008

## Special values of the Riemann zeta function

$$
\begin{aligned}
& \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \operatorname{Re}(s)>1 \\
& \zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \ldots \quad \zeta(2 k)=(-1)^{k+1} \frac{B_{2 k} 2^{2 k-1}}{(2 k)!} \pi^{2 k} \\
& \zeta(3)=1.2020569031595942853997381615114499908 \ldots \\
& \zeta(5)=1.0369277551433699263313654864570341681 \ldots
\end{aligned}
$$

Theorem (Roger Apéry, 1979) $\zeta(3) \notin \mathbb{Q}$
Theorem (Wadim Zudilin, 2001) Among the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ at least one is irrational.

Conjecture (folklore) The numbers $\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over $\mathbb{Q}$.

## Other functions like $\zeta(s)$ : Hasse-Weil zeta functions

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\ldots\right)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

$X$ algebraic variety $/ \mathbb{Z} \quad \rightsquigarrow \quad \zeta_{X}(s):=\prod_{p \text { prime }} \mathcal{Z}_{X / \mathbb{F}_{p}}\left(p^{-s}\right)$

$$
\mathcal{Z}_{X / \mathbb{F}_{p}}(T)=\exp \left(\sum_{m=1}^{\infty} \# X\left(\mathbb{F}_{p^{m}}\right) \frac{T^{m}}{m}\right)=1+\# X\left(\mathbb{F}_{p}\right) T+\ldots
$$

Theorem (Dwork, 1960) The local zeta function $\mathcal{Z}_{X / \mathbb{F}_{p}}(T)$ is a rational function of $T$.

## Zeta functions of algebraic varieties

Example 1: $X=$ one point,$\quad \# X\left(\mathbb{F}_{p^{m}}\right)=1$

$$
\mathcal{Z}_{X / \mathbb{F}_{p}}(T)=\exp \left(\sum_{m \geq 1} \frac{T^{m}}{m}\right)=\frac{1}{1-T}, \quad \zeta_{X}(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

Example 2: $X=$ elliptic curve

$$
\mathcal{Z}_{X / \mathbb{F}_{p}}(T)=\frac{1-\alpha_{p} T+p T^{2}}{(1-T)(1-p T)}, \quad \alpha_{p}=p-\# X\left(\mathbb{F}_{p}\right)
$$

Conjecture. $\zeta_{X}(s)$ can be analytically continued to a meromorphic function of $s$ in the whole $\mathbb{C}$.

This is known only for very special classes of varieties. Orders of poles and zeroes, and special values of $\zeta_{X}(s)$ should "know" a lot about geometry and arithmetic of $X$ : Birch and Swinnerton-Dyer conjecture, Beilinson-Deligne conjectures, Langlands program...

## What we know about local zeta functions

$$
X=\text { elliptic curve }\left\{y^{2}=x^{3}+a x+b\right\}, \quad \Delta:=4 a^{3}+27 b^{2} \neq 0
$$

$\mathcal{Z}_{X / \mathbb{F}_{p}}(T)=\frac{1-\alpha_{p} T+p T^{2}}{(1-T)(1-p T)} \quad$ for all $\quad p \nmid \Delta$
$\alpha_{p}=p-\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+a x+b\right\}$
Theorem (Helmut Hasse, 1933) $\frac{\alpha_{p}}{2 \sqrt{p}} \in[-1,1]$
Theorem (former Sato-Tate conjecture: Clozel, Harris, Shepherd-Barron, Taylor 2008, Barnet-Lamb, Geraghty, Harris, Taylor 2011)
Numbers $\frac{\alpha_{p}}{2 \sqrt{p}}=: \cos \left(\theta_{p}\right)$ are distributed in $[-1,1]$ according to the law

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{p<N: t_{1}<\theta_{p}<t_{2}\right\}}{\#\{p<N\}}=\frac{2}{\pi} \int_{t_{1}}^{t_{2}} \sin ^{2}(\theta) d \theta
$$

Punchline: could there be a formula for $\alpha_{p}$ ?
$X_{t}: y^{2}=x(x-1)(x-t), \quad t \neq 0,1$ parameter
$\alpha_{p}(t)=p-\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x(x-1)(x-t)\right\}$

- The elliptic integral

$$
F(t)=\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-t)}}=\sum_{n=0}^{\infty} \frac{1}{16^{n}}\binom{2 n}{n}^{2} t^{n}
$$

is annihilated by $L=t(1-t) \frac{d^{2}}{d t^{2}}+(1-2 t) \frac{d}{d t}-\frac{1}{4}$.

- For any $p \neq 2$ the truncation $F_{p}(t)=\sum_{n=0}^{p-1} \frac{1}{16^{n}}\binom{2 n}{n}^{2} t^{n}$ is a solution to $L$ modulo $p$, and

$$
\alpha_{p}(t) \equiv F_{p}(t) \quad \bmod p .
$$

- The function $\lambda_{p}(t):=\frac{F(t)}{F\left(t^{p}\right)}$ admits a $p$-adic analytic continuation to the set $\left\{t: F_{p}(t) \not \equiv 0 \bmod p\right\}$ and for such $t$ one has

$$
\alpha_{p}(t)=\lambda_{p}(t)+\frac{p}{\lambda_{p}(t)} \quad(\text { Dwork, 1969). }
$$

## Deformation theory of local zeta functions, after Dwork

$$
\begin{gathered}
\#\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x(x-1)(x-t)\right\}=p-\lambda_{p}(t)-\frac{p}{\lambda_{p}(t)} \\
\lambda_{p}(t)=\frac{F(t)}{F\left(t^{p}\right)}, \quad F(t)=\int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-t)}}
\end{gathered}
$$

What you see here is a glimpse of an explicit deformation theory for zeta functions, which was anticipated by Bernard Dwork. It relies on fine arithmetic properties of solutions of differential equations arising from geometry, like $F(t)$. Together with Frits Beukers we started to explore and generalize these properties in a recent series of papers, which we call "Dwork crystals I, II, III" ...


